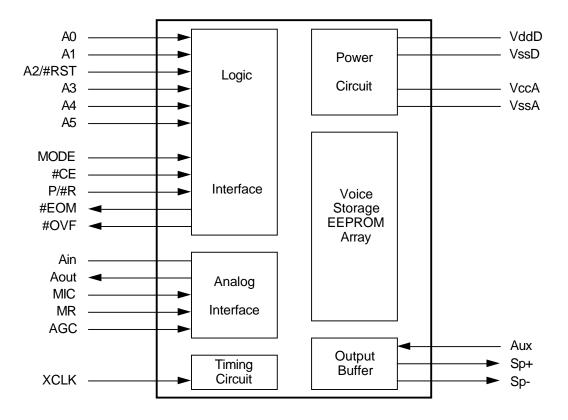
July 1996

### **Features**

- Work at 4.5V through 5.5V
- Single power voltage application
- Single chip recording & playing
- 300,000 hours nonvalatile voice storage typically, without battery backup
- 100,000 times recording typically
- 2 MHz optional external clock input if precise timing is demand
- 0 dB to 40 dB AGC is provided
- 16 ohm speaker could be driven in 75 mW
- 16 second capacity is provided at 8 KHz (20000h sample pixel)
- Up to 64 sections are provided
- No sound developing tool is needed
- 4 package types are provided : dice form, 300 mil 24L PDIP, 300 mil 24L SOG, 24L PLCC

- Two operation modes are provided : push botton mode and CPU addressing mode.
- On chip oscillator
- On chip voltage charge pump
- On chip microphone preamplifier with AGC
- On chip anti-aliasing circuit
- On chip EEPROM programming circuit
- On chip EEPROM erasing circuit
- Microphone reference pin is provided
- Audio input / output pins are provided

# **Descriptions**


www.datasheethu.com

The MSR1161 is a single chip CMOS VLSI that can memorize analog voice data up to16 seconds at 8000 Hz sample rate. It provides high quality, single-chip record and playback solutions for messaging applications. It has two operation modes: the push botton mode that is simple-to-use for manual operation while the CPU addressing mode allows complex messaging and addressing to be connected with microprocessor.

Voice signals are stored directly in their natural analog form into EEPROM memory. This allows natural voice reproduction in a single chip solid-state solution. Multiple chips can be cascaded to provide longer duration recorded and playback.

www.DataSheet4U.com

# **Block diagram**



# **Signal Summary**

| Pin# | Pad # | Signal    | Count | 1/0 | Active | Functions                                     |  |
|------|-------|-----------|-------|-----|--------|-----------------------------------------------|--|
|      |       | A0        | 1     | ı   | Н      | High true address bit 0 (LSB)                 |  |
|      |       | A1        | 1     | ı   | Н      | High true address bit 1                       |  |
|      |       | A2 / #RST | 1     | 1   | H/L    | High true address bit 2 / restart             |  |
|      |       | A3        | 1     | ı   | Н      | High true address bit 3                       |  |
|      |       | A4        | 1     | ı   | Н      | High true address bit 4                       |  |
|      |       | A5        | 1     | ı   | Н      | High true address bit 5                       |  |
|      |       | #OVF      | 1     | 0   | L      | overflow flag output for whole 128K pixels    |  |
|      |       | #EOM      | 1     | 0   | L      | end of message flag output for each 2K pixels |  |
|      |       | AUX       | 1     | 1   |        | auxiliary input                               |  |
|      |       | VssD      | 1     |     |        | digital ground                                |  |
|      |       | VssA      | 1     |     |        | analog ground                                 |  |
|      |       | SP+       | 1     | 0   |        | speaker output plus                           |  |
|      |       | SP-       | 1     | 0   |        | speaker output minus                          |  |
|      |       | VccA      | 1     |     |        | Vcc analog                                    |  |
|      |       | MIC       | 1     | 1   |        | microphone input                              |  |
|      |       | MR        | 1     | 1   |        | microphone input reference                    |  |
|      |       | Ain       | 1     | 1   |        | analog input                                  |  |
|      |       | Aout      | 1     | 0   |        | analog output                                 |  |
|      |       | AGC       | 1     | 1   |        | automatic gain control input                  |  |
|      |       | XCLK      | 1     | ı   |        | external clock input                          |  |
|      |       | MODE      | 1     | ı   | H/L    | mode selection input                          |  |
|      |       | #CE       | 1     | 1   | L      | chip enable input                             |  |
|      |       | P/#R      | 1     | 1   | H/L    | play / record                                 |  |
|      |       | VddD      | 1     |     |        | digital Vdd                                   |  |

### Signal Details

#### **Input Signals**

#### A0, A1, A2,A3, A4, A5

There are up to 64 sections provided, 2 K samples each. They are 6 bit high-true addresses to specify the section to be recorded or played among 64. A5 is MSB while A0 is the LSB.

#### #RST

Restart from section zero.

This pin as low when latched by #CE means the section pointer will be zero when played.

#### MODE

Mode selection. When this pin is connected to high(=1), the push button mode is selected. When this pin is connected to low (=0), the CPU addressing is selected.

