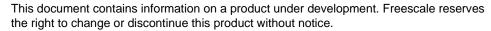

Data Sheet: Product Preview

Document Number: MSC8144 Rev. 1, 5/2007

MSC8144



Quad Core Digital Signal Processor

- Four StarCoreTM SC3400 DSP subsystems, each with an SC3400 DSP core, 16 Kbyte L1 instruction cache, 32 Kbyte L1 data cache, memory management unit (MMU), extended programmable interrupt controller (EPIC), two general-purpose 32-bit timers, debug and profiling support, and low-power Wait and Stop processing modes.
- Chip-level arbitration and system (CLASS) that provides full fabric non-blocking arbitration between the processing elements and other initiators and the M2 memory, DDR SRAM controller, device configuration control and status registers, and other targets.
- 128 Kbyte L2 shared instruction cache.
- 512 Kbyte M2 memory for critical data and temporary data buffering.
- 10 Mbyte 128-b8t wide M3 memory.
- 96 Kbyte boot ROM.
- Three input clocks (shared, global, and differential).
- Four PLLs (system, core, global, and serial RapidIO).
- DDR controller with up to a 200 MHz clock (400 MHz data rate), 16/32 bit data bus, supporting up to 1 Gbyte in up to two banks and support for DDR1 and DDR2.
- DMA controller with 16 bidirectional channels with up to 1024 buffer descriptors, and programmable priority, buffer, and multiplexing configuration.
- Up to eight independent TDM modules with programmable word size (2, 4, 8, or 16-bit), hardware-base A-law/μ-law conversion, up to 128 Mbps data rate for all channels, with glueless interface to E1 or T1 framers, and can interface with H-MVIP/H.110 devices, TSI, and codecs such as AC-97.
- QUICC Engine[™] technology subsystem with dual RISC processors, 48 Kbyte multi-master RAM, 48 Kbyte instruction RAM, supporting three communication controllers with one ATM and two Gigabit Ethernet interfaces, to offload scheduling tasks from the DSP cores.

- The two Ethernet controllers support 10/100/1000 Mbps operations via MII/RMII/SMII/RGMII/SGMII and the SGMII protocol using a 4-pin SerDes interface at 1000 Mbps data rate only.
- The ATM controller supports UTOPIA level II 8/16 bits at 25/50 MHz in UTOPIA/POS mode with adaptation layer support AAL0, AAL2, and AAL5.
- PCI designed to comply with the PCI specification revision 2.2 at 33 MHz or 66 MHz with access to all PCI address spaces.
- Serial RapidIO® 1x/4x endpoint corresponds to Specification 1.2 of the RapidIO trade association, and supports read, write, messages, doorbells, and maintenance accesses in inbound mode, and messages and doorbells in outbound mode.
- I/O interrupt concentrator consolidates all chip maskable interrupt and non-maskable interrupt sources and routes them to INT_OUT, NMI_OUT, and the cores.
- UART that permits full-duplex operation with a bit rate of up to 6.25 Mbps.
- Serial peripheral interface (SPI).
- Four timer modules, each with four configurable 16-bit timers.
- Four software watchdog timer (SWT) modules.
- Up to 32 general-purpose input/output (GPIO) ports, 16 of which can be configured as maskable interrupt inputs.
- I²C interface that allows booting from EEPROM devices.
- Eight programmable hardware semaphores.
- Thirty two virtual maskable interrupts and one virtual NMI that can be generated by a simple write access.
- Optional booting via serial RapidIO port, PCI, I²C, SPI, or Ethernet interfaces.

Note: This document supports mask set M31H.

Table of Contents

1	Pin Assignments and Reset States	Figure 13.Transmitter Output Compliance Mask	. 46
	1.1 FC-PBGA Ball Layout Diagrams4	Figure 14.Single Frequency Sinusoidal Jitter Limits	. 48
	1.2 Signal List By Ball Location	Figure 15.Receiver Input Compliance Mask	
2	Electrical Characteristics	Figure 16.PCI AC Test Load	. 51
	2.1 Maximum Ratings	Figure 17.PCI Input AC Timing Measurement Conditions	. 51
	2.2 Recommended Operating Conditions27	Figure 18.PCI Output AC Timing Measurement Condition	. 51
	2.3 Default Output Driver Characteristics	Figure 19.TDM Inputs Signals	. 52
	2.4 Thermal Characteristics	Figure 21.TDM Output Signals	. 53
	2.5 Power Characteristics	Figure 22.UART Input Timing	. 53
	2.6 DC Electrical Characteristics	Figure 23.UART Output Timing	. 53
	2.7 AC Timings	Figure 24.Timer Timing	. 54
3	Hardware Design Considerations65	Figure 25.MII Management Interface Timing	. 55
	3.1 Start-up Sequencing Recommendations	Figure 26.MII Transmit AC Timing	
	3.2 Power Supply Design Considerations66	Figure 27.AC Test Load	. 56
	3.3 Connectivity Guidelines	Figure 28.MII Receive AC Timing	. 56
	3.4 External DDR SDRAM Selection	Figure 29.RMII Transmit and Receive AC Timing	. 57
	3.5 Thermal Considerations	Figure 30.AC Test Load	. 57
4	Ordering Information76	Figure 31.SMII Mode Signal Timing	. 58
5	Package Information77	Figure 32.RGMII AC Timing and Multiplexing s	. 59
6	Product Documentation	Figure 33.UTOPIA AC Test Load	. 60
7	Revision History	Figure 34.UTOPIA AC Timing (External Clock)	. 60
1 :	of of Figures	Figure 35.UTOPIA AC Timing (Internal Clock)	. 60
	st of Figures	Figure 36.SPI AC Test Load	. 61
	ure 1. MSC8144 Block Diagram	Figure 37.SPI AC Timing in Slave Mode (External Clock)	. 61
_	ure 2. StarCore SC3400 DSP Core Subsystem Block Diagram 3	Figure 38.SPI AC Timing in Master Mode (Internal Clock)	. 62
	ure 3. MSC8144 FC-PBGA Package, Top View 4	Figure 39.GPIO Timing	. 62
	ure 4. MSC8144 FC-PBGA Package, Bottom View 5	Figure 40.EE Pin Timing	
	ure 5. SerDes Reference Clocks Input Stage	Figure 41.Test Clock Input Timing	
_	ure 6. Overshoot/Undershoot Voltage for V _{IH} and V _{IL} 35	Figure 42.Boundary Scan (JTAG) Timing	. 64
Fig	ure 7. Start-Up Sequence with V _{DD} Raised Before V _{DDIO} with	Figure 43.Test Access Port Timing	. 64
	CLKIN Started with V _{DDIO}	Figure 44.TRST Timing	. 64
	ure 8. Timing for a Reset Configuration Write	Figure 45.V _{DDM3} , V _{DDM3IO} and V _{25M3} Power-on Sequence	
	ure 9. Timing for t _{DDKHMH}	Figure 47.MSC8144 Mechanical Information, 783-ball FC-PBGA	
_	ure 10.DDR SDRAM Output Timing41	Package	. 77
	ure 11.DDR AC Test Load	-	
Fig	ure 12.Differential V _{PP} of Transmitter or Receiver		

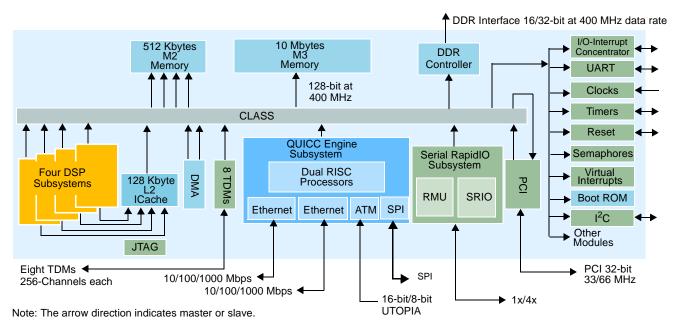


Figure 1. MSC8144 Block Diagram

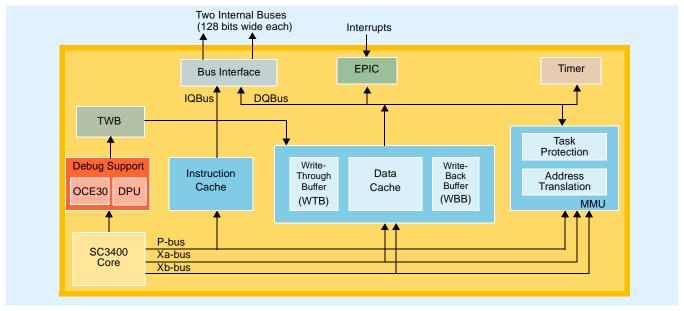


Figure 2. StarCore SC3400 DSP Core Subsystem Block Diagram

1 Pin Assignments and Reset States

This section includes diagrams of the MSC8144 package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in **Figure 3** and **Figure 4** with their ball location index numbers.

Top View 11 12 13 15 14 16 17 18 19 20 21 22 23 24 25 Α В С D Е F G Н J Κ L Μ Ν Ρ R Т U ٧ W Υ AA ΑB AC ΑD ΑE AF AG

Figure 3. MSC8144 FC-PBGA Package, Top View

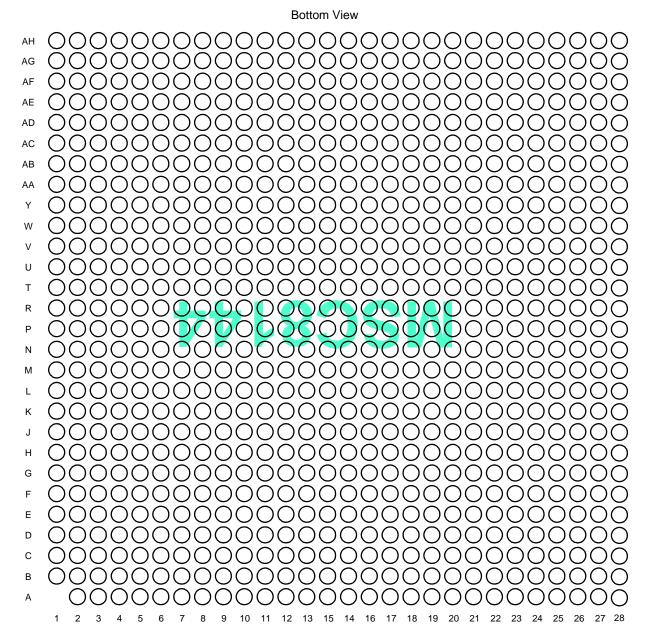


Figure 4. MSC8144 FC-PBGA Package, Bottom View

1.2 Signal List By Ball Location

Table 1 presents the signal list sorted by ball number. The functionality of multi-functional (multiplexed) pins is separated for each mode. When designing a board, make sure that the reference supply for each signal is appropriately considered. The specified reference supply must be tied to the voltage level specified in this document if any of the related signal functions are used (active).

Table 1. Signal List by Ball Number

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
A2	GND										GND
А3	GE2_RX_ER/PCI_AD31			Ethei	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A4	V _{DDGE2}										V _{DDGE2}
A5	GE2_RX_DV/PCI_AD30			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A6	GE2_TD0/PCI_CBE0			Ethei	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A7	SRIO_IMP_CAL_RX										V _{DDSXC}
A8	Reserved ¹										_
A9	Reserved ¹										_
A10	Reserved ¹										_
A11	Reserved ¹										_
A12	SRIO_RXD0										V _{DDSXC}
A13	V _{DDSXC}										V _{DDSXC}
A14	SRIO_RXD1										V _{DDSXC}
A15	V _{DDSXC}										V _{DDSXC}
A16	SRIO_REF_CLK										V _{DDSXC}
A17	V _{DDRIOPLL}										GND _{RIOPLL}
A18	GND _{SXC}										GND _{SXC}
A19	SRIO_RXD2/ GE1_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXC}
A20	V _{DDSXC}										V _{DDSXC}
A21	SRIO_RXD3/ GE2_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXC}
A22	V _{DDSXC}										V _{DDSXC}
A23	SRIO_IMP_CAL_TX										V_{DDSXP}
A24	MDQ28										V_{DDDDR}
A25	MDQ29										V_{DDDDR}
A26	MDQ30										V_{DDDDR}
A27	MDQ31										V_{DDDDR}
A28	MDQS3										V _{DDDDR}
B1	Reserved ¹										_
B2	GE2_TD1/PCI_CBE1			Ethei	rnet 2		PCI		Ethernet 2		V _{DDGE2}
В3	GE2_TX_EN/PCI_CBE2			Ethei	rnet 2		PCI		Ethernet 2		V _{DDGE2}
B4	GE_MDIO					Eth	ernet				V _{DDGE2}
B5	GND										GND
В6	GE_MDC			-	-	Eth	ernet	•		•	V _{DDGE2}
В7	GND _{SXC}										GND _{SXC}
В8	Reserved ¹										_
В9	Reserved ¹										_

Table 1. Signal List by Ball Number (continued)

5	Ball umber Signal Name Power- On Reset Value 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110) 7 (111)										
Ball Number	Signal Name	Reset	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
B10	Reserved ¹										_
B11	Reserved ¹										_
B12	SRIO_RXD0										V _{DDSXC}
B13	GND _{SXC}										GND _{SXC}
B14	SRIO_RXD1										V _{DDSXC}
B15	GND _{SXC}										GND _{SXC}
B16	SRIO_REF_CLK										V _{DDSXC}
B17	Reserved ¹										_
B18	V _{DDSXC}										V _{DDSXC}
B19	SRIO_RXD2/ GE1_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXC}
B20	GND _{SXC}										GND _{SXC}
B21	SRIO_RXD3/ GE2_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXC}
B22	GND _{SXC}										GND _{SXC}
B23	GND _{SXP}										GND _{SXP}
B24	MDQ27										V_{DDDDR}
B25	V_{DDDDR}										V _{DDDDR}
B26	GND										GND
B27	V_{DDDDR}										V _{DDDDR}
B28	MDQS3										V _{DDDDR}
C1	Reserved ¹										_
C2	GE2_RX_CLK/PCI_AD29			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
C3	V_{DDGE2}										V _{DDGE2}
C4	TDM7RSYN/GE2_TD2/ PCI_AD2/UTP_TER		TE	OM		PCI		Ethe	ernet 2	UTOPIA	V _{DDGE2}
C5	TDM7RCLK/GE2_RD2/ PCI_AD0/UTP_RVL		Τſ	OM		PCI		Ethe	ernet 2	UTOPIA	V _{DDGE2}
C6	V_{DDGE2}										V _{DDGE2}
C7	GE2_RD0/PCI_AD27			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
C8	Reserved ¹										_
C9	Reserved ¹										_
C10	Reserved ¹										_
C11	Reserved ¹										_
C12	V _{DDSXP}										V _{DDSXP}
C13	SRIO_TXD0										V _{DDSXP}
C14	V_{DDSXP}										V _{DDSXP}
C15	SRIO_TXD1										V_{DDSXP}
C16	GND _{SXC}										GND _{SXC}
C17	GND _{RIOPLL}										GND _{RIOPL}
C18	Reserved ¹										
C19	V_{DDSXP}										V_{DDSXP}
C20	SRIO_TXD2/GE1_SGMII_T		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXP}

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
C21	V _{DDSXP}										V _{DDSXP}
C22	SRIO_TXD3/GE2_SGMII_T		SGI	MII suppo	rt on SER	DES is en	abled by I	Reset Cor	nfiguration W	/ord	V _{DDSXP}
C23	V _{DDSXP}										V _{DDSXP}
C24	MDQ26										V _{DDDDR}
C25	MDQ25										V _{DDDDR}
C26	MDM3										V_{DDDDR}
C27	GND										GND
C28	MDQ24										V _{DDDDR}
D1	Reserved ¹										_
D2	GE2_RD1/PCI_AD28			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
D3	GND										GND
D4	TDM7TDAT/GE2_TD3/ PCI_AD3/UTP_TMD		TC	OM		PCI		Ethe	ernet 2	UTOPIA	V_{DDGE2}
D5	TDM7RDAT/GE2_RD3/ PCI_AD1/UTP_STA		TC	M		PCI		Ethe	ernet 2	UTOPIA	V_{DDGE2}
D6	GE1_RD0/UTP_RD2/ PCI_CBE2		UTOPIA	Ethe	rnet 1	PCI	UTC	DPIA	Ethernet 1	UTOPIA	V _{DDGE1}
D7	TDM7TCLK/GE2_TCK/ PCI_IDS/UTP_RER		TC	M		PCI	I	Ethe	ernet 2	UTOPIA	V _{DDGE2}
D8	Reserved ¹										_
D9	Reserved ¹										_
D10	Reserved ¹										_
D11	Reserved ¹										_
D12	GND _{SXP}										GND _{SXP}
D13	SRIO_TXD0										V _{DDSXP}
D14	GND _{SXP}										GND _{SXP}
D15	SRIO_TXD1										V _{DDSXP}
D16	V _{DDSXC}										V_{DDSXC}
D17	Reserved ¹										_
D18	Reserved ¹										_
D19	GND _{SXP}										GND _{SXP}
D20	SRIO_TXD2/GE1_SGMII_T X		SGI	MII suppo	rt on SER	DES is en	abled by f	Reset Cor	nfiguration W	/ord	$V_{\rm DDSXP}$
D21	GND _{SXP}										GND _{SXP}
D22	SRIO_TXD3/GE2_SGMII_T X		SGI	MII suppo	rt on SER	DES is en	abled by I	Reset Cor	nfiguration W	/ord	V _{DDSXP}
D23	GND _{SXP}										GND _{SXP}
D24	MDQ23										V _{DDDDR}
D25	V_{DDDDR}										V _{DDDDR}
D26	MDQ22										V _{DDDDR}
D27	MDQ21										V _{DDDDR}
D28	MDQS2										V _{DDDDR}
E1	Reserved ¹										_

