

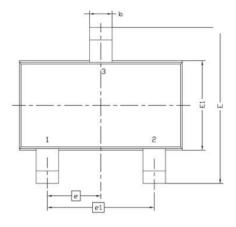
N-Channel Logic Level Enhancement Mode MOSFET

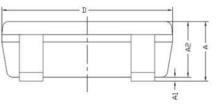
Description

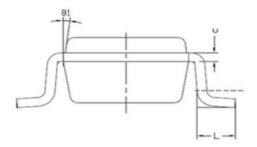
The MSK 1N3 is a N-channel enhancement-mode

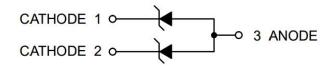
MOSFET.

Features


- Low on-resistance
- High ESD
- High speed switching
- Low-voltage drive (4V)
- · Easily designed drive circuits
- · Easy to use in parallel
- RoHS compliant package


Packing & Order Information


3,000/Reel



Sumbol	MILLIMETERS		
Symbol	MIN	MAX	
A	0.8	1.2	
A1	0	0.1	
A2	0.7	1.1	
b	0.3	0.5	
С	0.1	0.2	
D	2.7	3.1	
E	2.6	3	
E1	1.4	1.8	
е	0.95	BSC	
e1	1.9 BSC		
L	0.3	0.6	
θ1	7° NOM		

Graphic symbol

N-Channel Logic Level Enhancement Mode MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Ta=25°C)					
Symbol	Parameter	Value	Unit		
V_{DS}	Drain-Source Voltage	20	V		
V_{GS}	Gate-Source Voltage	±8	V		
I _D	Drain Current -Continuous ($T_A = 25^{\circ}C$)	6	А		
	Drain Current -Continuous (T _A =70°C)	3.6	Α		
I _{DM}	Pulsed Drain Current	22	А		
P _D	Total Power Dissipation (T _A =25°C)	0.83	W		
	Total Power Dissipation (T_A =70°C)	0.3	W		
ls	Continuous Source Current (Diode Conduction) ^a	1	A		
T_{J},T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C		

Thermal Data					
Symbol	Parameter	Max.	Units		
$R_{ extsf{ heta}JA}$	Maximum Junction-to- Ambient ^a (t<=10 sec)	110	°C/W		
$R_{ extsf{ heta}JA}$	Maximum Junction-to- Ambient ^a (Steady State)	150			

Note:

1. Surface Mounted on 1"x1" FR4 Board.

2. Pulse width limited by maximum junction temperature.

Electrical Characteristics

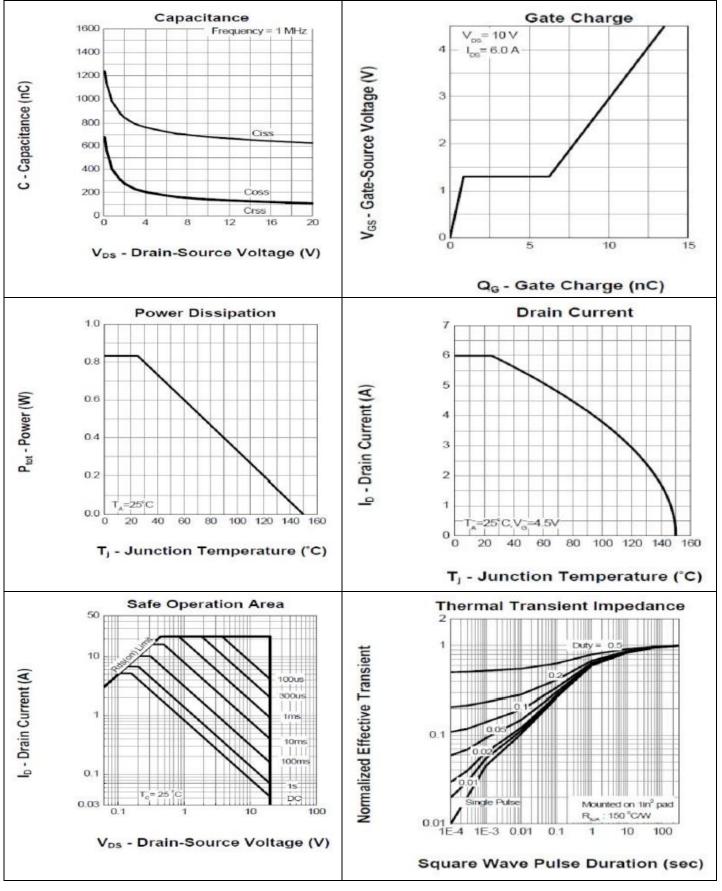
Static					
Symbol	Test Conditions	Min	Тур.	Max.	Units
V _{SD}	$V_{GS} = 0 V$, $I_S = 1 A$		0.7		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	20			V
I _{DSS}	$V_{DS} = 24 V$, $V_{GS} = 0 V$ $V_{DS} = 20 V$, $V_{GS} = 0 V$, $T_j = 125^{\circ}C$			1 30	μA
I _{GSS}	$V_{GS} = \pm 8 V$, $V_{DS} = 0$			±10	nA
I _{D(ON)}	$V_{DS} = 5 V$, $V_{GS} = 4.5 V$	10			A
R _{DS(ON)} *1	$V_{GS} = 2.5 V, I_D = 5 A$ $V_{GS} = 4.5 V, I_D = 6 A$			20 28	mΩ
G _{FS} *1	$V_{DS} = 15 V, I_D = 6 A$		10		S

Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
C _{ISS}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0MHz		680		pF
C _{OSS}	Output Capacitance			144		pF
C _{RSS}	Reverse Transfer Capacitance			137		pF

N-Channel Logic Level Enhancement Mode MOSFET

Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
C _{ISS}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0MHz		680		pF
C _{OSS}	Output Capacitance			144		pF
C _{RSS}	Reverse Transfer Capacitance			137		pF
Q_g	Total Gate Charge	$V_{DS} = 10 V$, $I_D = 6 A$, $V_{GS} = 4.5 V$		13.5		nC
Q_{gs}	Gate-Source Charge			0.9		nC
Q_{gd}	Gate-Drain Charge			5.4		nC
t _{d(on)}	Turn-On Dalay Time	$\begin{split} V_{DD} &= 10 \text{ V} \text{ , } I_D = 1 \text{ A} \text{,} \\ V_{GEN} &= 4.5 \text{ V} \text{ , } R_{GEN} = 6 \Omega \\ R_L &= 10 \Omega \end{split}$		6		ns
t _r	Rise Time			12		ns
t _{d(off)}	Turn-Off Dalay Time			65		ns
tf	Fall Time			35		ns

Notes


a. Pulse test: PW <= 300us duty cycle <= 2%.

b. Guaranteed by design, not subject to production testing.

N-Channel Logic Level Enhancement Mode MOSFET

Characteristics Curves

N-Channel Logic Level Enhancement Mode MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.

(iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.