#### #CE

Chip enable pin. This pulse' falling edge latches what you order this chip to execute - the address of specified section by 6 address bits, the operation by P/#R, Mode, etc. The rising edge also stops the playing (or recording) immediately. The Auxiliary input source are connected directly into mux of output buffer whenever #CE is high.

#### P/#R

Play or Record. Low to play and high to record.

### MIC and MR

MIC means Microphone signal input. It should range within +/-20 mV.

MR means Microphone reference. AC coupled to microphone ground to reduce noise.

This pin must be float if it is not used. It should range within 1.5 V or floating.

This signal pair is connected to microphone. There is a typical 6 K ohm resistance (R mic) in pin MIC. This R mic in serial with external C mic determines the cut off frequency of input signal. Only capacitive microphone is recommended.

#### AGC

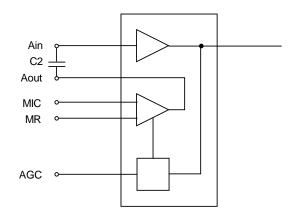
Automatic gain control. Connected to external capacitor and resistor to determine the "attack" and "release" times of the gain control. If it is tied to low, the maximal gain of pre-amplifier is achieved (19 dB). If it is tied to high, the minimal gain is achieved.

(around -3 dB). It should range within 0 through 5 V.

#### **XCLK**

External clock. This MSR1161 chip can be external clocked through this pin when more precise timing is required. 2 MHz clock in duty cycle 50% +/- 10% will play a sound at 8000 HZ sample rate. Below is the clock vs SR illustration. If this pin is tied to low, the internal clock is used. The internal clock plays 8 KHz sample rate.

6000 Hz S.R. by 1.50 MHz clock 8000 Hz S.R. by 2.00 MHz clock 10000 Hz S.R. by 2.50 MHz clock 12000 Hz S.R. by 3.00 MHz clock


#### **AUX**

Auxiliary signal input. The Auxiliary input source are connected directly into mux of output buffer whenever #CE is high and #EOM is low. This is helpful in concatenation applications. It is also the input from SP+ of next cascaded chip when at cascading application. Don't let it floating whenever it is not used. AUX can be connected to ground (VssA) when it's not used or idle.

#### Ain

Analog signal input pin. It also used to facilitate cascading. It should range within AC 0.5V to 2.5V at DC 1.5V. The input current should be greater than 1 mA. The greater, the better.

Č2 is used to block dc voltage from Aout to Ain. The value is around 1 uF.



|   | C1      | Attack Time |
|---|---------|-------------|
| 1 | 0.01 uF | uS          |
| 2 | 0.1 uF  | uS          |
| 3 | 1.0 uF  | uS          |
| 4 | 10 uF   | uS          |

#### **Output Signals**

#### Aout

Analog signal output pre-amplified. It also used to facilitate cascading application. It should range within +/-1000 mV.

#### #EOM

End of Message status output. It goes low at the end of each message section (2,048 pixels) and lasts for t EOM. It goes low as well when the device full.

#### #OVF

Device overflow status output. It indicates device overflow for (1) Playback or (2) Record Only or (3) Erase cycles. It goes low when the message overflows (device full) to facilitate cascading of multiple devices. Record ready for Erase Before Record cycle (only in Push button mode).

At the beginning of the Erase Before Record cycle, the chip may need to erase any existing information on the portion of the chip to be recorded. It may take up to 1 seconds. This status output pin indicates when the erase operation is complete and the chip is ready to begin recording.

This output LOW pulse also tells you that the rewind reaches the front line of voice storage.

In P3 or P6 mode, #VOF will be kept low after finishing playback until chip enter the next operation by #CE trigger.

#### SP+, SP-

Speaker output pins to drive 16 ohm (or 8 ohm) speaker directly, The feedback to AUX, the SP+ should be used. It should range within 0 through 3 V. Whenever the P/#R is low, this signal pair is hold at ground, VssA.

#### **Power Signals**

#### VssD, VddD

Ground and positive power supply of digital signals.

### VssA, VccA

Ground and positive power supply of analog signals. For mixed mode chip, the power signal is layout separately inside the chip. This is to reduce the interference. Put them as close as possible when coming out from chip to make both signal stable.

### **Circuit Description**

### Input preamplifier

This circuit block accepts the input analog signal coupled in from an external microphone (MIC). The microphone reference input pin (MR) is connected to microphone ground (or floating, if there is no microphone ground output) to reject common mode noise at the preamplifier. This circuit block includes a voltage level shifter to shift the microphone input signal (about +/- 10 mv peak-to-peak) to a positive reference level of about 1.5V, and a variable gain preamplifier to amplify this signal by -3dB to 19dB, depending on the input signal amplitude. Its output goes to the Aout pin.

#### Automatic gain control

This circuit block dynamically controls the variable gain of the preamplifier to compensate for the wide range of microphone input signal level. It allows the full range of whispers to loud sounds to be recorded with minimal distortion. The "attack" time of this circuit is determined by

the time constant of a  $5K\Omega$  internal resistance and an external capacitor C1 connected from the AGC input pin to VssA. The "release" time is determined by the time constant of an external resistor R1 and the same external capacitor connected in parallel between the AGC input pin and VssA.