Table 1. Signal List by Ball Number (continued)

		Power-			V	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
E2	GE1_RX_CLK/UTP_RD6/ PCI_PAR		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E3	GE1_RD2/UTP_RD4/ PCI_FRAME		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E4	GE1_RD1/UTP_RD3/ PCI_CBE3		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E5	GE1_RD3/UTP_RD5/ PCI_IRDY		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E6	V _{DDGE1}										V_{DDGE1}
E7	GE1_TX_EN/UTP_TD6/ PCI_CBE0		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E8	Reserved ¹										_
E9	Reserved ¹										_
E10	GND										GND
E11	V_{DD}										V _{DD}
E12	GND										GND
E13	V_{DD}										V _{DD}
E14	GND										GND
E15	V_{DD}										V _{DD}
E16	GND										GND
E17	V_{DD}										V _{DD}
E18	GND										GND
E19	V_{DD}										V _{DD}
E20	GND										GND
E21	V_{DD}										V _{DD}
E22	GND										GND
E23	V_{DDDDR}										V _{DDDDR}
E24	MDQ20										V _{DDDDR}
E25	GND										GND
	V _{DDDDR}										V _{DDDDR}
E27	GND										GND
E28	MDQS2										V _{DDDDR}
F1	Reserved ¹										— —
F2	GE1_TX_CLK/UTP_RD0/ PCI_AD31		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F3	V _{DDGE1}		1						1		V _{DDGE1}
F4	GE1_TD3/UTP_TD5/ PCI_AD30		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F5	GE1_TD1/UTP_TD3/ PCI_AD28		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F6	GND		1						1		GND
F7	GE1_TD0/UTP_TD2/ PCI_AD27		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F8	V _{DDGE1}	1									V _{DDGE1}
F9	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
F10	V_{DD}										V _{DD}
F11	GND										GND
F12	V_{DD}										V_{DD}
F13	GND										GND
F14	V _{DD}										V _{DD}
F15	GND										GND
F16	V_{DD}										V _{DD}
F17	GND										GND
F18	V_{DD}										V_{DD}
F19	GND										GND
F20	V_{DD}										V _{DD}
F21	Reserved ¹										_
F22	V_{DDDDR}										V _{DDDDR}
F23	GND										GND
F24	MDQ19										V _{DDDDR}
F25	MDQ18										V_{DDDDR}
F26	MDM2										V_{DDDDR}
F27	MDQ17										V_{DDDDR}
F28	MDQ16										V _{DDDDR}
G1	Reserved ¹										_
G2	SRESET ⁴										V _{DDIO}
G3	GND										GND
G4	PORESET ⁴										V _{DDIO}
G5	GE1_COL/UTP_RD1		UTOPIA	Ethe	rnet 1		UTOPIA		Ethernet 1	UTOPIA	V _{DDIO}
G6	GE1_TD2/UTP_TD4/ PCI_AD29		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
G7	GE1_RX_DV/UTP_RD7		UTOPIA	Ethe	rnet 1		UTOPIA		Ethernet 1	UTOPIA	V _{DDGE1}
G8	GE1_TX_ER/UTP_TD7/ PCI_CBE1		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
G9	V_{DD}										V_{DD}
G10	GND										GND
G11	V_{DD}										V_{DD}
G12	GND										GND
G13	V_{DD}										V_{DD}
G14	GND										GND
G15	V _{DD}										V_{DD}
G16	GND										GND
G17	V_{DD}										V_{DD}
G18	GND										GND
G19	V_{DD}										V _{DD}
G20	GND										GND
G21	Reserved ¹	_									_
G22	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-		List by			exing Mo				
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
G23	MBA1										V _{DDDDR}
G24	MA3										V _{DDDDR}
G25	MA8										V_{DDDDR}
G26	V_{DDDDR}										V_{DDDDR}
G27	GND										GND
G28	MCK0										V_{DDDDR}
H1	Reserved ¹										
H2	CLKIN										V_{DDIO}
Н3	HRESET										V_{DDIO}
H4	PCI_CLK_IN										V_{DDIO}
H5	NMI										V_{DDIO}
H6	URXD/GPIO14/IRQ8/ RC_LDF ^{3, 6}	RC_LDF			UA	ART/GPIO	/IRQ				V_{DDIO}
H7	GE1_RX_ER/PCI_AD6/ GPIO25/IRQ15 ^{3, 6}		GPIO/ IRQ	Ethernet 1		PCI		GPIO/ IRQ	Ether	net 1	V_{DDIO}
H8	GE1_CRS/PCI_AD5		PCI	Ethernet 1		Р	CI		Ether	net 1	V _{DDIO}
H9	GND										GND
H10	V_{DD}										V _{DD}
H11	GND										GND
H12	V_{DD}										V _{DD}
H13	GND										GND
H14	V_{DD}										V _{DD}
H15	V_{DD}										V _{DD}
H16	V_{DD}										V _{DD}
H17	GND										GND
H18	V_{DD}										V_{DD}
H19	GND										GND
H20	V_{DD}										V_{DD}
H21	V_{DD}										V_{DD}
H22	V_{DDDDR}										V_{DDDDR}
H23	MBA0										V_{DDDDR}
H24	MA15										V_{DDDDR}
H25	V_{DDDDR}										V_{DDDDR}
H26	MA9										V_{DDDDR}
H27	MA7										V _{DDDDR}
H28	мско										V _{DDDDR}
J1	Reserved ¹										
J2	GND										GND
J3	V_{DDIO}										V _{DDIO}
J4	STOP_BS										V _{DDIO}
J5	NMI_OUT ⁴										V _{DDIO}
J6	INT_OUT ⁴										V _{DDIO}
J7	SDA/GPIO27 ^{3, 4, 6}					I2C/GPI	<u> </u>				V _{DDIO}

Table 1. Signal List by Ball Number (continued)

Signal Name	On Reset Value									
V_{DDIO}	Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
										V _{DDIO}
V_{DD}										V _{DD}
GND										GND
V_{DD}										V_{DD}
GND										GND
V_{DD}										V_{DD}
GND										GND
GND										GND
GND										GND
V _{DD}										V_{DD}
GND										GND
V_{DD}										V_{DD}
GND										GND
GND										GND
GND										GND
										GND
										V _{DDDDR}
										GND
										V _{DDDDR}
										GND
										V _{DDDDR}
										_
										_
										_
										V _{DDPLL2A}
										GND
										V _{DDPLL0A}
										V _{DDPLL1A}
										V _{DD}
										GND
										V _{DD}
										GND
										V _{DD}
										V _{DD}
									1	V _{DD}
										V _{DD}
									1	V _{DD}
										GND
										V _{DD}
										GND
									-	V_{DD} V_{DDDDR}
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	V _{DD} GND GND GND V _{DD} GND GND GND GND GND V _{DD} GND GND	GND V_DD GND GND GND GND GND GND GND	GND VDD GND GND GND GND GND GND	GND VDD GND GND GND GND GND GND	GND VDDDR Reserved Reserved Reserved Reserved Reserved ROD	GND VDD GND GND GND GND GND GND GND GND GND G	GND VDD GND GND GND GND GND GND GND GND GND G	GND VDD GND GND GND GND GND GND GND GND GND G	GND MoD SIND GND GND GND GND GND GND GND	GND Vab SinD Si

Table 1. Signal List by Ball Number (continued)

		Power-				O Multiple					
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
K23	MBA2										V _{DDDDR}
K24	MA10										V_{DDDDR}
K25	MA12										V _{DDDDR}
K26	MA14										V_{DDDDR}
K27	MA4										V_{DDDDR}
K28	MV _{REF}										V_{DDDDR}
L1	Reserved ¹										_
L2	CLKOUT										V_{DDIO}
L3	TMR1/UTP_IR/PCI_CBE3/ GPIO17 ^{3, 6}		UTC	OPIA	TMR/ GPIO	UTOPIA	PCI		UTOPIA	•	V_{DDIO}
L4	TMR4/PCI_PAR/GPIO20 ^{3,} ⁶ / UTP_REOP			TIMER	R/GPIO	•	PCI	7	ΓIMER/GPI	0	V_{DDIO}
L5	GND										GND
L6	TMR2/PCI_FRAME/ GPIO18 ^{3, 6}			TIMER	R/GPIO	ı	PCI	TIMER/GPIO UTOPIA		V_{DDIO}	
L7	SCL/GPIO26 ^{3, 4, 6}					I ² C/	GPIO	ı			V_{DDIO}
L8	UTXD/GPIO15/IRQ9 ^{3, 6}					UART/0	SPIO/IRQ	Q		V _{DDIO}	
L9	GND									GND	
L10	V_{DD}									V_{DD}	
L11	GND										GND
L12	V_{DD}										V_{DD}
L13	GND										GND
L14	V_{DD}										V_{DD}
L15	Reserved ¹										GND
L16	V_{DD}										V _{DD}
L17	GND										GND
L18	V_{DD}										V_{DD}
L19	GND										GND
L20	V_{DD}										V_{DD}
L21	GND										GND
L22	GND										GND
L23	MCKE1										V_{DDDDR}
L24	MA1										V _{DDDDR}
L25	V _{DDDDR}										V_{DDDDR}
L26	GND										GND
L27	V _{DDDDR}										V _{DDDDR}
L28	MCK1										V_{DDDDR}
M1	Reserved ¹										_
M2	TRST										V _{DDIO}
M3	EE0										V _{DDIO}
M4	EE1										V _{DDIO}
M5	UTP_RCLK/PCI_AD13		UTC	DPIA	PCI		1	UTOPIA	\ \		V _{DDIO}
M6	UTP_RADDR0/PCI_AD7			OPIA	PCI			UTOPIA			V _{DDIO}
M7	UTP_TD8/PCI_AD30			OPIA	PCI			UTOPIA			V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
M8	V_{DDIO}										V_{DDIO}
M9	V _{DD}										V _{DD}
M10	GND										GND
M11	V_{DD}										V_{DD}
M12	GND										GND
M13	V_{DD}										V _{DD}
M14	GND										GND
M15	V_{DD}										V _{DD}
M16	GND										GND
M17	V_{DD}										V _{DD}
M18	GND										GND
M19	V_{DD}										V _{DD}
M20	GND										GND
M21	V_{DD}										V_{DD}
M22	V_{DDDDR}										V_{DDDDR}
M23	MCS1										V_{DDDDR}
M24	MA13										V_{DDDDR}
M25	MA2										V_{DDDDR}
M26	MA0										V_{DDDDR}
M27	GND										GND
M28	MCK1										V_{DDDDR}
N1	Reserved ¹										_
N2	V _{DDIO}										V_{DDIO}
N3	TMS										V _{DDIO}
N4	UTP_RD10/PCI_AD14 ⁵		UTC	PIA	PCI		I.	UTOPIA			V _{DDIO}
N5	V _{DDIO}				I.	Power					V _{DDIO}
N6	UTP_RADDR1/PCI_AD8		UTC	OPIA	PCI			UTOPIA	ı		V _{DDIO}
N7	UTP_TD9/PCI_AD31)PIA	PCI			UTOPIA			V _{DDIO}
N8	TMR3/PCI_IRDY/GPIO19 ^{3,} ⁶ / UTP_TEOP				R/GPIO		PCI		R/GPIO	UTOPIA	V _{DDIO}
N9	GND										GND
N10	V_{DDM3}										V _{DDM3}
N11	V _{DD}										V _{DD}
N12	V _{DDM3}										V _{DDM3}
N13	V _{DD}										V _{DD}
N14	V _{DDM3}										V _{DDM3}
N15	V _{DD}										V _{DD}
N16	V _{DDM3}										V _{DDM3}
N17	V _{DD}										V _{DD}
N18	V _{DDM3}										V _{DDM3}
N19	V _{DD}										V _{DD}
N20	V _{DDM3}										V _{DDM3}
N21	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-			V	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
N22	GND										GND
N23	MODT1										V _{DDDDR}
N24	MCKE0										V_{DDDDR}
N25	V _{DDDDR}										V_{DDDDR}
N26	MA5										V_{DDDDR}
N27	MA6										V_{DDDDR}
N28	MA11										V_{DDDDR}
P1	Reserved ¹										_
P2	TDI ⁵										V _{DDIO}
P3	UTP_RD11/PCI_AD15		UTC	PIA	PCI		I.	UTOPIA		I	V _{DDIO}
P4	GND										GND
P5	UTP_RADDR3/PCI_AD10		UTC	PIA	PCI		I.	UTOPIA		I	V _{DDIO}
P6	UTP_RADDR2/PCI_AD9)PIA	PCI			UTOPIA			V _{DDIO}
P7	PCI_GNT/GPIO29/IRQ7 ^{3.6}			D/IRQ		PCI			GPIO/IRQ		V _{DDIO}
P8	PCI_STOP/GPIO30/IRQ2 ³ ,		GPIC	D/IRQ		PCI			GPIO/IRQ		V _{DDIO}
P9	GND										GND
P10	GND										GND
P11	V _{DDM3}										V _{DDM3}
P12	GND										GND
P13	V _{DDM3}										V _{DDM3}
P14	GND										GND
P15	V_{DDM3}										V _{DDM3}
P16	GND										GND
P17	V _{DDM3}										V _{DDM3}
P18	GND										GND
P19	V _{DDM3}										V _{DDM3}
P20	GND										GND
P21	GND										GND
P22	V _{DDDDR}										V _{DDDDR}
P23	MCS0										V _{DDDDR}
P24	MRAS										V _{DDDDR}
P25	GND										GND
P26	V _{DDDDR}										V_{DDDDR}
P27	GND										GND
P28	MCK2										V _{DDDDR}
R1	Reserved ¹										- אטטטא
R2	TCK										V _{DDIO}
R3	TDO										V _{DDIO}
R4	UTP_RD12/PCI_AD16		LITC) PIA	PCI		l	UTOPIA		l	V _{DDIO}
R5	UTP_RCLAV_PDRPA/ PCI_AD12			OPIA	PCI			UTOPIA			V _{DDIO}
R6	UTP_RADDR4/PCI_AD11		UTO	OPIA	PCI			UTOPIA	1		V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
R7	V_{DDIO}										V _{DDIO}
R8	PCI_REQ					F	PCI				V _{DDIO}
R9	GND										GND
R10	GND										GND
R11	GND										GND
R12	GND										GND
R13	GND										GND
R14	GND										GND
R15	GND										GND
R16	GND										GND
R17	GND										GND
R18	GND										GND
R19	GND										GND
R20	GND										GND
R21	GND										GND
R22	GND										GND
R23	MODT0										V _{DDDDR}
R24	MDIC1										V _{DDDDR}
R25	MDIC0										V _{DDDDR}
R26	MCAS										V _{DDDDR}
R27	MWE										V _{DDDDR}
R28	MCK2										V_{DDDDR}
T1	Reserved ¹										_
T2	UTP_RPRTY/PCI_AD21		UTC	PIA	PCI		•	UTOPIA	<u> </u>	1.	V_{DDIO}
Т3	UTP_RD13/PCI_AD17		UTC	DPIA	PCI			UTOPIA	1		V _{DDIO}
T4	V_{DDIO}										V _{DDIO}
T5	UTP_RD14/PCI_AD18		UTC	PIA	PCI		•	UTOPIA	<u> </u>	1.	V _{DDIO}
T6	UTP_RD15/PCI_AD19		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
T7	PCI_TRDY					F	PCI				V _{DDIO}
Т8	PCI_DEVSEL/GPIO31/ IRQ3 ^{3, 6}		GPIC	D/IRQ		PCI			GPIO/IRQ		V _{DDIO}
Т9	GND										GND
T10	GND										GND
T11	GND										GND
T12	GND										GND
T13	GND										GND
T14	GND										GND
T15	GND										GND
T16	GND										GND
T17	GND										GND
T18	GND										GND
T19	GND										GND
T20	GND	1									GND