- 1. If AGC is tied to low, the gain of pre-amplifier is maximum. (19dB)
- 2. If AGC is tied to high, the gain of pre-amplifier is minimum. (~ -3dB)

#### Input amplifier

This is a fixed gain amplifier stage to further amplify the input signal by about 20 ~ 21dB. For microphone inputs, the signal is AC coupled in from the Aout pin of the preamplifier stage to the Ain pin via an external capacitor C2. If the input comes from other sources, the signal may be fed, capacitively coupled, into the Ain pin directly. The output from this fixed gain amplifier goes to the antialiasing filter. For the cascaded situation, the Aout is AC coupled to the Ain of the next cascaded chip.

#### **Anti-aliasing filter**

This circuit block consists of three stages of Chebychev-type low-pass filter with a cut-off frequency of 3.4 KHz (when the sampling rate is 8 KHz) using switch-capacitor-filter technique. The filter has 3 poles, a roll-off ratio of 60dB per decade. Another one-stage Sallen-key low-pass filter is used in final stage to filter the high-frequency noise generated by switch-capacitor. The overall gain of filter is a unity. Since the resistor value in switch-capacitor can be adjusted by the switching clock frequency, the cut-off frequency tracks closely with the sampling rate governed by the internal clock oscillation frequency of external clock.

#### Sample and hold

This circuit samples and stores the input analog signal after passing through the filter in real time, to be transferred to the program circuit. The sampling rate is determined by an internal clock oscillator, controlled by a timing control circuit block. The nominal sampling rate is 8 KHz +/- 2.25%. If greater precision is required, The device can be clocked through the XCLK pin.

#### **EEPROM** programming circuit

The program circuit includes a charge pump to generate a high voltage; a multiplexor to select the columns of cells to be programmed; a timing-and voltage-control circuit and a comparator to precisely generate the pulses to erase and program the cells to the desired levels representing different input signal levels.

#### Memory array and decoder

The memory array consists of 128K EEPROM cells, tentatively organized in 1024 rows by 64 columns with two blocks (Odd and Even). Total memory size: 2x1024x64=131,072 pixels. The different rows are

decoded through a decoder driven by 6 address pins. The maximum messages is 64, and the message minimum size is 2048 pixels (0.256 second with 8 KHz sample rate frequency).

#### **Smoothing filter**

This actually uses the same circuit block as the antialiasing filter. During playback, the information read out from the memory array is smoothed out by the filter before going to the output amplifier.

#### **Output Amplifier**

The analog signal read out from the memory array, after passing through the smoothing filter, is buffered to drive the output loudspeaker. The on-chip differential speaker driver is capable of driving half watt into 16 ohm speaker. Two complementary output pins, SP+ and SP-, allow the speaker to transduce four times more output power for the same signal level than a single speaker output design. The output drivers are disabled during Standby and Record cycles.

#### Terms

#### Cascading

For the system requires more than one MSR1161 chips, several extra pins are used. The AUX is used to connected to the SP+ of the previous stage chip. Therefore, multiple of MSR1161 chips can be cascaded and only one speaker of the last chip is required. The pin #CE (Chip Enable) is used to select one of the MSR1161 chips. The selected MSR1161 chip will take the message from D/A converter and redirect it to the speaker output. For those unselected MSR1161 chips the speaker output will take the input from AUX. When the end of memory event happened in a selected chip, the #OVF pin will indicate this situation, and therefore, the system can select a new chip. The application circuit V shows double MSR1161s in cascade.

#### Sample Rate

MSR1161 has internal sample clock 8 KHz in precision +/-2.5% for appropriate temperature and suitable working voltage. The other way to provide sample clock is to feed clock to XCLK pin. The sample rate is always equal to external clock frequency devided by 256. The 2 MHz clock to be applied to XCLK is recommended. Using higher sample rate may not achieve higher sound quality. Playback and record should have the same sample rate. There is no problem to apply higher sample clock for playback. However, the recording may have some error by using higher than 8 KHz.

#### **Attack Time**

Attack time is the time constant that the internal AGC circuit charges the external C1 through an internal 5k Ohm resistor. When the microphone input signal is getting large the AGC circuit starts charging the external C1. The

charge time is proportional to the Attack Time. That means the smaller the Attack Time is the faster the C1 is charged. In consequent, the higher voltage of C1 charged the smaller AGC gain to amplify the microphone input signal. Therefore, for a loud signal input the AGC will reduce the signal amplitude eventually, and the Attack Time determines how fast the signal is been reduced.

#### **Release Time**

Release time is the time constant that the AGC circuit discharges the external C1 through an external resistor R1. When the microphone input sigal is getting small the AGC circuit starts discharging the external C1. The discharge time is proportional to the Release Time. That means the smaller the Release Time is the faster the C1 is discharged. In consequent, the lower voltage of C1 descharged the larger AGC gain to amplify the microphone input signal. Therefore, for a small signal input the AGC will enhance the signal amplitude eventually, and the Release Time determines how fast the signal is been enhanced.

DC Characteristics (0°C ~70 , VccA = 5.0 V  $\pm$  10%, Vdd D= 5.0 V  $\pm$  10%, VssD = 0.0 V, VssA = 0.0 V

| Symbol  | Parameter               | Valid      | Min. | Тур. | Max. | Unit | Conditions      |
|---------|-------------------------|------------|------|------|------|------|-----------------|
| I sb    | Stand by                | VddD       |      | 1    | 10   | uA   |                 |
| I ор    | operating               | VddD       |      |      | 25   | mA   | w /o speaker    |
| I IL    | Input leakage I         | logic I/Os |      |      | 1    | uA   |                 |
| I PO    | Pre-Amp source output I | Aout       |      | 100  |      | uA   | V Aout = 1.5 V  |
| I PI    | Pre-Amp sink input I    | Aout       |      | 100  |      | uA   | V Ain = 1.5 V   |
| I OVF   | sink I of #VOF          | #VOF       |      |      |      | mA   | R SP = 16 ohm   |
| I EOM   | sink I of #EOM          | #EOM       |      |      |      | uA   | R SP = infinite |
| la PL   | Playback I              | VccA       |      |      |      | mA   | R SP = infinite |
| la PL   | Playback I              | VccA       |      | 3    |      | mA   |                 |
| ld PL   | Playback I              | VddD       |      | 20   |      | uA   |                 |
| ld REC  | Recording I             | VddD       |      | 30   |      | mA   |                 |
| ld ERA  | Erasing I               | VddD       |      | 30   |      | mA   | I oL = 4 mA     |
| V iL    | input low V             | logic I/Os |      |      | 0.8  | V    |                 |
| V ih    | input high V            | logic I/Os |      | 2.0  |      | V    | I oh = -1.6 mA  |
| V oL    | output low V            | logic I/Os |      |      | 0.4  | V    |                 |
| V oh    | output high V           | logic I/Os |      | 2.4  |      | ٧    |                 |
| Vpp SP  | Speaker output Vpp      | SP+, SP-   |      | 2.5  |      | V    |                 |
| Vpp MIC | Microphone input Vpp    | MIC        |      |      | 20   | mV   | V (AGC) = 0 V   |
| Vpp Ain | Analog input Vpp        | Ain        |      |      | 100  | mV   | V (AGC) >= 3 V  |
| Vpp AUX | Auxilary input Vpp      | AUX        |      |      | 2.5  | mV   | Ain / Speaker   |
| A PMX   | Pre-Amp maximal gain    |            |      | 19   |      | dB   | AUX / Speaker   |
| A PMN   | Pre-Amp minimal gain    |            |      | -3   |      | dB   |                 |
| A AF    | Analog input fix gain   |            |      | 20   |      | dB   |                 |
| A PW    | power Amp gain          |            |      | 1    |      | dB   |                 |
| R SP    | Speaker load R          | SP+, SP-   |      | 16   |      | ohm  |                 |
| R AGC   | AGC pin input R         | AGC        |      | 10   |      | Kohm |                 |
| R MIC   | Microphone input R      | MIC        |      | 6    |      | Kohm | 16 ohm speaker  |
| R Ain   | Analog input Resistance | Ain        |      | 5    |      | Kohm |                 |
| C MIC   | Input C of pin MIC      | MIC        |      | 0.22 |      | uF   |                 |
| C MR    | Input C of pin MR       | MR         |      | 0.22 |      | uF   |                 |
| P SP    | Speaker output power    | SP+, SP-   |      |      | 75   | mW   |                 |

All above parameters are valid on both operation modes.

## **AC Characteristics**

(0°C ~70 , VccA= 5.0 V  $\pm$  10%, VddD = 5.0 V  $\pm$  10%, VssD = 0.0 V, VssA = 0.0 V)

| Symbol | Description               | Function  | Valid pin  | Min. | Тур.  | Max. | Unit | Remarks               |
|--------|---------------------------|-----------|------------|------|-------|------|------|-----------------------|
|        |                           |           |            |      |       |      |      |                       |
| t CE   | #CE hold time             | Rec, Play | #CE        | 10   |       |      | ns   |                       |
| t SET  | Address set up time       | Rec, Play |            |      |       |      | us   |                       |
| t HOLD | Address hold time         | Rec, Play |            | 6    |       |      | us   |                       |
| t MIC  | #CE fall to MIC start     | Rec       |            |      | 256   |      | us   |                       |
| t SPK  | #CE fall to SP+ start     | Play      |            |      | 256   |      | us   |                       |
| t CEM  | #CE fall to MIC stop      | Rec       |            |      |       | 8    | ms   |                       |
| t CES  | #CE fall to SP+ stop      | Play      |            |      | 0~256 |      | ms   |                       |
| t OSP  | #OVF start to SP+ stop    | Rec,      |            |      | 256   |      | us   |                       |
| t ESP  | #EOM start to SP+ stop    | Rec,      |            |      |       |      | us   |                       |
| t OVF  | #OVF hold time            | Rec, Play | #OVF       |      | 126   |      | us   |                       |
| t EOM  | #EOM hold time            | Rec, Play | #EOM       |      | 126   |      | us   |                       |
| t RMU  | Ramp up width             | Play      | SP+, SP-   |      |       |      | ms   |                       |
| t RMD  | Ramp down width           | Play      | SP+, SP-   |      |       |      | ms   |                       |
| t PUD  | Power up delay            | Rec, Play | VddD, VccA | 1    |       |      | ms   |                       |
| t P    | Power rise up time        | Rec, Play | VddD, VccA |      |       | 1    | ms   |                       |
| t R    | Power ripple width        | Rec, Play | VddD, VccA |      |       | 1    | ms   |                       |
| t REC  | Total record time         | Rec       |            |      | 16    |      | S    |                       |
| t PLAY | Total play time           | Play      |            |      | 16    |      | S    |                       |
| f SAMP | Sample clock frequency    |           | (internal) |      | 8     |      | KHz  |                       |
| f CUT  | Cut-off frequency         |           |            |      | 3.4   |      | KHz  |                       |
| f XCLK | External clock frequency  |           | XCLK       |      | 2     |      | MHz  | at node XCLK          |
| df / f | frequency stability       |           | SP+, SP-   | -10  |       | +10  | %    | [F(5V)-F(4.5V)]/F(5V) |
| df / f | frequency variation       |           | SP+, SP-   | -10  |       | +10  | %    | lot by lot            |
| THD    | total harmonic distorsion |           | SP+, SP-   |      | 2     |      | %    | at 1 KHz              |