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
T21	GND										GND
T22	V_{DDDDR}										V _{DDDDR}
T23	GND										GND
T24	V_{DDDDR}										V_{DDDDR}
T25	GND										GND
T26	V_{DDDDR}										V_{DDDDR}
T27	GND										GND
T28	V_{DDDDR}										V_{DDDDR}
U1	Reserved ¹										_
U2	UTP_TCLK/PCI_AD29		UTO	OPIA	PCI			UTOPIA			V _{DDIO}
U3	UTP_TADDR4/PCI_AD27		UTO	OPIA	PCI			UTOPIA	\		V _{DDIO}
U4	UTP_TADDR2					UT	OPIA				V _{DDIO}
U5	GND										GND
U6	UTP_REN/PCI_AD20		UTO	OPIA	PCI			UTOPIA			V _{DDIO}
U7	PCI_AD26					F	PCI				V _{DDIO}
U8	PCI_AD25					F	PCI				V _{DDIO}
U9	Reserved ¹										V _{DDIO}
U10	V _{DDM3}										V _{DDM3}
U11	GND										GND
U12	V_{DDM3}										V_{DDM3}
U13	GND										GND
U14	V_{DDM3}										V _{DDM3}
U15	GND										GND
U16	V _{DDM3}										V_{DDM3}
U17	GND										GND
U18	V_{DDM3}										V_{DDM3}
U19	GND										GND
U20	V _{DDM3}										V _{DDM3}
U21	GND										GND
U22	GND										GND
U23	MDQ7										V _{DDDDR}
U24	MDQ3										V _{DDDDR}
U25	MDQ4										V _{DDDDR}
U26	MDQ5										V _{DDDDR}
U27	MDQ1		1	1							V _{DDDDR}
U28	MDQ0		1	1							V _{DDDDR}
V1	Reserved ¹		1	1							_
V2	UTP_TD10/PCI_CBE0		UTO	DPIA	PCI		<u> </u>	UTOPIA	l \	1	V _{DDIO}
V3	UTP_TADDR3				1	UT	OPIA				V _{DDIO}
V4	UTP_TD1/PCI_PERR		UTO	OPIA	Р	CI		UT	OPIA		V _{DDIO}
V5	UTP_TADDR0/PCI_AD23		1	OPIA	PCI		<u> </u>	UTOPIA			V _{DDIO}
V6	UTP_TADDR1/PCI_AD24			OPIA	PCI			UTOPIA			V _{DDIO}
V7	UTP_TCLAV/PCI_AD28		1	OPIA	PCI			UTOPIA			V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power- I/O Multiplexing Mode ²									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
V8	V_{DDIO}										V _{DDIO}
V9	Reserved ¹										V _{DDIO}
V10	GND										GND
V11	V _{DDM3}										V _{DDM3}
V12	GND										GND
V13	V _{DDM3}										V_{DDM3}
V14	GND										GND
V15	V _{DDM3}										V_{DDM3}
V16	GND										GND
V17	V_{DDM3}										V _{DDM3}
V18	GND										GND
V19	V _{DDM3}										V _{DDM3}
V20	GND										GND
V21	GND										GND
V22	V _{DDDDR}										V _{DDDDR}
V23	MDQ2										V_{DDDDR}
V24	V_{DDDDR}										V _{DDDDR}
V25	MDQ6										V _{DDDDR}
V26	GND										GND
V27	V_{DDDDR}										V _{DDDDR}
V28	MDQS0										V _{DDDDR}
W1	Reserved ¹										
W2	UTP_TD12/PCI_CBE2		UTC	OPIA	PCI		•	UTOPIA			V _{DDIO}
W3	UTP_TD11/PCI_CBE1		UTC	OPIA	PCI			UTOPIA	Ĺ		V _{DDIO}
W4	V_{DDIO}										V _{DDIO}
W5	GND										GND
W6	UTP_TD15/PCI_IRDY		UTC	OPIA	PCI			UTOPIA	Ĺ		V _{DDIO}
W7	UTP_TD0/PCI_SERR		UTC	OPIA	Р	CI		UT	OPIA		V _{DDIO}
W8	UTP_RSOC/PCI_AD22		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W9	Reserved ¹										V _{DDIO}
W10	V _{DDM3}										V _{DDM3}
W11	GND										GND
W12	V _{25M3}										V _{25M3}
W13	GND										GND
W14	V _{DDM3}										V _{DDM3}
W15	V _{25M3}										V _{25M3}
W16	V _{DDM3}										V _{DDM3}
W17	GND										GND
W18	V _{25M3}										V _{25M3}
W19	GND										GND
W20	V_{DDM3}										V _{DDM3}
W21	GND										GND
W22	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-	3								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
W23	MDQ10										V _{DDDDR}
W24	GND										GND
W25	MDQ11										V _{DDDDR}
W26	MDM0										V _{DDDDR}
W27	GND										GND
W28	MDQS0										V_{DDDDR}
Y1	Reserved ¹										ı
Y2	UTP_TD14/PCI_FRAME		UTO	PIA	PCI			UTOPIA	1		V_{DDIO}
Y3	TDM5TSYN/PCI_AD18/ GPIO12 ^{3, 6}			TDM/GPIO)	Р	CI		TDM/GPIC)	V_{DDIO}
Y4	TDM5TCLK/PCI_AD16			TDM		PCI		TDM			V _{DDIO}
Y5	TDM4RCLK/PCI_AD7			TDM		Р	CI		TDM		V_{DDIO}
Y6	TDM4TSYN/PCI_AD12			TDM		Р	CI		TDM		V _{DDIO}
Y7	UTP_TPRTY/RC14	RC14				UT	OPIA				V _{DDIO}
Y8	UTP_TEN/PCI_PAR		UTO	PIA	PCI			UTOPIA	1		V _{DDIO}
Y9	Reserved ¹										V _{DDIO}
Y10	GND										GND
Y11	V_{DDM3}										V _{DDM3}
Y12	GND										GND
Y13	V_{DDM3}										V _{DDM3}
Y14	GND										GND
Y15	V_{DDM3}										V _{DDM3}
Y16	GND										GND
Y17	V_{DDM3}										V _{DDM3}
Y18	GND										GND
Y19	V_{DDM3}										V _{DDM3}
Y20	GND										GND
Y21	GND										GND
Y22	V_{DDDDR}										V _{DDDDR}
Y23	MDQ13										V _{DDDDR}
Y24	V_{DDDDR}										V _{DDDDR}
Y25	GND										GND
Y26	MDQ9										V _{DDDDR}
Y27	V_{DDDDR}										V _{DDDDR}
Y28	MDQ8										V_{DDDDR}
AA1	Reserved ¹										_
AA2	UTP_TD13/PCI_CBE3		UTOPIA PCI			•	UTOPIA		•	V _{DDIO}	
AA3	TDM5RSYN/PCI_AD15/ GPIO10 ^{3, 6}		TDM/GPIO		Р	CI	TDM/GPIO			V _{DDIO}	
AA4	TDM5TD3, AT/PCI_AD17/ GPIO11 ⁶		TDM/GPIO		PCI		TDM/GPIO			V_{DDIO}	
AA5	TDM5RCLK/PCI_AD13/ GPIO28 ^{3, 6}			TDM/GPIO)	Р	CI		TDM/GPIC)	V _{DDIO}
AA6	GND									GND	

Table 1. Signal List by Ball Number (continued)

		Power-	r- I/O Multi		O Multiple	exing Mo	de ²				
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AA7	TDM4TCLK/PCI_AD10			TDM	I.	P	CI		TDM		V _{DDIO}
AA8	TDM4TDAT/PCI_AD11			TDM		P	CI		TDM		V _{DDIO}
AA9	V_{DDIO}										V _{DDIO}
AA10	V _{DDM3}										V _{DDM3}
AA11	GND										GND
AA12	V_{DDM3}										V _{DDM3}
AA13	GND										GND
AA14	V _{DDM3}										V _{DDM3}
AA15	GND										GND
AA16	V _{DDM3}										V_{DDM3}
AA17	GND										GND
AA18	V_{DDM3}										V _{DDM3}
AA19	GND										GND
AA20	V _{DDM3}										V _{DDM3}
AA21	GND										GND
AA22	GND										GND
AA23	MDQ15										V _{DDDDR}
AA24	MDQ14										V _{DDDDR}
AA25	MDM1										V _{DDDDR}
AA26	MDQ12										V _{DDDDR}
AA27	MDQS1										V _{DDDDR}
AA28	MDQS1										V _{DDDDR}
AB1	Reserved ¹										-
AB2	UTP_TSOC/RC15	RC15				UT	OPIA				V _{DDIO}
AB3	V_{DDIO}										V _{DDIO}
AB4	TDM6RDAT/PCI_AD20/ GPIO5/IRQ11 ^{3, 6}		TD	M/GPIO/ I	RQ	P	CI	TC	M/GPIO/ II	RQ	$V_{\rm DDIO}$
AB5	TDM5RDAT/PCI_AD14/ GPIO9 ^{3, 6}		-	TDM/GPIC)	P	CI		TDM/GPIC)	$V_{\rm DDIO}$
AB6	TDM6TSYN/PCI_AD24/ GPIO8/ IRQ14 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	Τſ	OM/GPIO/IF	RQ	V _{DDIO}
AB7	TDM6RCLK/PCI_AD19/ GPIO4/IRQ10 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	Τſ	OM/GPIO/IF	RQ	V_{DDIO}
AB8	TDM4RSYN/PCI_AD9			TDM		P	CI		TDM		V _{DDIO}
AB9	TDM4RDAT/PCI_AD8			TDM		P	CI		TDM		V _{DDIO}
AB10	GND										GND
AB11	V _{DDM3}										V _{DDM3}
AB12	GND										GND
AB13	V _{DDM3}										V_{DDM3}
AB14	GND										GND
AB15	V _{DDM3}										V _{DDM3}
AB16	GND										GND
AB17	V _{DDM3}										V _{DDM3}
AB18	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AB19	V_{DDM3}										V _{DDM3}
AB20	GND										GND
AB21	GND										GND
AB22	V_{DDDDR}										V_{DDDDR}
AB23	MECC7										V _{DDDDR}
AB24	MECC1										V _{DDDDR}
AB25	MECC4										V _{DDDDR}
AB26	MECC5										V _{DDDDR}
AB27	MECC2										V _{DDDDR}
AB28	ECC_MDQS										V_{DDDDR}
AC1	Reserved ¹										_
AC2	UTP_RD9/RC13	RC13				UTOPIA	\	•			V _{DDIO}
AC3	UTP_RD8/RC12	RC12				UTOPIA	\				V _{DDIO}
AC4	TDM6TCLK/PCI_AD22			TDM		Р	CI		TDM		V _{DDIO}
AC5	TDM6RSYN/PCI_AD21/ GPIO6/ IRQ12 ^{3, 6}		TD	M/GPIO/I	RQ	Р	CI	Т	OM/GPIO/II	RQ	V _{DDIO}
AC6	V_{DDIO}										V_{DDIO}
AC7		RC11			I.	Т	DM	ı	I		V _{DDIO}
AC8	PCI_AD23/GPIO7/IRQ13/ TDM6TDAT ^{3, 6} /UTP_RMOD		TD	M/GPIO/I	RQ	Р	CI	TDM/G	PIO/IRQ	UTOPIA	V _{DDIO}
AC9	TDM7TSYN/ PCI_AD4		Т	DM		PCI			reserved		V _{DDIO}
AC10	V _{DDM3IO}										V _{DDM3IO}
AC11	GND										GND
AC12	V _{DDM3}										V_{DDM3}
AC13	GND										GND
AC14	V _{DDM3}										V_{DDM3}
AC15	GND										GND
AC16	V_{DDM3}										V_{DDM3}
AC17	GND										GND
AC18	V_{DDM3}										V_{DDM3}
AC19	GND										GND
AC20	V _{DDM3IO}										V _{DDM3IO}
AC21	Reserved ¹										_
AC22	MECC6										V _{DDDDR}
AC23	MECC3										V _{DDDDR}
AC24	ECC_MDM										V _{DDDDR}
AC25	V _{DDDDR}										V _{DDDDR}
AC26	MECC0										V _{DDDDR}
AC27	V_{DDDDR}										V _{DDDDR}
AC28	ECC_MDQS										V _{DDDDR}
AD1	Reserved ¹										- AUUUK
AD2	GPIO1 ^{3, 6}			<u>I</u>	<u> </u>	G	PIO	1	<u>l</u>	I	V _{DDIO}
AD3	TMR0/GPIO13						R/GPIO				V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AD4	GPIO2 ^{3, 6}					GPIO					V_{DDIO}
AD5	GND										GND
AD6	TDM1TCLK					Т	DM				V _{DDIO}
AD7	TDM3TDAT/RC10	RC10				Т	DM				V _{DDIO}
AD8	TDM3RSYN/RC9	RC9				Т	DM				V_{DDIO}
AD9	TDM3RDAT/RC8	RC8				Т	DM				V _{DDIO}
AD10	GND										GND
AD11	V _{25M3}										V _{25M3}
AD12	GND										GND
AD13	V_{DDM3}										V_{DDM3}
AD14	GND										GND
AD15	V _{25M3}										V _{25M3}
AD16	GND										GND
AD17	V _{DDM3}										V_{DDM3}
AD18	GND										GND
AD19	V _{25M3}										V _{25M3}
AD20	GND										GND
AD21	Reserved ¹										_
AD22	V_{DDDDR}										V _{DDDDR}
AD23	GND										GND
AD24	V_{DDDDR}										V_{DDDDR}
AD25	GND										GND
AD26	V _{DDDDR}										V_{DDDDR}
AD27	GND										GND
AD28	V_{DDDDR}										V _{DDDDR}
AE1	Reserved ¹										_
AE2	GPIO0 ^{3, 6}					G	PIO				V _{DDIO}
AE3	GPIO3 ^{3, 6}					G	PIO				V _{DDIO}
AE4	TDM1RCLK					Т	DM				V _{DDIO}
AE5	TDM1TSYN/RC3	RC3				Т	DM				V _{DDIO}
AE6	TDM1TDAT/RC2	RC2				Т	DM				V _{DDIO}
AE7	TDM1RSYN/RC1	RC1				Т	DM				V _{DDIO}
AE8	TDM3RCLK/RC16	RC16				Т	DM				V _{DDIO}
AE9	TDM3TCLK						DM				V _{DDIO}
AE10	TDM2TDAT/RC6	RC6					DM				V _{DDIO}
AE11	GPIO21/IRQ1 ^{3.6}					GPIO/IR0	Q/SPI_SC	K			V _{DDIO}
AE12	GND										GND
AE13	Reserved ¹										_
AE14	GND										GND
AE15	Reserved ¹										
AE16	Reserved ¹										_
AE17	Reserved ¹										_
AE18	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-			V	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AE19	GND										GND
AE20	V _{DDM3IO}										V _{DDM3IO}
AE21	Reserved ¹										_
AE22	GND										GND
AE23	GND										GND
AE24	GND										GND
AE25	V _{DDDDR}										V _{DDDDR}
AE26	GND										GND
AE27	V_{DDDDR}										V _{DDDDR}
AE28	GND										GND
AF1	Reserved ¹										_
AF2	V_{DDIO}										V _{DDIO}
AF3	GND										GND
AF4	TDM0RDAT/ RCFG_CLKIN_RNG	RCFG_ CLKIN_ RNG		•	I	Т	DM			1	V _{DDIO}
AF5	TDM0TSYN/RCW_SRC2	RCW_ SRC2				Т	DM				V _{DDIO}
AF6	TDM1RDAT/RC0	RC0				Т	DM				V _{DDIO}
AF7	V_{DDIO}										V _{DDIO}
AF8	GND										GND
AF9	TDM2RDAT/RC4	RC4				Т	DM				V_{DDIO}
AF10	TDM2TCLK					Т	DM				V_{DDIO}
AF11	GPIO22/IRQ4 ^{3, 6}					GPIO/IRG	Q/SPI_MO	SI			V_{DDIO}
AF12	GND										GND
AF13	GND										GND
AF14	V _{DDM3IO}										V_{DDM3IO}
AF15	GND										GND
AF16	GND										GND
AF17	Reserved ¹										1
AF18	V _{DDM3IO}										V_{DDM3IO}
AF19	GND										GND
AF20	Reserved ¹										_
AF21	Reserved ¹										_
AF22	M3_RESET										V_{DDM3IO}
AF23	GND										GND
AF24	V _{DDDDR}										V _{DDDDR}
AF25	GND										GND
AF26	V_{DDDDR}										V _{DDDDR}
AF27	GND										GND
AF28	V_{DDDDR}										V _{DDDDR}
AG1	Reserved ¹										_
AG2	GPIO16/IRQ0 ^{3, 6}					GPI	O/IRQ				V _{DDIO}
AG3	TDM0TCLK						DM				V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-	, ,								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AG4	TDM0RSYN/RCW_SRC0	RCW_ SRC0		TDM						V _{DDIO}	
AG5	TDM0RCLK					Т	DM .				V _{DDIO}
AG6	TDM0TDAT/RCW_SRC1	RCW_ SRC1				Т	DМ				V _{DDIO}
AG7	TDM2TSYN/RC7	RC7				Т	DМ				V_{DDIO}
AG8	TDM2RCLK					Т	DМ				V _{DDIO}
AG9	TDM2RSYN/RC5	RC5				Т	DМ				V _{DDIO}
AG10	GPIO24/IRQ6 ^{3, 6}					GPIO/IR	Q/SPI_SL	- -			V _{DDIO}
AG11	GPIO23/IRQ5 ^{3, 6}					GPIO/IRC	Q/SPI_MIS	iO			V _{DDIO}
AG12	Reserved ¹										_
AG13	GND										GND
AG14	GND										GND
AG15	GND										GND
AG16	GND										GND
AG17	Reserved ¹										_
AG18	Reserved ¹										_
AG19	GND										GND
AG20	GND										GND
AG21		<u> </u>									V _{DDM3IO}
AG22	V _{DDM3IO} GND										GND
AG23	GND										GND
AG23	GND										GND
AG25											
	V _{DDDDR}										V _{DDDDR}
AG26	GND										GND
AG27	V _{DDDDR}										V _{DDDDR}
AG28	GND .1										GND
AH1	Reserved ¹										
AH2	Reserved ¹										_
AH3	Reserved ¹										
AH4	Reserved ¹										
AH5	Reserved ¹										
AH6	Reserved ¹										
AH7	Reserved ¹										_
AH8	Reserved ¹										
AH9	Reserved ¹										_
AH10	Reserved ¹										_
AH11	Reserved ¹										_
AH12	Reserved ¹										_
AH13	Reserved ¹										
AH14	Reserved ¹										
AH15	Reserved ¹										
AH16	Reserved ¹										_