All above parameters are valid on both operation modes except 4: t MIC, t SPK, t CEM, t CES.

# **Chip Functions**

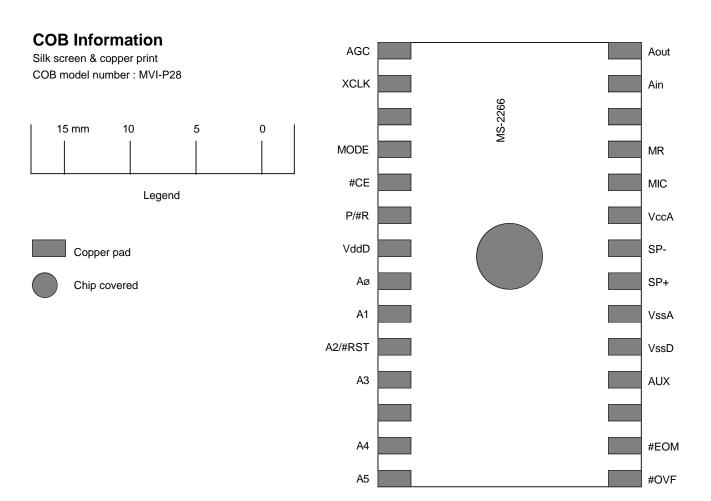
### I. Chip works at mode 1, playback

| Signals to decode |                     |      |      |    |    |      |      |    |    |                    |         |
|-------------------|---------------------|------|------|----|----|------|------|----|----|--------------------|---------|
|                   |                     |      |      | A0 | A1 | A2   | А3   | A4 | A5 | Location           | When    |
|                   | Functions           | MODE | P/#R |    | _  | #RST | #END |    | _  | to start           | to stop |
| P2                | play back from here | 1    | 1    | х  | х  | 1    | 0    | х  | 1  | current section    | #EOM    |
| P3                | play back from here | 1    | 1    | х  | х  | 1    | 1    | 0  | 1  | current<br>section | #OVF    |
| P5                | play back from zero | 1    | 1    | х  | х  | 0    | 0    | х  | 1  | section 0          | #EOM    |
| P6                | play back from zero | 1    | 1    | х  | х  | 0    | 1    | х  | 1  | section 0          | #OVF    |

# II. Chip works at mode 1, Forward and Rewind

|    |                   |      | Sig    | nals | to d |      |      |     |    |                 |         |  |
|----|-------------------|------|--------|------|------|------|------|-----|----|-----------------|---------|--|
|    |                   |      |        | A0   | A1   | A2   | АЗ   | A4  | A5 | Location        | When    |  |
|    | Functions         | MODE | P / #R | _    | _    | #RST | #END | RWD | _  | to start        | to stop |  |
| F1 | Forward from here | 1    | 1      | х    | х    | 1    | 0    | 0   | 0  | current section | # EOM   |  |
| F2 | Forward from here | 1    | 1      | х    | х    | 1    | 1    | 0   | 0  | current section | # OVF   |  |
| F3 | Forward from zero | 1    | 1      | х    | х    | 0    | 0    | 0   | 0  | section 0       | # EOM   |  |
| F4 | Forward from zero | 1    | 1      | х    | х    | 0    | 1    | 0   | 0  | section 0       | # OVF   |  |
| B1 | Rewind from here  | 1    | 1      | х    | х    | 1    | 0    | 1   | 0  | current section | # EOM   |  |
| B2 | Rewind from here  | 1    | 1      | х    | х    | 1    | 1    | 1   | 0  | current section | # OVF   |  |
| В3 | Rewind from zero  | 1    | 1      | х    | х    | 0    | 0    | 1   | 0  | section 0       | # EOM   |  |
| B4 | Rewind from zero  | 1    | 1      | х    | х    | 0    | 1    | 1   | 0  | section 0       | # OVF   |  |

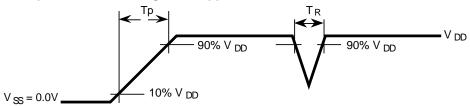
### III. Chip works at mode 1, record/erase


|    |                               |      | Sig    | gnals | to d |      |    |    |    |                 |         |
|----|-------------------------------|------|--------|-------|------|------|----|----|----|-----------------|---------|
|    |                               |      |        | A0    | A1   | A2   | АЗ | A4 | A5 | Location        | When    |
|    | Functions                     | MODE | P / #R | _     | _    | #RST | _  | _  |    | to start        | to stop |
| R2 | Erase from here               | 1    | 0      | х     | х    | 1    | х  | 0  | 0  | current section | # OVF   |
| R3 | Erase from zero               | 1    | 0      | х     | х    | 0    | х  | 0  | 0  | section 0       | # OVF   |
| R4 | Erase from here               | 1    | 0      | х     | х    | 1    | х  | х  | 1  | current section | # OVF   |
| R5 | Erase from zero               | 1    | 0      | х     | х    | 0    | х  | х  | 1  | section 0       | # OVF   |
| R6 | Erase Before Record from here | 1    | 0      | х     | х    | 1    | х  | 1  | 0  | current section | # OVF   |
| R6 | Erase Before Record from zero | 1    | 0      | х     | х    | 0    | х  | 1  | 0  | section 0       | # OVF   |

### IV. Chip works at mode 0, playback and record / erase

|    |                |      | Sig  | nals | to d | ecoc | le |    |    | Location | When<br>to stop |  |
|----|----------------|------|------|------|------|------|----|----|----|----------|-----------------|--|
|    | Functions      | MODE | P/#R | A0   | A1   | A2   | АЗ | A4 | A5 | to start |                 |  |
| P1 | play back      | 0    | 1    | A0   | A1   | A2   | АЗ | A4 | A5 | _        | next #CE        |  |
| R1 | record / erase | 0    | 0    | A0   | A1   | A2   | АЗ | A4 | A5 |          | next #CE        |  |

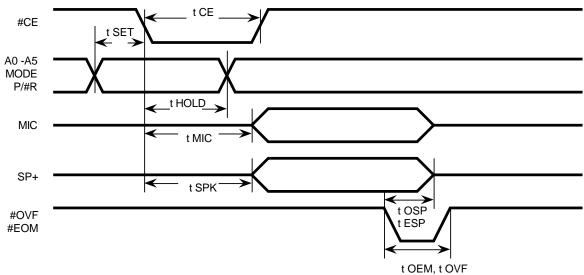
# **COB Board Description**


A PCB marked as MS-2266 is used for MSR1161's COB board. The MS-2266 has 28 pads and only 24 of them are used for MSR1161's signal. The pads assignment is shown on below Figure.