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AH17	Reserved ¹										_
AH18	Reserved ¹										-
AH19	Reserved ¹										_
AH20	Reserved ¹										_
AH21	Reserved ¹										-
AH22	Reserved ¹										_
AH23	Reserved ¹										-
AH24	Reserved ¹										-
AH25	Reserved ¹										_
AH26	Reserved ¹										_
AH27	Reserved ¹			_	_						_
AH28	Reserved ¹										_

Notes:

- 1. Reserved signals should be disconnected for compatibility with future revisions of the device.
- 2. For signals with same functionality in all modes the appropriate cells are empty.
- 3. The choice between GPIO function and other function is by GPIO registers setup. For configuration details, see **Chapter 23**, *GPIO* in the *MSC8144 Reference Manual*.
- 4. Open-drain signal.
- **5.** Internal 20 K Ω pull-up resistor.
- **6.** For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. See **Chapter 23**, *GPIO* of the *MSC8144 Reference Manual* for configuration details.

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8144 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Electrical Characteristics

Table 2 describes the maximum electrical ratings for the MSC8144.

Table 2. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Core supply voltage	V _{dd}	-0.3 to 1.1	V
PLL supply voltage	V _{DDPLL0} V _{DDPLL1} V _{DDPLL2}	-0.3 to 1.1	V
M3 memory Internal voltage	V _{DDM3}	-0.3 to 1.32	V
DDR memory supply voltage DDR mode DDR2 mode	V _{DDDDR}	-0.3 to 2.75 -0.3 to 1.98	V V
DDR reference voltage	MV _{REF}	−0.3 to 0.51 × V _{DDDDR}	V
Input DDR voltage	V _{INDDR}	-0.3 to V _{DDDDR} + 0.3	V
Ethernet 1 I/O voltage	V _{DDGE1}	-0.3 to 3.465	V
Input Ethernet 1 I/O voltage	V _{INGE1}	-0.3 to V _{DDGE1} + 0.3	V
Ethernet 2 I/O voltage	V _{DDGE2}	-0.3 to 3.465	V
Input Ethernet 2I/O voltage	V _{INGE2}	-0.3 to V _{DDGE2} + 0.3	V
I/O voltage excluding Ethernet, DDR, M3, and RapidIO lines	V _{DDIO}	-0.3 to 3.465	V
Input I/O voltage	V _{INIO}	-0.3 to V _{DDIO} + 0.3	V
M3 memory I/O and M3 memory charge pump voltage	V _{DDM3IO} V _{25M3}	-0.3 to 2.75	V
Input M3 memory I/O voltage	V _{INM3IO}	-0.3 to V _{DDM3IO} + 0.3	V
Rapid I/O C voltage	V _{DDSXC}	-0.3 to 1.21	V
Rapid I/O P voltage	V_{DDSXP}	-0.3 to 1.26	V
Rapid I/O PLL voltage	V _{DDRIOPLL}	-0.3 to 1.21	V
Operating temperature	T _J	-40 to 105	°C
Storage temperature range	T _{STG}	-55 to +150	°C

Notes:

- 1. Functional operating conditions are given in **Table 3**.
- 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.
- 3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T_J).
- 4. PLL supply voltage is specified at input of the filter and not at pin of the MSC8144 (see Figure 46)

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 3. Recommended Operating Conditions

Rating	Symbol	Min	Nominal	Max	Unit
Core supply voltage	V _{DD}	0.97	1.0	1.05	V
PLL supply voltage	V _{DDPLL0} V _{DDPLL1} V _{DDPLL2}	0.97	1.0	1.05	V
M3 memory Internal voltage	V_{DDM3}	1.14	1.2	1.26	V
DDR memory supply voltage DDR mode DDR2 mode DDR reference voltage	$V_{ m DDDDR}$ $MV_{ m REF}$	2.375 1.71 0.49 × V _{DDDDR}	2.5 1.8 0.5 × V _{DDDDR}	2.625 1.89 0.51 × V _{DDDDR}	V V
Ethernet 1 I/O voltage • 2.5 V mode • 3.3 V mode	V _{DDGE1}	2.375 3.135	2.5 3.3	2.625 3.465	V
Ethernet 2 I/O voltage • 2.5 V mode • 3.3 V mode	V _{DDGE2}	2.375 3.135	2.5 3.3	2.625 3.465	V V
I/O voltage excluding Ethernet, DDR, M3, and RapidIO lines	V _{DDIO}	3.135	3.3	3.465	V
M3 memory I/O and M3 charge pump voltage	V _{DDM3IO} V _{25M3}	2.375	2.5	2.625	V
Rapid I/O C voltage	V_{DDSXC}	0.95	1.0	1.05	V
Rapid I/O P voltage • Short run (haul) mode • Long run (haul) mode	V _{DDSXP}	0.95 1.14	1.0 1.2	1.05 1.26	V
Rapid I/O PLL voltage	$V_{DDRIOPLL}$	0.95	1.0	1.05	V
Operating temperature range: Standard Extended	T _J T _A T _J	0 -40 		90 — 105	°C °C

Note: PLL supply voltage is specified at input of the filter and not at pin of the MSC8144 (see Figure 46).

2.3 Default Output Driver Characteristics

Table 4 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Table 4. Output Drive Impedance

Driver Type	Output Impedance (Ω)
DDR signal	18
DDR2 signal	18 35 (half strength mode)
PCI signals	25
Rapid I/O signals	100
Other signals	50

2.4 Thermal Characteristics

Table 5 describes thermal characteristics of the MSC8144 for the FC-PBGA packages.

Table 5. Thermal Characteristics for the MSC8144

Characteristic	Symbol	FC-1 29 × 2	Unit	
Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	- Onit
Junction-to-ambient ^{1, 2}	$R_{ heta JA}$	20	15	°C/W
Junction-to-ambient, four-layer board ^{1, 3}	$R_{ heta JA}$	15	12	°C/W
Junction-to-board (bottom) ⁴	R _{θJB}	7		°C/W
Junction-to-case ⁵	R _{θJC}	0.8		°C/W

Notes:

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
 temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
 resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the active surface of the die and the case top surface determined by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature.

Section 3.5, Thermal Considerations provides a detailed explanation of these characteristics.

2.5 Power Characteristics

The estimated typical power dissipation for MSC8144 versus the core frequency is shown in **Table 6**.

Table 6. Power Dissipation

Extended Core Frequency	Core Frequency	Typical	Unit
266	400	TBD	W
	533	TBD	
	667	TBD	
	800	TBD	
333	500	TBD	W
	667	TBD	
	833	TBD	
	1000	TBD	
400	400	TBD	W
	600	TBD	
	800	TBD	
	1000	TBD	
500	500	TBD	W
	750	TBD	
	1000	TBD	
Note: Measured for 1.0 V core at 25°C jui	nction temperature.	•	

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and all four cores. It was created using CodeWarrior[®] 3.0. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in **Section 3** of this document.

At allowable voltage levels, **Table 7** lists the estimated power dissipation on the 1.0-V AV_{DD} supplies for the MSC8144 PLLs.

Table 7. MSC8144 PLLs Power Dissipation

PLL supply	Typical	Maximum	Unit	
V _{DDPLL0}	TBD	10	mW	
V _{DDPLL1}	TBD	10	mW	
V _{DDPLL2}	TBD	10	mW	
Note: Typical value is based on $V_{DD} = 1.0 \text{ V}$, $T_A = 70^{\circ}\text{C}$, $T_J = 105^{\circ}\text{C}$.				

2.6 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8144.

2.6.1 DDR SDRAM DC Electrical Characteristics

This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8144.

Note: DDR SDRAM uses $V_{DDDDR}(typ) = 2.5 \text{ V}$ and DDR2 SDRAM uses $V_{DDDDR}(typ) = 1.8 \text{ V}$.

2.6.1.1 DDR2 (1.8 V) SDRAM DC Electrical Characteristics

Table 8 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MSC8144 when $V_{DDDDR}(typ) = 1.8 \text{ V}$.

Table 8. DDR2 SDRAM DC Electrical Characteristics for $V_{DD}(typ) = 1.8 \text{ V}$

Parameter/Condition	Symbol	Min	Max	Unit
I/O supply voltage ¹	V _{DDDDR}	1.7	1.9	V
I/O reference voltage ²	MV _{REF}	$0.49 \times V_{DDDDR}$	0.51 × V _{DDDDR}	V
I/O termination voltage ³	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V
Input high voltage	V _{IH}	MV _{REF} + 0.125	V _{DD} + 0.3	V
Input low voltage	V _{IL}	-0.3	MV _{REF} - 0.125	V
Output leakage current ⁴	I _{OZ}	-30	30	μΑ
Output high current (V _{OUT} = 1.420 V)	I _{OH}	-13.4	_	mA
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA

Notes: 1. V_{DDDDR} is expected to be within 50 mV of the DRAM V_{DD} at all times.

- MV_{REF} is expected to be equal to 0.5 × V_{DDDDR}, and to track V_{DDDDR} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of V_{DDDDR}.

4. Output leakage is measured with all outputs are disabled, $0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{DDDDR}}$.

Electrical Characteristics

Table 9 provides the DDR capacitance when $V_{DDDDR}(typ) = 1.8 \text{ V}$.

Table 9. DDR2 SDRAM Capacitance for $V_{DDDDR}(typ) = 1.8 \text{ V}$

Parameter/Condition	Symbol	Min	Max	Unit
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF
Note: This parameter is sampled. $V_{DDDDR} = 1.8 \text{ V} \pm 0.090 \text{ V}$, $f = 1 \text{ MHz}$, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = V_{DDDDR}/2$, V_{OUT} (peak-to-peak) = 0.2 V.				

2.6.1.2 DDR (2.5V) SDRAM DC Electrical Characteristics

Table 10 provides the recommended operating conditions for the DDR SDRAM component(s) of the MSC8144 when $V_{DDDDR}(typ) = 2.5 \text{ V}$.

Table 10. DDR SDRAM DC Electrical Characteristics for V_{DDDDR} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit
I/O supply voltage ¹	V _{DDDDR}	2.3	2.7	V
I/O reference voltage ²	MV_REF	$0.49 \times V_{DDDDR}$	$0.51 \times V_{DDDDR}$	V
I/O termination voltage ³	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V
Input high voltage	V _{IH}	MV _{REF} + 0.15	V _{DD} + 0.3	V
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.15	V
Output leakage current ⁴	I _{OZ}	-30	30	μΑ
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-16.2	_	mA
Output low current (V _{OUT} = 0.35 V)	l _{OL}	16.2	_	mA

Notes: 1. V_{DDDDR} is expected to be within 50 mV of the DRAM V_{DD} at all times.

- 2. MV_{REF} is expected to be equal to $0.5 \times V_{DDDDR}$, and to track V_{DDDDR} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed $\pm 2\%$ of the DC value.
- V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of V_{DDDDR}.
- 4. Output leakage is measured with all outputs are disabled, $0 \text{ V} \le \text{V}_{\text{OUT}} \le \text{V}_{\text{DDDDR}}$.

Table 11 provides the DDR capacitance when V_{DDDDR} (typ) = 2.5 V.

Table 11. DDR SDRAM Capacitance for V_{DDDDR} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF
Note: This parameter is sampled. $V_{DDDDR} = 2.5 \text{ V} \pm 0.125 \text{ V}$, $f = 1 \text{ MHz}$, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = V_{DDDDR}/2$, V_{OUT} (peak-to-peak) = 0.2 V.				

Table 12 lists the current draw characteristics for MV_{REF}.

Table 12. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit
Current draw for MV _{REF}	I _{MVREF}	_	500	μА
Note: The voltage regulator for MV _{REF} must be able to supply up to 500 μA current.				

2.6.2 Serial RapidIO DC Electrical Characteristics

DC receiver logic levels are not defined since the receiver is AC-coupled.

2.6.2.1 DC Requirements for SerDes Reference Clocks

The SerDes reference clocks SRIO_REF_CLK and \overline{SRIO}_REF_CLK are AC-coupled differential inputs. Each differential clock input has an internal 50 Ω termination to GND_{SXC}. The reference clock must be able to drive this termination. The recommended minimum operating voltage is -0.4 V; the recommended maximum operating voltage is 1.32 V; and the maximum absolute voltage is 1.72 V.

The maximum average current allowed in each input is 8 mA. This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 Ω = 8 mA) while the minimum common mode input level is GND_{SXC}. For example, a clock with a 50/50 duty cycle can be driven by a current source output that ranges from 0 mA to 16 mA (0–0.8 V). The input is AC-coupled internally, so, therefore, the exact common mode input voltage is not critical.

Note: This internal AC-couple network does not function correctly with reference clock frequencies below 90 MHz.

If the device driving the $\overline{SRIO_REF_CLK}$ inputs cannot drive 50 Ω to GND_{SXC} , or if it exceeds the maximum input current limitations, then it must use external AC-coupling. The minimum differential peak-to-peak amplitude of the input clock is 0.4 V (0.2 V peak-to-peak per phase). The maximum differential peak-to-peak amplitude of the input clock is 1.6 V peak-to-peak (see **Figure 5**. The termination to GND_{SXC} allows compatibility with HCSL type reference clocks specified for PCI-Express applications. Many other low voltage differential type outputs can be used but will probably need to be AC-coupled due to the limited common mode input range. LVPECL outputs can produce too large an amplitude and may need to be source terminated with a divider network to reduce the amplitude. The amplitude of the clock must be at least a 400 mV differential peak-peak for single-ended clock. If driven differentially, each signal wire needs to drive 100 mV around common mode voltage. The differential reference clock (SRIO_REF_CLK/ $\overline{SRIO_REF_CLK}$) input is HCSL-compatible DC coupled or LVDS-compatible with AC-coupling.

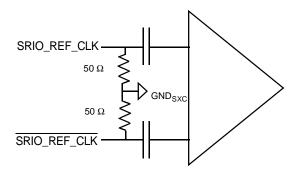


Figure 5. SerDes Reference Clocks Input Stage

2.6.2.2 Spread Spectrum Clock

SRIO_REF_CLK/ SRIO_REF_CLK is designed to work with a spread spectrum clock (0 to 0.5% spreading at 3033 kHz rate is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended modulation.

2.6.3 PCI DC Electrical Characteristics

The measurements in **Table 13** assume the following system conditions:

• $T_A = 25 \, ^{\circ}C$

• GND = $0 V_{DC}$

Note: The leakage current is measured for nominal conditions.

Table 13. PCI DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDPCI}	3.135	3.465	V
Input high voltage	V _{IH}	$0.5 \times V_{DDPCI}$	3.465	V
Input low voltage	V _{IL}	-0.5	$0.3 \times V_{DDPCI}$	V
Input Pull-up voltage ²	V _{IPU}	$0.7 \times V_{DDPCI}$		
Input leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{IN}	-10	10	μΑ
Tri-state (high impedance off state) leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{OZ}	-10	10	μΑ
Signal low input current, V _{IL} = 0.4 V ²	ΙL	-10	10	μΑ
Signal high input current, V _{IH} = 2.0 V ²	I _H	-10	10	μΑ
Output high voltage, $I_{OH} = -0.5 \mu A$, except open drain pins	V _{OH}	0.9 × V _{DDPCI}	_	V
Output low voltage, I _{OL} = 1.5 μA	V _{OL}	_	$0.1 \times V_{DDPCI}$	V
Input Pin Capacitance	C _{IN}		10	pF
	•	•	•	

Notes: 1. See Figure 6 for undershoot and overshoot voltages.

2. Not tested. Guaranteed by design.

2.6.4 TDM DC Electrical Characteristics

The measurements in Table 14 assume the following system conditions:

• $T_A = 25 \, ^{\circ}C$

• GND = $0 V_{DC}$

Note: The leakage current is measured for nominal conditions.

Table 14. TDM DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDTDM}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, 0 <v<sub>IN <v<sub>DDTDM</v<sub></v<sub>	I _{IN}	-10	10	μΑ
Tri-state (high impedance off state) leakage current,	l _{oz}	-10	10	μΑ
Signal input current, ¹	Ι _L	-10	10	μΑ
Output high voltage, I _{OH} = -1.6 mA,	V _{OH}	2.4	_	V
Output low voltage, I _{OL} = 0.4mA	V _{OL}	_	0.4	V
Pin Capacitance	Ср		8	pF
Note: Not tested. Guaranteed by design.				

2.6.5 UART DC Electrical Characteristics

TBD

2.6.6 Ethernet DC Electrical Characteristics

The measurements assume:

- $T_A = 25 \, ^{\circ}C$
- GND = $0 V_{DC}$

2.6.6.1 MII, SMII and RMII DC Electrical Characteristics

Table 15. MII, SMII and RMII DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDGE1} V _{DDGE2}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-10	10	μΑ
Signal low input current, V _{IL} = 0.4 V ¹	IL	-10	10	μА
Signal high input current, V _{IH} = 2.4 V ¹	I _H	-10	10	μΑ
Output high voltage, I _{OH} = -4 mA,	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 4mA	V _{OL}	_	0.4	V
Input Pin Capacitance	C _{IN}		8	pF
Note: Not tested. Guaranteed by design.	,		•	<u>'</u>

2.6.6.2 RGMII DC Electrical Characteristics

Table 16. RGMII DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 2.5V	V _{DDGE1} V _{DDGE2}	2.375	2.625	V
Input high voltage	V _{IH}	1.7	2.625	V
Input low voltage	V _{IL}	-0.3	0.7	V
Input high voltage ac	V _{IH-AC}	1.9	_	V
Input low voltage ac	V _{IL-AC}	_	0.7	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-10	10	μΑ
Signal low input current, V _{IL} = 0.4 V ¹	IL	-10	10	μΑ
Signal high input current, V _{IH} = 2.4 V ¹	I _H	-10	10	μΑ
Output high voltage, I _{OH} = −1 mA,	V _{OH}	2.0	2.625	V
Output low voltage, I _{OL} = 1 mA	V _{OL}	_	0.4	V
Input Pin Capacitance	C _{IN}		8	pF
Note: Not tested. Guaranteed by design.	,	•	•	•

2.6.7 ATM/UTOPIA DC Electrical Characteristics

Table 17. ATM/UTOPI DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-10	10	μΑ
Signal low input current, V _{IL} = 0.4 V ¹	ΙL	-10	10	μΑ
Signal high input current, V _{IH} = 2.4 V ¹	I _H	-10	10	μΑ
Output high voltage, I _{OH} = -8 mA,	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 8 mA	V _{OL}	_	0.5	V
Notes: 1. Not tested. Guaranteed by design.	•			

2.6.8 SPI DC Electrical Characteristics

Table 18 provides the SPI DC electrical characteristics.

Table 18. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} +0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage	V _{OH}	$I_{OH} = -8.0 \text{ mA}$	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

2.6.9 GPIO, EE, CLKIN, JTAG Ports DC Electrical Characteristics

The measurements in Table 19 assume:

- $T_A = 25 \, ^{\circ}C$
- $\bullet \quad \mathsf{GND} = 0 \; V_{DC}$

Note: The leakage current is measured for nominal conditions.

Table 19. GPIO and CLKIN DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-10	10	μΑ
Tri-state (high impedance off state) leakage current, V _{IN} = supply voltage	I _{OZ}	-10	10	μΑ
Signal low input current, V _{IL} = 0.4 V ²	ΙL	-10	10	μΑ
Signal high input current, V _{IH} = 2.0 V ²	I _H	-10	10	μΑ
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.4	3.465	V

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

Table 19. GPIO and CLKIN DC Electrical Characteristics (continued)

Characteristic	Symbol	Min	Max	Unit
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	ı	0.4	V
Notes: 1. See Figure 6 for undershoot and overshoot voltages.				

See Figure 6 for undershoot and overshoot voltages.

2. Not tested. Guaranteed by design.

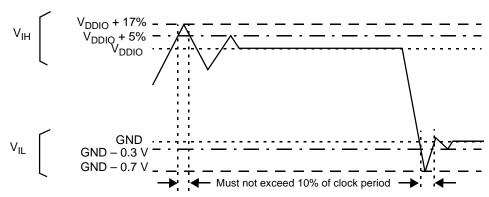


Figure 6. Overshoot/Undershoot Voltage for VIH and VIL

AC Timings 2.7

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs.

2.7.1 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. Section 2.7.2 describes the clocking characteristics. Section 2.7.3 describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8144 device:

PORESET and TRST must be asserted externally for the duration of the power-up sequence using the V_{DDIO} (3.3 V) supply. See Table 24 for timing. TRST deassertion does not have to be synchronized with PORESET deassertion. During functional operation when JTAG is not used, TRST can be asserted and remain asserted after the power ramp.

Note: For applications that use M3 memory, $\overline{M3}$ RESET should replicate the PORESET sequence timing, but using the V_{DDM3IO} (2.5 V) supply. See **Section 3.1.1**, *Power-on Sequence* for additional design information.

- CLKIN should start toggling at least 32 cycles before the PORESET deassertion to guarantee correct device operation (see **Figure 7**). 32 cycles should be accounted only after V_{DDIO} reaches its nominal value.
- CLKIN and PCI_CLK_IN should either be stable low during the power-up of V_{DDIO} supply and start their swings after power-up or should swing within V_{DDIO} range during V_{DDIO} power-up., so their amplitude grows as V_{DDIO} grows during power-up.

Figure 7 shows a sequence in which V_{DDIO} is raised after V_{DD} and CLKIN begins to toggle with the raise of V_{DDIO} supply.

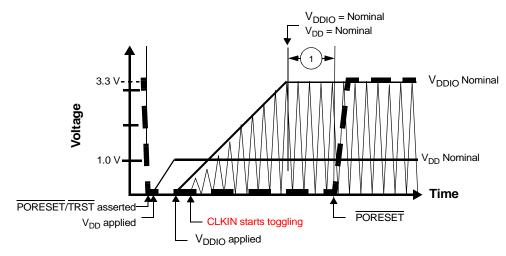


Figure 7. Start-Up Sequence with V_{DD} Raised Before V_{DDIO} with CLKIN Started with V_{DDIO}

2.7.2 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 20** shows the maximum frequency values for internal (Core, Reference, Bus and DSI) and external (CLKIN, PCI_CLK_IN and CLKOUT. The user must ensure that maximum frequency values are not exceeded.

•				
Characteristic	Symbol	MIN	Max	Unit
CLKIN frequency	F _{CLKIN}	25	150	MHz
PCI_CLK_IN frequency	F _{PCI_CLK_IN}	25	150	MHz
CLKIN duty cycle	D _{CLKIN}	40	60	%
PCI_CLK_IN duty cycle	D _{PCI_CLK_IN}	40	60	%

Table 20. Clock Frequencies

Table 21. Clock Parameters

Characteristic	Min	Max	Unit
CLKIN slew rate	1	_	V/ns
PCI_CLK_IN slew rate	1	_	V/ns

2.7.3 Reset Timing

The MSC8144 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- JTAG reset
- RapidIO reset
- · Software hard reset
- Software soft reset

All MSC8144 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 22** describes the reset sources.

Table 22. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8144 and configures various attributes of the MSC8144. On PORESET, the entire MSC8144 device is reset. All PLLs states is reset, HRESET and SRESET are driven, the extended cores are reset, and system configuration is sampled. The reset source and word are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8144. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the extended cores are reset, and system configuration is sampled. Note that the RCW (reset Configuration Word) is not reloaded during HRESET assertion after out of power on reset sequence. The reset configuration word is described in the Reset chapter in the MSC8144 Reference Manual.
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8144 detects an external assertion of SRESET only if it occurs while the MSC8144 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the extended cores are reset, and system configuration is maintained.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.
Software watchdog reset	Internal	When the MSC8144 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
RapidIO reset	Internal	When the RapidIO logic asserts the RapidIO hard reset signal, it generates an internal hard reset sequence.
Software hard reset	Internal	A hard reset sequence can be initialized by writing to a memory mapped register (RCR)
Software soft reset	Internal	A soft reset sequence can be initialized by writing to a memory mapped register (RCR)

Table 23 summarizes the reset actions that occur as a result of the different reset sources.

Table 23. Reset Actions for Each Reset Source

Reset Action/Reset Source	Power-On Reset (PORESET)	Hard Reset (HRESET)	Soft Reset (SRESET)			
Reset Action/Reset Source	External only	External or Internal (Software Watchdog, Software or RapidlO)	External or internal Software	JTAG Command: EXTEST, CLAMP, or HIGHZ		
Configuration pins sampled (Refer to Section 2.7.3.2 for details).	Yes	No	No	No		
PLL state reset	Yes	No	No	No		
Select reset configuration source	Yes	No	No	No		
System reset configuration write	Yes	No	No	No		
HRESET driven	Yes	Yes	No	No		
IPBus modules reset (TDM, UART, SWT, DDRC, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes		
SRESET driven	Yes	Yes	Yes	Depends on command		
Extended cores reset	Yes	Yes	Yes	Yes		
CLASS registers reset	Yes	Yes	Some registers	Some registers		
Timers, Performance Monitor	Yes	Yes	No	No		
Packet Processor, PCI, DMA	Yes	Yes	Most registers	Most registers		

2.7.3.1 Power-On Reset (PORESET) Pin

Asserting $\overline{\text{PORESET}}$ initiates the power-on reset flow. $\overline{\text{PORESET}}$ must be asserted externally for at least 32 CLKIN cycles after V_{DD} and V_{DDIO} are both at their nominal levels.

2.7.3.2 Reset Configuration

The MSC8144 has two mechanisms for writing the reset configuration:

- Through the I²C port
- Through external pins
- · Through internal hard coded

Twenty-three signals (see **Section 1** for signal description details) are sampled during the power-on reset sequence to define the Reset Word Configuration Source and operating conditions:

- RCW_SRC[2-0]
- RC[16–0]

The RCFG_CLKIN_RNG pin must be valid during power-on or hard reset sequence. The STOP_BS pin must be always valid and is also sampled during power-on reset sequence for RCW loading from an I²C EEPROM.

2.7.3.3 Reset Timing Tables

Table 24 and Figure 8 describe the reset timing for a reset configuration.

Table 24. Timing for a Reset Configuration Write

No.	Characteristics	Expression	Max	Min	Unit
1	Required external PORESET duration minimum 25 MHz <= CLKIN < 44 MHz 44 MHz <= CLKIN < 66 MHz 66 MHz <= CLKIN < 100 MHz 100 MHz <= CLKIN < 133 MHz	32/CLKIN	1280 728 485 320	727 484 320 241	ns ns ns
2	Delay from de-assertion of external PORESET to HRESET deassertion for external pins and hard coded RCW • 25 MHz <= CLKIN < 66 MHz • 66 MHz <= CLKIN <= 133 MHz Delay from de-assertion of external PORESET to HRESET deassertion for loading RCW the I ² C interface	15369/CLKIN 34825/CLKIN	615 528	233 262	μs μs
	 25 MHz <= CLKIN < 44 MHz 44 MHz <= CLKIN < 66 MHz 66 MHz <= CLKIN < 100 MHz 100 MHz <= CLKIN < 133 MHz 	92545/CLKIN 107435/CLKIN 124208/CLKIN 157880/CLKIN	3702 2441 1882 1579	2103 1627 1242 1187	μs μs μs μs
3	Delay from HRESET deassertion to SRESET deassertion • REFCLK = 25 MHz to 133 MHz	16/CLKIN	640	120	ns
Note:	Timings are not tested, but are guaranteed by design.		•	•	

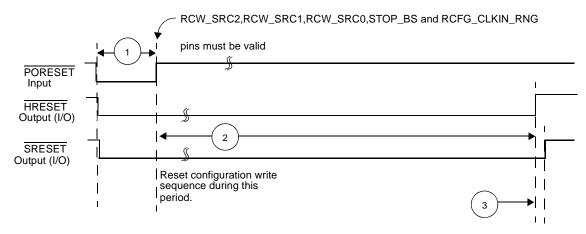


Figure 8. Timing for a Reset Configuration Write

See also Reset Errata for PLL lock and reset duration.

2.7.4 DDR SDRAM AC Timing Specifications

This section describes the AC electrical characteristics for the DDR SDRAM interface.

2.7.4.1 DDR SDRAM Input Timings

Table 22 provides the input AC timing specifications for the DDR SDRAM when $V_{DD}(typ) = 2.5 \text{ V}$.

Table 22. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V_{IL}	_	MV _{REF} - 0.31	V
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V
Note: At recommended operating conditions with V_{DD} of $2.5 \pm 5\%$.				

Table 23 provides the input AC timing specifications for the DDR SDRAM when $V_{DD}(typ) = 1.8 \text{ V}$.

Table 23. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V _{IL}	_	V _{REF} – 0.25	V
AC input high voltage	V _{IH}	V _{REF} + 0.25	_	V
Note: At recommended operating conditions with V _{DD} of 1.8	3 ± 5%.			

Table 24 provides the input AC timing specifications for the DDR SDRAM interface.

Table 24. DDR SDRAM Input AC Timing Specifications

Parameter	Symbol	Min	Max	Unit			
Controller Skew for MDQS—MDQ/MECC/MDM [†]	t _{CISKEW}						
• 400 MHz		-365	365	ps			
• 333 MHz		-390	390	ps			
• 266 MHz		-428	428	ps			
• 200 MHz		-490	490	ps			
Notes: 1. t _{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is							

t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget.
 At recommended operating conditions with V_{DD} (1.8 V or 2.5 V) ± 5%

Freescale Semiconductor 39

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

2.7.4.2 DDR SDRAM Output AC Timing Specifications

Table 25 provides the output AC timing specifications for the DDR SDRAM interface.

Table 25. DDR SDRAM Output AC Timing Specifications

Parameter	Symbol ¹	Min	Max	Unit
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) ²	t _{MCK}	3	10	ns
ADDR/CMD output setup with respect to MCK ³	t _{DDKHAS}			
• 400 MHz		1.95	_	ns
• 333 MHz		2.40	_	ns
• 266 MHz		3.15	_	ns
• 200 MHz		4.20	_	ns
ADDR/CMD output hold with respect to MCK ³	t _{DDKHAX}			
• 400 MHz	22111111	1.95	_	ns
• 333 MHz		2.40	_	ns
• 266 MHz		3.15	_	ns
• 200 MHz		4.20	_	ns
MCSn output setup with respect to MCK ³	t _{DDKHCS}			
• 400 MHz	2214100	1.95	_	ns
• 333 MHz		2.40	_	ns
• 266 MHz		3.15	_	ns
• 200 MHz		4.20	_	ns
MCSn output hold with respect to MCK ³	t _{DDKHCX}			
• 400 MHz		1.95	_	ns
• 333 MHz		2.40	_	ns
• 266 MHz		3.15	_	ns
• 200 MHz		4.20	_	ns
MCK to MDQS Skew ⁴	t _{DDKHMH}	-0.6	0.6	ns
MDQ/MECC/MDM output setup with respect to MDQS ⁵	t _{DDKHDS} .			
• 400 MHz	t _{DDKLDS}	700	_	ps
• 333 MHz	DUKEDO	900	_	ps
• 266 MHz		1100	_	ps .
• 200 MHz		1200	_	ps
MDQ/MECC/MDM output hold with respect to MDQS ⁵	t _{DDKHDX} ,			
• 400 MHz	t _{DDKLDX}	700	_	ps
• 333 MHz	BBILLBA	900	_	ps
• 266 MHz		1100	_	ps
• 200 MHz		1200	_	ps
MDQS preamble start ⁶	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.6$	$-0.5 \times t_{MCK} + 0.6$	ns
MDQS epilogue end ⁶	t _{DDKHME}	-0.6	0.6	ns

Notes:

- The symbols used for timing specifications follow the pattern of t_(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/ $\overline{\text{MCK}}$ referenced measurements are made from the crossing of the two signals ± 0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MSC8144 Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- **6.** All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 7. At recommended operating conditions with V_{DD} (1.8 V or 2.5 V) \pm 5%.