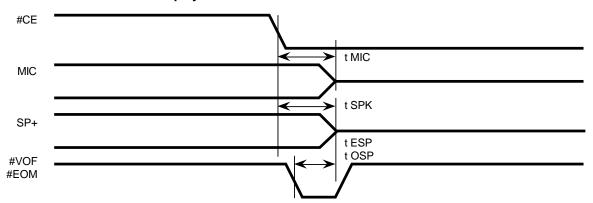


# Preliminary

# **Timing Critical**

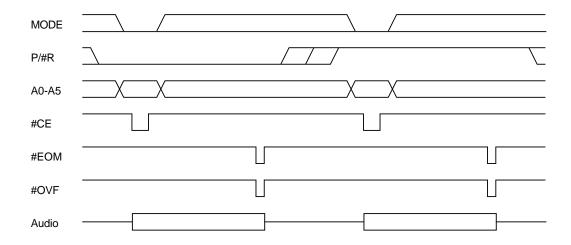

### I. Acceptable Power on Signal & Ripple



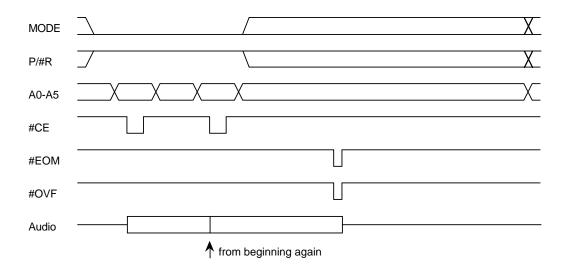

### II. Power up delay



### III. Start a sound record / playback

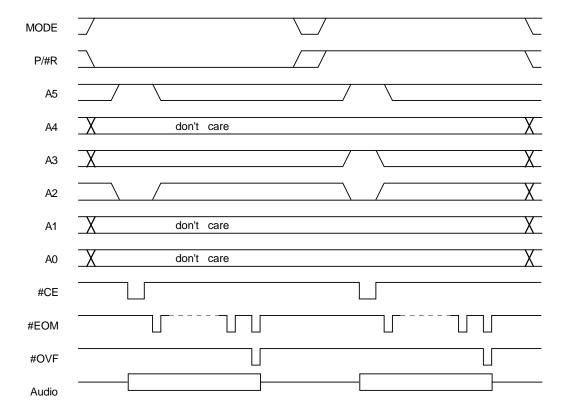



### IV. To end a sound record / playback

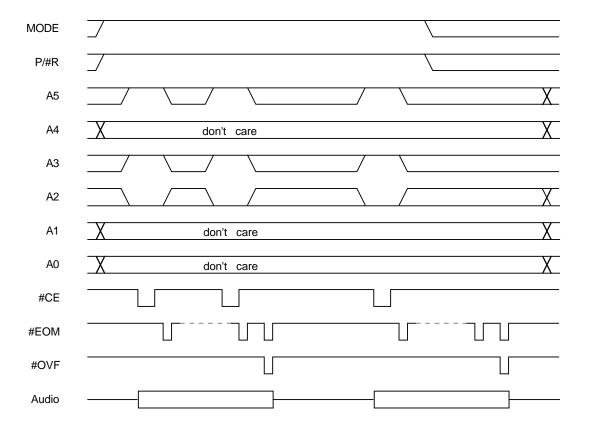



# **Timing Diagram**

- I. Mode ø Operations (CPU Addressing Mode)
- I.1 Record & Playback at C.A. Mode

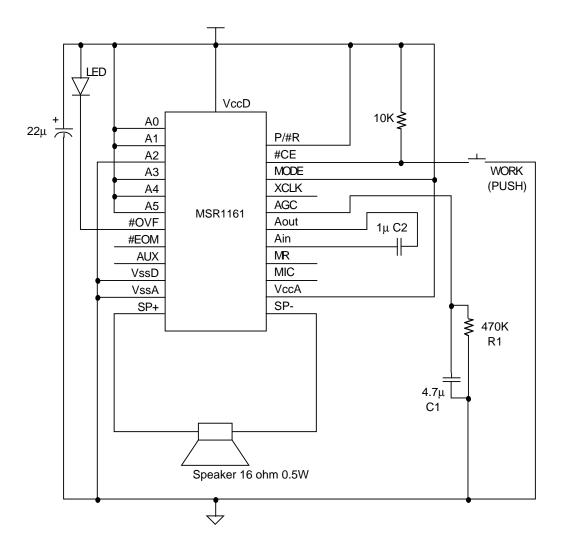



### I.2 #CE to terminate a playing sound at C.A. Mode



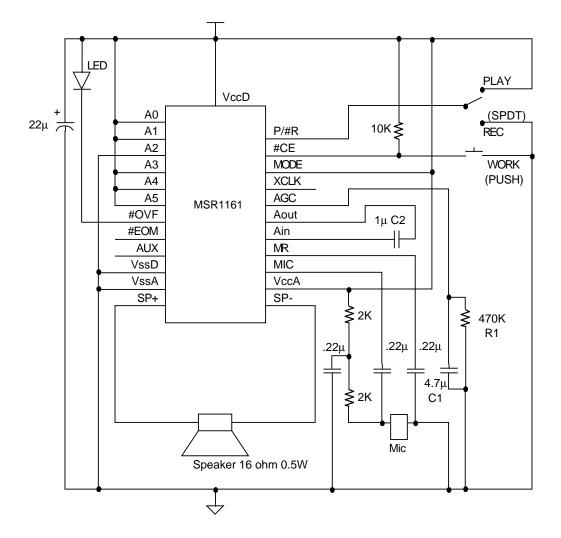

# **Timing Diagram**

- II. Mode 1 Operation (Push button mode)
- II.1 Record & Playback at P.B. mode (from section 0 to #OVF)



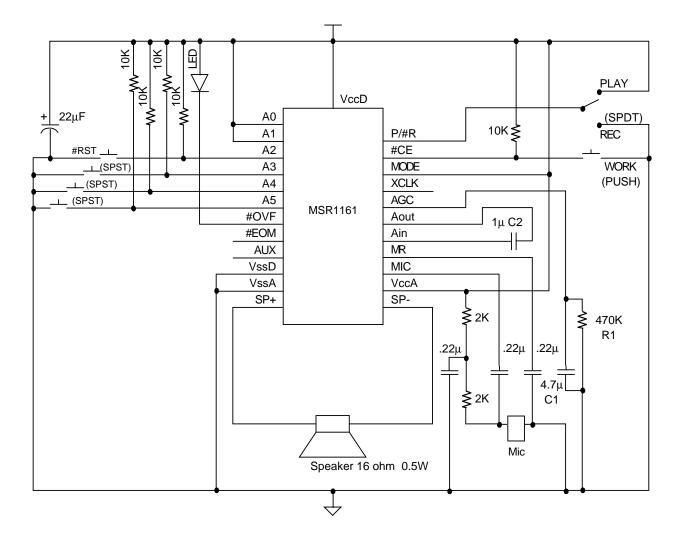

# II.2 #CE cannot terminate a playing sound at P.B. mode



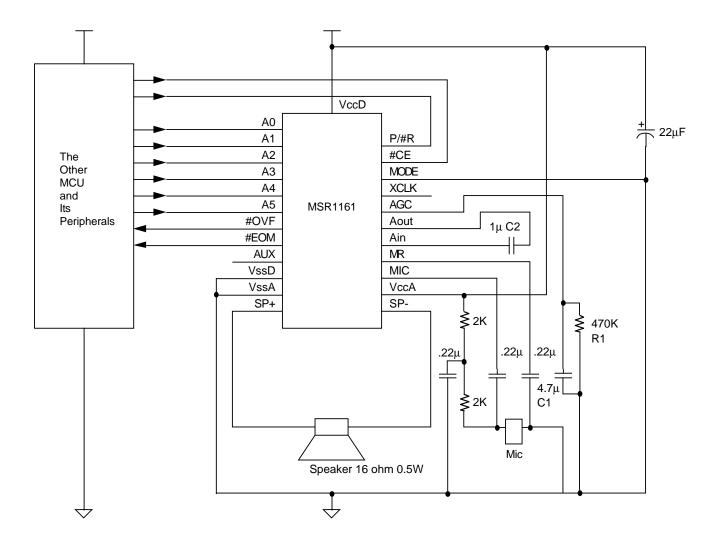

# **Application circuits**

# I. Playback only at P.B. mode

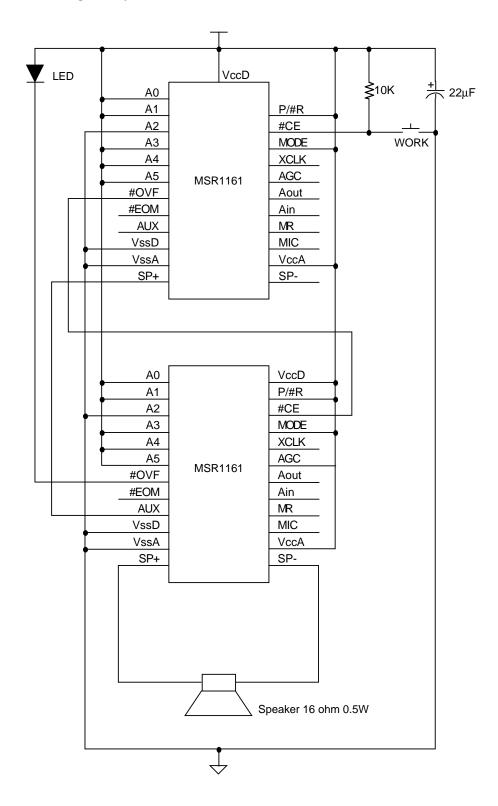



# **Application circuits**

# II. Record & Playback at P.B. mode




# **Application circuits**


# III. Typical Push Button mode



## IV. Typical CPU addressing mode



### V. Cascading of Playback at P.B. mode



| X     | Y                                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| -1857 | 1424                                                                                                                                |
| -2105 | 1366                                                                                                                                |
| -2105 | 1143                                                                                                                                |
| -2104 | 898                                                                                                                                 |
| -2104 | 693                                                                                                                                 |
| -2100 | 106                                                                                                                                 |
| -2100 | -116                                                                                                                                |
| -2105 | -734                                                                                                                                |
| -2105 | -942                                                                                                                                |
| -2105 | -1163                                                                                                                               |
| -2105 | -1386                                                                                                                               |
| -1844 | -1424                                                                                                                               |
| 1621  | -1424                                                                                                                               |
| 1831  | -1424                                                                                                                               |
| 2103  | -953                                                                                                                                |
| 2103  | -740                                                                                                                                |
| 2103  | -302                                                                                                                                |
| 2103  | -44                                                                                                                                 |
| 2103  | 212                                                                                                                                 |
| 2103  | 435                                                                                                                                 |
| 2103  | 656                                                                                                                                 |
| 2103  | 1383                                                                                                                                |
| 1850  | 1424                                                                                                                                |
| 1629  | 1424                                                                                                                                |
|       | -1857 -2105 -2104 -2104 -2100 -2100 -2105 -2105 -2105 -2105 -2105 -2105 -2105 -1844 1621 1831 2103 2103 2103 2103 2103 2103 2103 21 |

| #EOM<br>#OVF                     |                                           | A5<br>A4<br>A3 |
|----------------------------------|-------------------------------------------|----------------|
|                                  |                                           |                |
|                                  |                                           |                |
|                                  | MSR1161<br>4650 x 3290μm                  |                |
|                                  | Substrate is Vss<br>Pad Size is 90 x 90µm |                |
|                                  | Pad Size is 90 x 180μm                    |                |
|                                  |                                           |                |
|                                  |                                           |                |
| . <u>.</u> . <u>.</u> . <u>.</u> |                                           | Ö X            |
| Ain<br>Aout                      |                                           | AGC            |

### Taiwan

#1, Creation Road I, Science - based Industrial Park, Hsinchu, 30077

Taiwan, ROC "taylor\_hsiao@ccmail.mosel.com.tw"

TEL: 886-3-5770055 FAX: 886-3-5772788 FAX: 886-3-5784732

#### Taipei

7F, #102 Sec. 3, Ming Chung E. Road, Taipei Taiwan, ROC

TEL: 886-2-5451213 FAX: 886-2-5451214

#### Hongkong

#19 Dai Fu Street, Taipo Industrial Estate, Taipo, N.T. Hongkong TEL: 852-2388-2777

TEL: 852-2665-4883 FAX: 852-2664-2406 FAX: 852-2770-8011

#### U.S.A.

#3910 North First Street, San Jose, CA. 65134-1501 U.S.A.

TEL: 1-408-433-6000 FAX: 1-408-433-0952