Figure 9 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

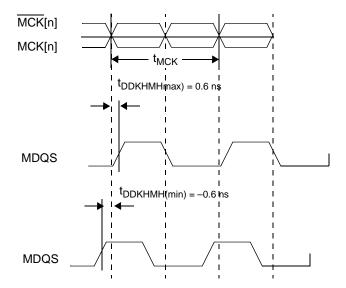


Figure 9. Timing for t_{DDKHMH}

Figure 10 shows the DDR SDRAM output timing diagram.

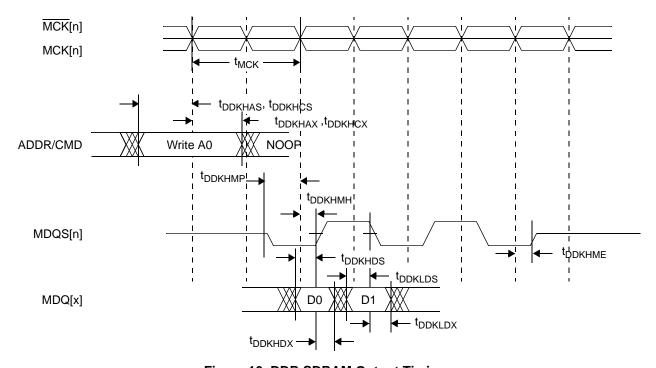


Figure 10. DDR SDRAM Output Timing

Electrical Characteristics

Figure 11 provides the AC test load for the DDR bus.

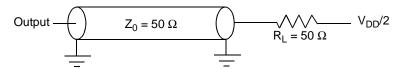


Figure 11. DDR AC Test Load

2.7.5 Serial RapidIO Timing and SGMII Timing

2.7.5.1 AC Requirements for SRIO_REF_CLK and SRIO_REF_CLK

Table 26 lists AC requirements.

Table 26. SDn_REF_CLK and SDn_REF_CLK AC Requirements

Parameter Description	Symbol	Min	Typical	Max	Units	Comments
REFCLK cycle time	t _{REF}	_	10 (8, 6.4)	_	ns	8 ns applies only to serial RapidIO system with 125-MHz reference clock. 6.4 ns applies only to serial RapidIO systems with a 156.25 MHz reference clock. Note: SGMII uses the 8 ns (125 MHz) value only.
REFCLK cycle-to-cycle jitter	t _{REFCJ}	_	_	80	ps	Difference in the period of any two adjacent REFCLK cycles
Phase jitter	t _{REFPJ}	-40	_	40	ps	Deviation in edge location with respect to mean edge location

43

2.7.5.2 Signal Definitions

LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential signals. **Figure 12** shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and $\overline{\text{TD}}$) or a receiver input (RD and $\overline{\text{RD}}$). Each signal swings between voltage levels A and B, where A > B.

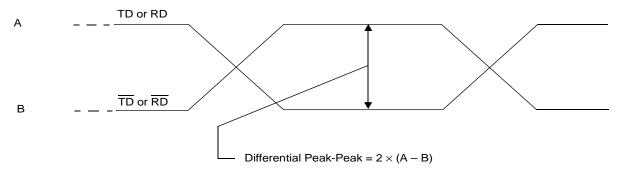


Figure 12. Differential VPP of Transmitter or Receiver

Note: This explanation uses generic TD/TD/RD/RD signal names. These correspond to SRIO_TXD/SRIO_TXD/SRIO_RXD/SRIO_RXD respectively.

Using these waveforms, the definitions are as follows:

- 1. The transmitter output signals and the receiver input signals TD, \overline{TD} , RD and \overline{RD} each have a peak-to-peak voltage (V_{PP}) swing of A-B.
- 2. The differential output signal of the transmitter, V_{OD} , is defined as $V_{TD} V_{\overline{TD}}$.
- 3. The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$.
- 4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A B to -(A B).
- 5. The peak value of the differential transmitter output signal and the differential receiver input signal is A B.
- 6. The value of the differential transmitter output signal and the differential receiver input signal is $2 \times (A B) V_{PP}$.

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and $\overline{\text{TD}}$, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of the signals TD and $\overline{\text{TD}}$ is 500 mV_{PP}. The differential output signal ranges between 500 mV and –500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mV_{PP}.

Note: AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described. The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEETM Std 802.3ae-2002TM. XAUI has similar application goals to serial RapidIO. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

2.7.5.3 Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

2.7.5.4 Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section. The differential return loss, S11, of the transmitter in each case shall be better than

- -10 dB for (baud frequency)/10 < freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10 \log(f/625 \text{ MHz}) \text{ dB for } 625 \text{ MHz} \le \text{freq(f)} \le \text{baud frequency}$

The reference impedance for the differential return loss measurements is $100~\Omega$ resistive. Differential return loss includes contributions from internal circuitry, packaging, and any external components related to the driver. The output impedance requirement applies to all valid output levels. It is recommended that the 20–80% rise/fall time of the transmitter, as measured at the transmitter output, have a minimum value 60 ps in each case. It is also recommended that the timing skew at the output of an LP-Serial transmitter between the two signals comprising a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

Table 27. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Range		Nata		
Characteristic	Symbol	Min	Max	Max Unit	Notes
Output Voltage,	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV_{PP}	
Deterministic Jitter	J_{D}		0.17	UI _{PP}	
Total Jitter	J _T		0.35	Ul _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	±100 ppm

Table 28. Short Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Counch of	Range		l lmit	Martin
Characteristic	Symbol	Min	n Max Unit	Unit	Notes
Output Voltage,	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV_{PP}	
Deterministic Jitter	J _D		0.17	Ul _{PP}	
Total Jitter	J _T		0.35	Ul _{PP}	
Multiple Output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	±100 ppm

Table 29. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Observatorialis	0	Range		1124	Nava	
Characteristic	Symbol	Min	Max	Unit		Notes
Output Voltage,	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	500	1000	mV_{PP}		
Deterministic Jitter	J _D		0.17	Ul _{PP}		
Total Jitter	J _T		0.35	Ul _{PP}		
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	320	320	ps	±100 ppm	

Table 30. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Oh ava ataviatia	Complete al	Range			Nata
Characteristic	Symbol	Symbol Min Max	Unit	Notes	
Output Voltage,	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV_{PP}	
Deterministic Jitter	J _D		0.17	Ul _{PP}	
Total Jitter	J _T		0.35	Ul _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	±100 ppm

Table 31. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Rai	nge	Unit	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage,	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV_{PP}	
Deterministic Jitter	J _D		0.17	UI _{PP}	
Total Jitter	J_{T}		0.35	Ul _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	±100 ppm

Table 32. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Observatoristis	Committee of	Rai	nge	11:4	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage,	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV_{PP}	
Deterministic Jitter	J_{D}		0.17	Ul _{PP}	
Total Jitter	J _T		0.35	Ul _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	±100 ppm

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown in **Figure 13** with the parameters specified in **Table 33** when measured at the output pins of the device and the device is driving a $100 \Omega \pm 5\%$ differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the transmitter output compliance mask when pre-emphasis is disabled or minimized.

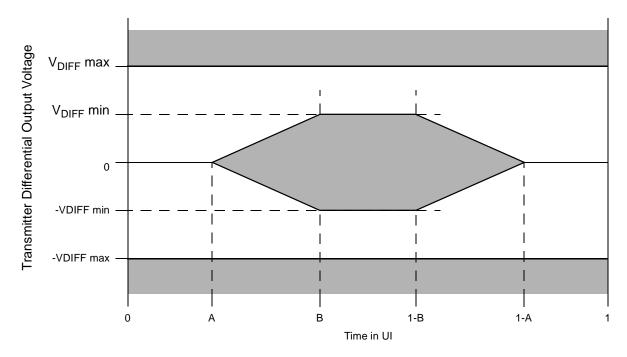


Figure 13. Transmitter Output Compliance Mask

 Table 33. Transmitter Differential Output Eye Diagram Parameters

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

2.7.5.5 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section. Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to 0.8 \times baud frequency. This includes contributions from internal circuitry, the package, and any external components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ω resistive for differential return loss and 25 Ω resistive for common mode.

Table 34. Receiver AC Timing Specifications—1.25 GBaud

Characteristic	Countrie al	Rai	nge	11:4	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV_{PP}	Measured at receiver
Deterministic Jitter Tolerance	J_D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J_{DR}	0.55		UI _{PP}	Measured at receiver

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

_ .

Table 34. Receiver AC Timing Specifications—1.25 GBaud (continued)

Characteristic	Symbol	Rai	nge	Unit	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Total Jitter Tolerance	J _T	0.65		Ul _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 14 . The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	800	800	ps	±100 ppm

Table 35. Receiver AC Timing Specifications—2.5 GBaud

Observatoristis	0	Rai	nge	11-24	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV_{PP}	Measured at receiver
Deterministic Jitter Tolerance	J_D	0.37		Ul _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J_{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	Jт	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 14 . The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	400	400	ps	±100 ppm

Table 36. Receiver AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Rai	nge	Unit	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV_{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J_{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 14 . The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		22	ns	Skew at the receiver input between lanes of a multilane link

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

Table 36. Receiver AC Timing Specifications—3.125 GBaud (continued)

Characteristic	Symbol		ange Unit		Notes
Characteristic	Syllibol	Min	Max	Unit	Notes
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	320	320	ps	±100 ppm

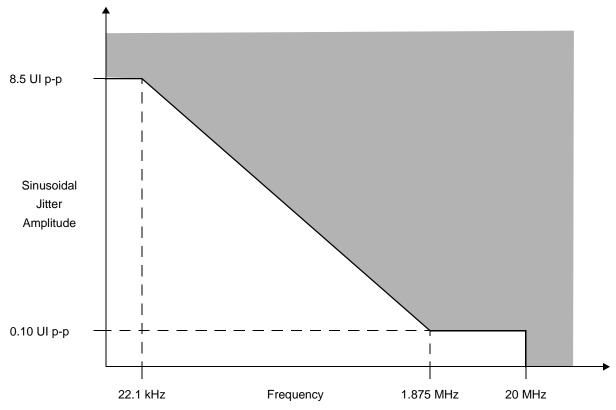


Figure 14. Single Frequency Sinusoidal Jitter Limits

2.7.5.6 Receiver Eye Diagrams

For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding bit error rate specification (**Table 34**, **Table 35**, and **Table 36**) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the receiver input compliance mask shown in **Figure 15** with the parameters specified in **Table 37**. The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the device replaced with a $100 \Omega \pm 5\%$ differential resistive load.

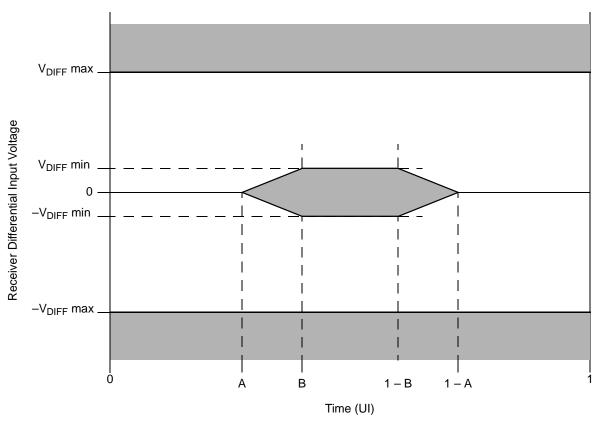


Figure 15. Receiver Input Compliance Mask

Table 37. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter

Receiver Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud	100	800	0.275	0.400
2.5 GBaud	100	800	0.275	0.400
3.125 GBaud	100	800	0.275	0.400

2.7.5.7 Measurement and Test Requirements

Since the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 47 of **IEEE** Std. 802.3ae-2002TM, the measurement and test requirements defined here are similarly guided by Clause 47. In addition, the CJPAT test pattern defined in Annex 48A of **IEEE** Std. 802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of **IEEE** Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

2.7.5.8 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT) defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive $\pm 5\%$ differential to 2.5 GHz.

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

2.7.5.9 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of **IEEE** Std. 802.3ae.

2.7.5.10 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive ±5% differential to 2.5 GHz.

2.7.5.11 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in **Section 2.7.5.9** and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in **Figure 15** and **Table 37**. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

2.7.6 PCI Timing

This section describes the general AC timing parameters of the PCI bus. Table 38 provides the PCI AC timing specifications.

Davameter	0	33	MHz	66 1	11-24	
Parameter	Symbol	Min	Max	Min	Max	Unit
Output delay	t _{PCVAL}	2.0	11.0	1.0	6.0	ns
High-Z to Valid Output delay	t _{PCON}	2.0	_	1.0	_	ns
Valid to High-Z Output delay	t _{PCOFF}	_	28	_	14	ns
Input setup	t _{PCSU}	7.0	_	3.0	_	ns
Input hold	t _{PCH}	0	_	0	_	ns
Reset active time after PCI_CLK_IN stable	t _{PCRST-CLK}	100	_	100	_	μs
Reset active to output float delay	t _{PCRST-OFF}	_	40	_	40	ns
Reset active time after power stable	t _{PCRST}	1	_	1	_	ms
HRESET high to first Configuration Access	t _{PCRHFA}	32M	_	32M	_	clocks

Table 38. PCI AC Timing Specifications

Notes:

- 1. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- All PCI signals are measured from OV_{DD}/2 of the rising edge of PCI_SYNC_IN to 0.4 × OV_{DD} of the signal in question for 3.3-V PCI signaling levels.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. The reset assertion timing requirement for HRESET is in Table 24 and Figure 8

Figure 16 provides the AC test load for the PCI.

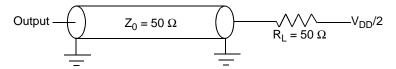


Figure 16. PCI AC Test Load

Figure 17 shows the PCI input AC timing conditions.

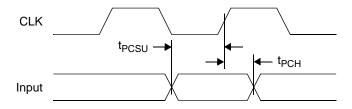


Figure 17. PCI Input AC Timing Measurement Conditions

Figure 18 shows the PCI output AC timing conditions.

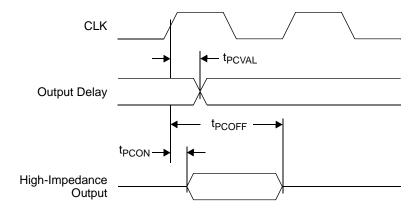
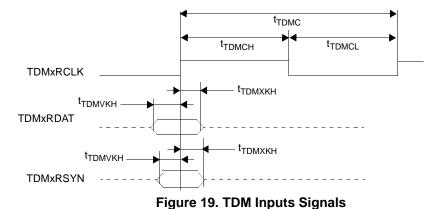


Figure 18. PCI Output AC Timing Measurement Condition

2.7.7 **TDM Timing**


Table 39. TDM Timing

Characteristic	Symbol	Expression	Min	Max	Units
TDMxRCLK/TDMxTCLK	t _{TDMC}	TC ¹	16	_	ns
TDMxRCLK/TDMxTCLK high pulse width	t _{TDMCH}	$(0.5 \pm 0.1) \times TC$	7	_	ns
TDMxRCLK/TDMxTCLK low pulse width	t _{TDMCL}	$(0.5 \pm 0.1) \times TC$	7	_	ns
TDM receive all input set-up time related to TDMxRCLK TDMxTSYN input set-up time related to TDMxTCLK in TSO=0 mode	^t TDMVKH		3.6	_	ns
TDM receive all input hold time related to TDMxRCLK TDMxTSYN input hold time related to TDMxTCLK in TSO=0 mode	t _{TDMXKH}		1.9	_	ns
TDMxTCLK high to TDMxTDAT output active ²	t _{TDMDHOX}		2.5	_	ns
TDMxTCLK high to TDMxTDAT output valid ²	t _{TDMDHOV}		_	9.8	ns
All output hold time (except TDMxTSYN) ³	t _{TDMHOX}		2.5	_	ns
TDMxTCLK high to TDMxTDAT output high impedance ²	t _{TDMDHOZ}		_	9.8	ns
TDMxTCLK high to TDMxTSYN output valid ²	t _{TDMSHOV}		_	9.25	ns
TDMxTSYN output hold time ³	t _{TDMSHOX}		1.6	_	ns

Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz. Notes: 1.

- 2. Values are based on 20 pF capacitive load.
- Values are based on 10 pF capacitive load.

Figure 19 shows the TDM input AC timing.

Note: For some TDM modes receive data and receive sync are being input on other pins. This timing is valid for them as well. See the MSC8144 Reference Manual.

Figure 20 shows TDMxTSYN AC timing in TSO=0 mode.

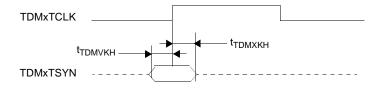


Figure 20. TDMxTSYN in TSO=0 mode

Figure 21 shows the TDM Output AC timing

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

52

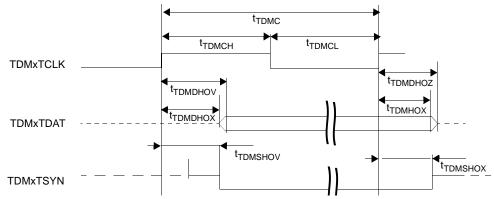


Figure 21. TDM Output Signals

Note: For some TDM modes transmit data is being output on other pins. This timing is valid for it as well. See the MSC8144 Reference Manual

2.7.8 UART Timing

Table 40. UART Timing

Characteristics	Symbol	Expression	Min	Max	Unit
URXD and UTXD inputs high/low duration	T _{UREFCLK}	16 × T _{REFCLK}	160	_	ns
URXD and UTXD inputs rise/fall time	T _{UAVKH}			6	ns
UTXD output rise/fall time	T _{UAVXH}			5.5	ns
Note: T _{UREFCLK} = T _{REFCLK} is guaranteed by design.					•

Figure 22 shows the UART input AC timing

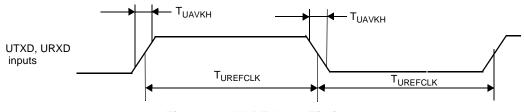


Figure 22. UART Input Timing

Figure 23 shows the UART output AC timing

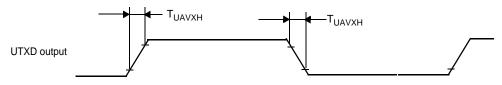


Figure 23. UART Output Timing

2.7.9 Timer Timing

Table 41. Timer Timing

Characteristics	Symbol	Min	Unit
TIMERx frequency	T _{TMREFCLK}	10.0	ns
TIMERx Input high phase	T _{TMCH}	4.0	ns
TIMERx Output low phase	T _{TMCL}	4.0	ns

Figure 24 shows the timer input AC timing

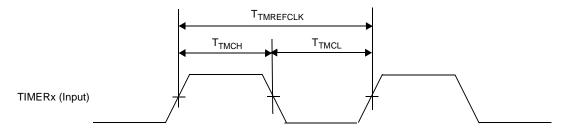


Figure 24. Timer Timing

2.7.10 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are programmable delay units (PDU) that should be programmed differently for each Interface to meet timing. There is a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the MSC8144 Reference Manual.

2.7.10.1 Management Interface Timing

Table 42. Ethernet Controller Management Interface Timing

Characteristics	Symbol	Min	Max	Unit
ETHMDC clock pulse width high	t _{MDCH}	32	_	ns
ETHMDC to ETHMDIO delay ²	t _{MDKHDX}	10	70	ns
ETHMDIO to ETHMDC rising edge set-up time	t _{MDDVKH}	5	_	ns
ETHMDC rising edge to ETHMDIO hold time	^t MDDXKH	0	_	ns
ETHMDC rise time.	t _{MDCR}	_	10	ns
ETHMDC fall time.	t _{MDHF}	_	10	ns

Notes:

- Typical ETHMDC frequency (f_{MDC}) is 2.5 MHz with a 400 ns period (t_{MDC}). The value depends on the source clock. For example, for a source clock of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz. For a 375 MHz clock, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz.
- 2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of 333 MHz, the delay is 58 ns.

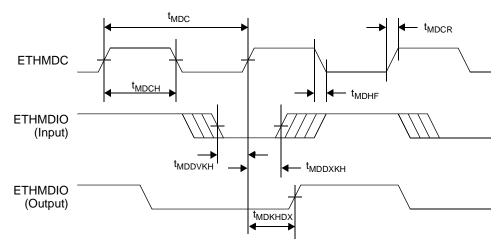


Figure 25. MII Management Interface Timing

MII Transmit AC Timing Specifications 2.7.10.2

Table 43 provides the MII transmit AC timing specifications.

Table 43. MII Transmit AC Timing Specifications

Parameter/Condition	rameter/Condition Symbol ¹		Max	Unit
TX_CLK duty cycle	t _{MTXH} ,t _{MTX}	35	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	0	25	ns
TX_CLK data clock rise	t _{MTXR}	1.0	4.0	ns
TX_CLK data clock fall	t _{MTXF}	1.0	4.0	ns
Notes: 1. Typical TX CLK period (t _{MTV}) for 10 Mbps is 400 ns and fo	r 100 Mbps is 40 ns.			•

Program GCR4 as 0x00030CC3.

Figure 26 shows the MII transmit AC timing diagram.

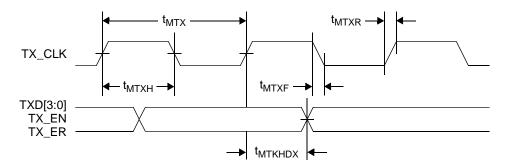


Figure 26. MII Transmit AC Timing

2.7.10.3 **MII Receive AC Timing Specifications**

Table 44 provides the MII receive AC timing specifications.

Table 44. MII Receive AC Timing Specifications

Parameter/Condition	Symbol ¹	Min	Max	Unit
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	65	%

Table 44. MII Receive AC Timing Specifications (continued)

Parameter/Condition	Symbol ¹	Min	Max	Unit
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	2	_	ns
RX_CLK clock rise	t _{MRXR}	1.0	4.0	ns
RX_CLK clock fall time	t _{MRXF}	1.0	4.0	ns
Notes: 1. Typical RX_CLK period (t _{MRX}) for 10 Mbps is 400 ns and for 100 Mbps is 40 ns. 2. Program GCR4 as 0x00030CC3.				

Figure 27 provides the AC test load.

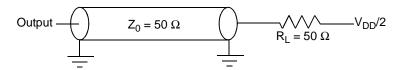


Figure 27. AC Test Load

Figure 28 shows the MII receive AC timing diagram.

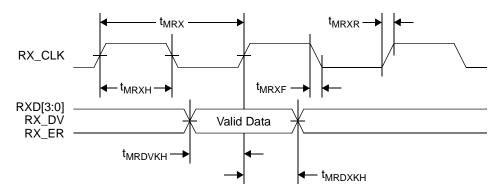


Figure 28. MII Receive AC Timing

2.7.10.4 RMII Transmit and Receive AC Timing Specifications

Table 45 provides the RMII transmit and receive AC timing specifications.

Table 45. RMII Transmit and Receive AC Timing Specifications

Parameter/Condition	Symbol ¹	Min	Max	Unit
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	65	%
REF_CLK to RMII data TXD[1–0], TX_EN delay	^t RMTKHDX	2	10	ns
RXD[1-0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	_	ns
RXD[1-0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	_	ns
REF_CLK data clock rise	t _{RMXR}	1.0	4.0	ns
REF_CLK data clock fall	t _{RMXF}	1.0	4.0	ns
Typical REF_CLK clock period (t _{RMX}) is 20 ns				
Notes: 1. Typical REF_CLK clock period (t _{RMX}) is 20 ns 2. Program GCR4 as 0x00001405				

Figure 29 shows the RMII transmit and receive AC timing diagram.

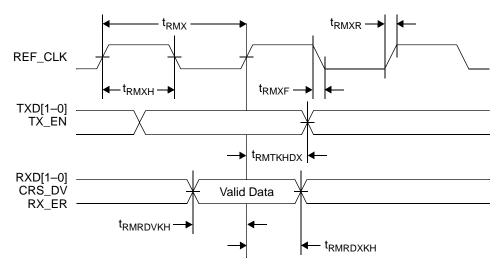


Figure 29. RMII Transmit and Receive AC Timing

Figure 30 provides the AC test load.

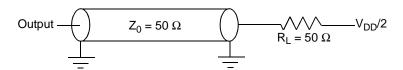


Figure 30. AC Test Load

2.7.10.5 SMII AC Timing Specification

Table 46. SMII Mode Signal Timing

Characteristics	Symbol	Min	Max	Unit
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	t _{SMDVKH}	1.5	_	ns
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	t _{SMDXKH}	1.0	_	ns
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay	t _{SMXR}	1.5	5.0	ns

Notes: 1. Typical REF_CLK clock period is 8ns

- 2. Measured using a 5 pF load.
- 3. Measured using a 15 pF load
- 4. REF_CLK duty cycle is TBD.
- 5. Program GCR4 as 0x00002008

Figure 31 provides the AC test load.

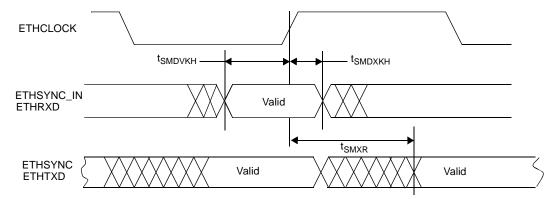


Figure 31. SMII Mode Signal Timing

2.7.10.6 RGMII AC Timing Specifications

Table 47 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.

Table 47. RGMII with On-Board Delay AC Timing Specifications

Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKEWT}	-0.5	_	0.5	ns
Data to clock input skew (at receiver) ²	tskewr	0.9	_	2.6	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX 3, 5	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_		0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	_	0.75	ns
GTX_CLK125 reference clock period	t _{G12} ⁶	_	8.0		ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	_	53	%

Notes: 1. At recommended operating conditions with LV_{DD} of 2.5 V +/- 5%.

- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns +/- 40 ns and 40 ns +/- 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between
- **5.** Duty cycle reference is $L_{Vdd}/2$.
- 6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 7. GCR4 should be programmed as 0x00001004.

Table 48 presents the RGMII AC timing specification for applications required non-delayed clock on board.

Table 48. RGMII with No On-Board Delay AC Timing Specifications

Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKEWT}	0.9	_	2.6	ns
Data to clock input skew (at receiver) ²	t _{SKEWR}	-0.5	_	0.5	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX 3, 5	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	-	_	0.75	ns
Fall time (20%–80%)	t _{RGTF}		_	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	_	8.0	_	ns

Table 48. RGMII with No On-Board Delay AC Timing Specifications (continued)

Parameter/Condition	Symbol	Min	Тур	Max	Unit
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	_	53	%

Notes:

- 1. At recommended operating conditions with LV_{DD} of 2.5 V +/- 5%.
- 2. This implies that PC board design will require clocks to be routed with no additional trace delay
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns +/- 40 ns and 40 ns +/- 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Duty cycle reference is L_{Vdd}/2.
- 6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 7. GCR4 should be programmed as 0x00048120.

Figure 32 shows the RGMII AC timing and multiplexing diagrams.

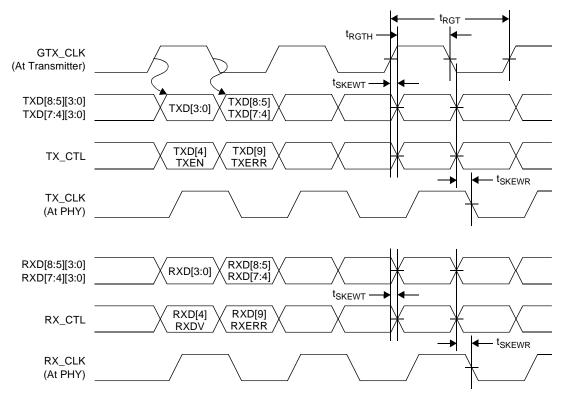


Figure 32. RGMII AC Timing and Multiplexing s

2.7.11 ATM/UTOPIA Timing

Table 49 provides the UTOPIA input and output AC timing specifications.

Table 49. UTOPIA AC Timing Specifications

Characteristic	Symbol	Min	Max	Unit
UTOPIA outputs—External clock delay	t _{UEKHOV}	1	9	ns
UTOPIA outputs—External clock High Impedance	t _{UEKHOX}	1	9	ns
UTOPIA inputs—External clock input setup time	t _{UEIVKH}	4		ns
UTOPIA inputs—External clock input hold time	t _{UEIXKH}	1		ns

Note: Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. Although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 33 provides the AC test load for the UTOPIA.

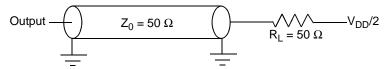


Figure 33. UTOPIA AC Test Load

Figure 34 shows the UTOPIA timing with external clock.

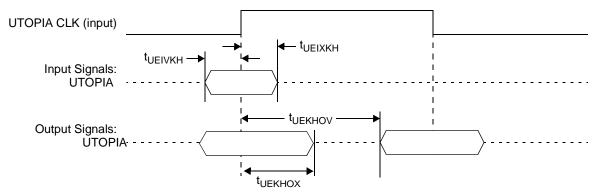


Figure 34. UTOPIA AC Timing (External Clock)

Figure 35 shows the UTOPIA timing with internal clock.

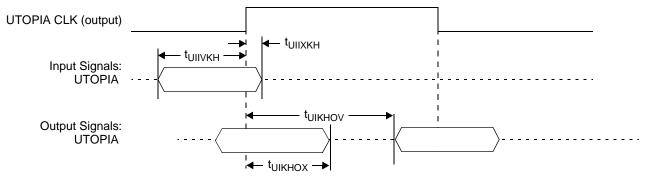


Figure 35. UTOPIA AC Timing (Internal Clock)

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

2.7.12 SPI Timing

Table 49 provides the SPI input and output AC timing specifications.

Table 50. SPI AC Timing Specifications ¹

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5		ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}		8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2		ns
SPI inputs—Master mode (internal clock input setup time	t _{NIIVKH}	4		ns
SPI inputs—Master mode (internal clock input hold time	t _{NIIXKH}	0		ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2		ns

Notes:

- 1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

Figure 36 provides the AC test load for the SPI.

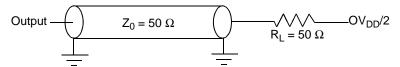
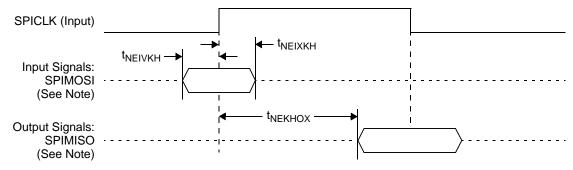
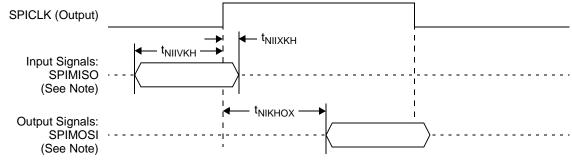



Figure 36. SPI AC Test Load

Figure 37 through Figure 38 represent the AC timings from Table 49. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.


Figure 37 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 37. SPI AC Timing in Slave Mode (External Clock)

Figure 38 shows the SPI timings in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 38. SPI AC Timing in Master Mode (Internal Clock)

2.7.13 GPIO Timing

Table 51. GPIO Timing

Characteristics	Symbol	Min	Max	Unit
REFCLK edge to GPIO out valid (GPIO out delay time)	t _{GPKHOV}	-	6.9	ns
REFCLK edge to GPIO out not valid (GPIO out hold time)	t _{GPKHOX}	1.3	-	ns
REFCLK edge to high impedance on GPIO out	t _{GPKHOZ}	-	6.2	ns
GPIO in valid to REFCLK edge (GPIO in set-up time)	t _{GPIVKH}	3.7	-	ns
REFCLK edge to GPIO in not valid (GPIO in hold time)	t _{GPIXKH}	0.5	-	ns

Figure 39 shows the GPIO timing.

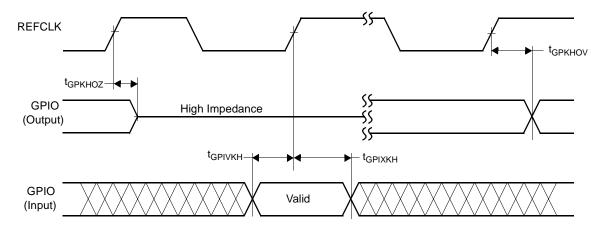


Figure 39. GPIO Timing

2.7.14 EE Signals

Table 52. EE Pin Timing

Characteristics	Symbol	Туре	Min
EE (input)	t _{EEIN}	Asynchronous	4 core clock periods
EE (output)	t _{EEOUT}	Synchronous to Core clock	1 core clock period

Notes: 1. The ratio between the core clock and CLKOUT is configured during power-on-reset.

2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.

Figure 40 shows the signal behavior of the EE pins.

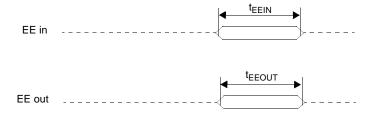


Figure 40. EE Pin Timing

2.7.14.1 JTAG Signals

Table 53. JTAG Timing

Characteristics	Symbol	All frequencies		Unit
Characteristics		Min	Max	
TCK cycle time	t _{TCKX}	33.0	_	ns
TCK clock high phase measured at $V_M = 1.6 \text{ V}$	t _{TCKH}	13.0	_	ns
TCK rise and fall times	t _{TCKR}	_	3.0	ns
Boundary scan input data set-up time	t _{BSVKH}	0.0	_	ns
Boundary scan input data hold time	t _{BSXKH}	10.0	_	ns
TCK fall to output data valid	t _{TCKHOV}	_	20.0	ns
TCK fall to output high impedance	t _{TCKHOZ}	_	24.0	ns
TMS, TDI data set-up time	t _{TDIVKH}	0.0	_	ns
TMS, TDI data hold time	t _{TDIXKH}	5.0	_	ns
TCK fall to TDO data valid	t _{TDOHOV}	_	10.0	ns
TCK fall to TDO high impedance	t _{TDOHOZ}	_	12.0	ns
TRST assert time	t _{TRST}	100.0	_	ns
Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

Figure 41 Shows the Test Clock Input Timing Diagram

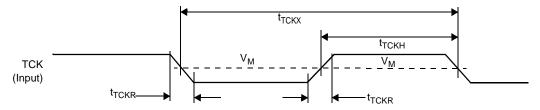


Figure 41. Test Clock Input Timing

Figure 42 Shows the boundary scan (JTAG) timing diagram.

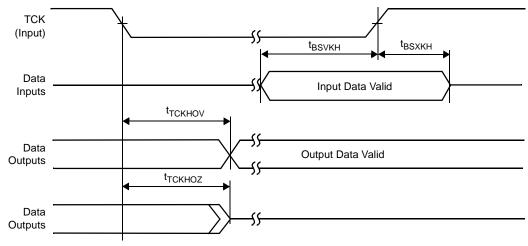


Figure 42. Boundary Scan (JTAG) Timing

Figure 43 Shows the test access port timing diagram

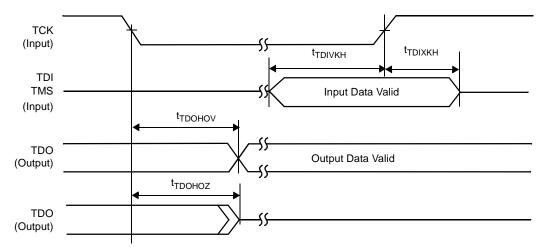


Figure 43. Test Access Port Timing

Figure 44 Shows the TRST timing diagram.

Figure 44. TRST Timing

65

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8144 device is designed into a system.

3.1 Start-up Sequencing Recommendations

3.1.1 Power-on Sequence

Use the following guidelines for power-on sequencing:

- There are no dependencies in power-on/power-off sequence between V_{DDM3} and V_{DD} supplies.
- There are no dependencies in power-on/power-off sequence between RapidIO supplies: V_{DDSXC}, V_{DDSXP}, V_{DDRIOPLL} and other MSC8144 supplies.
- V_{DDPLL} should be coupled with the V_{DD} power rail with extremely low impedance path.

External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8144 device in the system during start-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4V/ns.

The following supplies should rise before any other supplies in any sequence

- V_{DD} and V_{DDPLL} coupled together
- V_{DDM3}

After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 45):

- V_{DDGE1}
- V_{DDGE2}
- V_{DDIO}
- V_{DDDDR} and MV_{RFF} coupled one to another. MV_{RFF} should be either at same time or after V_{DDDDR}.
- V_{DDM3IO}
- V_{25M3}

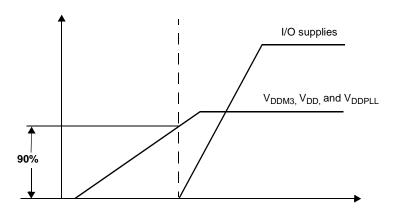


Figure 45. V_{DDM3}, V_{DDM3IO} and V_{25M3} Power-on Sequence

- **Note:** 1. This recommended power sequencing is different from the MSC8122/MSC8126.
 - 2. If no pins that require V_{DDGE1} as a reference supply are used (see **Table 1**), V_{DDGE1} can be tied to GND.
 - 3. If no pins that require V_{DDGE2} as a reference supply are used (see **Table 1**), V_{DDGE2} can be tied to GND.
 - **4.** If the DDR interface is not used, V_{DDDDR} and MV_{REF} can be tied to GND.
 - 5. If the M3 memory is not used, V_{DDM3} , V_{DDM3IO} , and V_{25M3} can be tied to GND.
 - **6.** If the RapidIO interface is not used, V_{DDSX}, V_{DDSXP}, and V_{DDRIOPLL} can be tied to GND.

3.1.2 Start-Up Timing

Section 2.7.1 describes the start-up timing.

3.2 Power Supply Design Considerations

3.2.1 PLL Supplies

Each PLL supply must have an external RC filter for the V_{DDPLL} input. The filter is a 10 Ω resistor in series with two 2.2 μ F, low ESL (<0.5 nH) and low ESR capacitors. All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately (see **Figure 46**). For optimal noise filtering, place the circuit as close as possible to its V_{DDPLL} inputs. These traces should be short and direct.

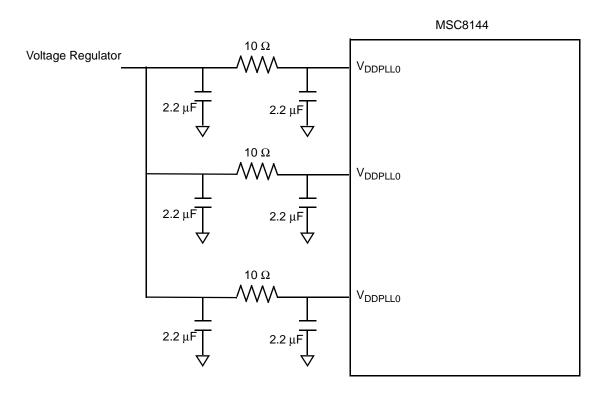


Figure 46. PLL Supplies

3.2.2 Other Supplies

TBD

3.3 Connectivity Guidelines

Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal connections in this discussion.

First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following subsections for board design and connections. The following conventions are used in describing the connectivity requirements:

1. GND indicates using a $10 \text{ k}\Omega$ pull-down resistor (recommended) or a direct connection to the ground plane. Direct connections to the ground plane may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.

- 2. V_{DD} indicates using a 10 k Ω pull-up resistor (recommended) or a direct connection to the appropriate power supply. Direct connections to the supply may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.
- 3. Mandatory use of a pull-up or pull-down resistor it is clearly indicated as "pull-up/pull-down".
- 4. NC indicates "not connected" and means do not connect anything to the pin.
- 5. The phrase "in use" indicates a typical pin connection for the required function.

Note: Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of subset interface connection.

3.3.1 DDR Memory Related Pins

This section discusses the various scenarios that can be used with DDR1 and DDR2 memory.

Note: For information about unused differential/non-differential pins in DDR1/DDR2 modes (that is, unused negative lines of strobes in DDR1), please refer to **Table 54**.

3.3.1.1 DDR Interface Is Not Used

Table 54. Connectivity of DDR Related Pins When the DDR Interface Is Not Used

Signal Name	Pin Connection
MDQ[0-31]	NC
MDQS[0-3]	NC
MDQS[0-3]	NC
MA[0–15]	NC
MCK[0-2]	NC
MCK[0-2]	NC
MCS[0-1]	NC
MDM[0-3]	NC
MBA[0-2]	NC
MCAS	NC
MCKE[0-1]	NC
MODT[0-1]	NC
MDIC[0-1]	NC
MRAS	NC
MWE	NC
MECC[0-7]	NC
ECC_MDM	NC
ECC_MDQS	NC
ECC_MDQS	NC
MV_REF	GND
$V_{\rm DDDDR}$	GND

Note: If the DDR controller is not used, disable the internal DDR clock by writing a 1 to the CLK11DIS bit in the System Clock Control Register (SCCR[CLK!11DIS]). See Chapter 7, Clocks, in the MSC8144 Reference Manual for details.

3.3.1.2 16-Bit DDR Memory Only

Table 55 lists unused pin connection when using 16-bit DDR memory. The 16 most significant data lines are not used.

Table 55. Connectivity of DDR Related Pins When Using 16-bit DDR Memory Only

Signal Name	Pin connection	
MDQ[0-15]	in use	
MDQ[16-31]	pull-up to V _{DDDDR}	
MDQS[0-1]	in use	
MDQS[2-3]	pull-down to GND	
MDQS[0-1]	in use	
MDQS[2-3]	pull-up to V _{DDDDR}	
MA[0-15]	in use	
MCK[0-2]	in use	
MCK[0-2]	in use	
MCS[0-1]	in use	
MDM[0-1]	in use	
MDM[2-3]	NC	
MBA[0-2]	in use	
MCAS	in use	
MCKE[0-1]	in use	
MODT[0-1]	in use	
MDIC[0-1]	in use	
MRAS	in use	
MWE	in use	
MV _{REF}	1/2*V _{DDDDR}	
V _{DDDDR}	2.5 V or 1.8 V	

3.3.1.3 ECC Unused Pin Connections

When the error code corrected mechanism is not used in any 32- or 16-bit DDR configuration, refer to **Table 56** to determine the correct pin connections.

Table 56. Connectivity of Unused ECC Mechanism Pins

Signal Name	Pin connection
MECC[0-7]	pull-up to V _{DDDDR}
ECC_MDM	NC
ECC_MDQS	pull-down to GND
ECC_MDQS	pull-up to V _{DDDDR}

3.3.2 Serial RapidIO Interface Related Pins

3.3.2.1 Serial RapidIO interface Is Not Used

Table 57. Connectivity of Serial RapidIO Interface Related Pins When the RapidIO Interface Is Not Used

Signal Name	Pin Connection
SRIO_IMP_CAL_RX	GND
SRIO_IMP_CAL_TX	GND
SRIO_REF_CLK	GND
SRIO_REF_CLK	GND
SRIO_RXD[0-3]	GND
SRIO_RXD[0-3]	GND
SRIO_TXD[0-3]	NC
SRIO_TXD[0-3]	NC
V _{DDRIOPLL}	GND
GND _{RIOPLL}	GND
GND _{SXP}	GND
GND _{SXC}	GND
V _{DDSXP}	GND
V _{DDSXC}	GND

3.3.2.2 Serial RapidIO Specific Lane Is Not Used

Table 58. Connectivity of Serial RapidIO Related Pins When Specific Lane Is Not Used

Signal Name	Pin Connection
SRIO_IMP_CAL_RX	in use
SRIO_IMP_CAL_TX	in use
SRIO_REF_CLK	in use
SRIO_REF_CLK	in use
SRIO_RXD x	GND _{SXC}
SRIO_RXD x	GND _{SXC}
SRIO_TXDx	NC
SRIO_TXD x	NC
V _{DDRIOPLL}	in use
GND _{RIOPLL}	in use
GND _{SXP}	GND _{SXP}
GND _{SXC}	GND _{SXC}
V_{DDSXP}	1.0 V
V _{DDSXC}	1.0 V
Note: The <i>x</i> indicates the lane number {0,1,2,3} for all unused land	nes.

Hardware Design Considerations

3.3.3 M3 Memory Related Pins

Table 59. Connectivity of M3 Related Pins When M3 Memory Is Not Used

Signal Name	Pin Connection
M3_RESET	NC
V _{25M3}	GND
V _{DDM3}	GND
V _{DDM3IO}	GND

3.3.4 Ethernet Related Pins

3.3.4.1 Ethernet Controller 1 (GE1) Related Pins

Note: Table 60 and Table 61 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

3.3.4.1.1 GE1 Interface Is Not Used

Table 60 assumes that the GE1 signals are not used for any purpose (including any multiplexed functions) and that V_{DDGE1} is tied to GND.

Table 60. Connectivity of GE1 Related Pins When the GE1 Interface Is Not Used

Signal Name	Pin Connection
GE1_COL	NC
GE1_CRS	NC
GE1_RD[0-4]	NC
GE1_RX_ER	NC
GE1_RX_CLK	NC
GE1_RX_DV	NC
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_TX	NC
GE1_SGMII_TX	NC
GE1_TD[0-4]	NC
GE1_TX_CLK	NC
GE1_TX_EN	NC
GE1_TX_ER	NC

3.3.4.1.2 Subset of GE1 Pins Required

When only a subset of the whole GE1 interface is used, such as for RMII, the unused GE1 pins should be connected as described in Table 61. This table assumes that the unused GE1 pins are not used for any purpose (including any multiplexed function) and that V_{DDGE1} is tied to either 2.5 V or 3.3 V.

Table 61. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required

Signal Name	Pin Connection
GE1_COL	GND
GE1_CRS	GND
GE1_RD[0-3]	GND
GE1_RX_ER	GND
GE1_RX_CLK	GND
GE1_RX_DV	GND
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_TX	NC

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

Table 61. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE1_SGMII_TX	NC
GE1_TD[0-3]	NC
GE1_TX_CLK	GND
GE1_TX_EN	NC
GE1_TX_ER	NC

3.3.4.2 Ethernet Controller 2 (GE2) Related Pins

Note: Table 62 and Table 64 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

3.3.4.2.1 GE2 interface Is Not Used

Table 62 assumes that the GE2 pins are not used for any purpose (including any multiplexed function) and that V_{DDGE2} is tied to GND.

Table 62. Connectivity of GE2 Related Pins When the GE2 Interface Is Not Used

Signal Name	Pin Connection
GE2_RD[0-3]	NC
GE2_RX_CLK	NC
GE2_RX_DV	NC
GE2_RX_ER	NC
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	Nc
GE2_TD[0-3]	Nc
GE2_TX_EN	NC

3.3.4.2.2 Subset of GE2 Pins Required

When only a subset of the whole GE2 interface is used, such as for RMII, the unused GE2 pins should be connected as described in Table 63. The table assumes that the unused GE2 pins are not used for any purpose (including any multiplexed functions) and that V_{DDGE2} is tied to either 2.5 V or 3.3 B.

Table 63. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required

Signal Name	Pin Connection
GE2_RD[0-3]	GND
GE2_RX_CLK	GND
GE2_RX_DV	GND
GE2_RX_ER	GND
GE2_SGMII_RX	GND _{SXC}

Table 63. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	NC
GE2_TD[0-3]	NC
GE2_TX_EN	NC

3.3.4.3 GE1 and GE2 Management Pins

GE_MDC and GE_MDIO pins should be connected as required by the specified protocol. If neither GE1 nor GE2 is used (that is, V_{DDGE2} is connected to GND), Table 64 lists the recommended management pin connections.

Table 64. Connectivity of GE Management Pins When GE1 and GE2 Are Not Used

Signal Name	Pin Connection
GE_MDC	NC
GE_MDIO	NC

3.3.5 UTOPIA Related Pins

Table 65 lists the board connections of the UTOPIA pins when the entire UTOPIA interface is not used or subset of UTOPIA interface is used. For multiplexing options that select a subset of the UTOPIA interface, use the connections described in Table 65 for those signals that are not selected. Table 65 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 65. Connectivity of UTOPIA Related Pins When UTOPIA Interface Is Not Used

Signal Name	Pin Connection
UTP_IR	GND
UTP_RADDR[0-4]	V _{DDIO}
UTP_RCLAV_PDRPA	NC
UTP_RCLK	GND
UTP_RD[0-15]	GND
UTP_REN	V _{DDIO}
UTP_RPRTY	GND
UTP_RSOC	GND
UTP_TADDR[0-4]	V _{DDIO}
UTP_TCLAV	NC
UTP_TCLK	GND
UTP_TD[0-15]	NC
UTP_TEN	V _{DDIO}
UTP_TPRTY	NC
UTP_TSOC	NC
V _{DDIO}	3.3 V

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

3.3.6 TDM Interface Related Pins

Table 66 lists the board connections of the TDM pins when an entire specific TDM is not used. For multiplexing options that select a subset of a TDM interface, use the connections described in Table 66 for those signals that are not selected. Table 66 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 66. Connectivity of TDM Related Pins When TDM Interface Is Not Used

Signal Name	Pin Connection
TDMxRCLK	GND
TDM x RDAT	GND
TDMxRSYN	GND
TDMxTCLK	GND
TDMT x DAT	GND
TDMxTSYN	GND
V _{DDIO}	3.3 V

Notes: 1

3.3.7 PCI Related Pins

Table 67 lists the board connections of the pins when PCI is not used. Table 67 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 67. Connectivity of PCI Related Pins When PCI Is Not Used

Signal Name	Pin Connection
PCI_AD[0-31]	GND
PCI_CBE[0-3]	GND
PCI_CLK_IN	GND
PCI_DEVSEL	V _{DDIO}
PCI_FRAME	$V_{ m DDIO}$
PCI_GNT	V _{DDIO}
PCI_IDS	GND
PCI_IRDY	$V_{ m DDIO}$
PCI_PAR	GND
PCI_PERR	V _{DDIO}
PCI_REQ	NC
PCI_SERR	V _{DDIO}
PCI_STOP	V _{DDIO}
PCI_TRDY	$V_{ m DDIO}$
V _{DDIO}	3.3 V

^{1.} $x = \{0, 1, 2, 3, 4, 5, 6, 7\}$

In case of subset of TDM interface usage please make sure to disable unused TDM modules. See Chapter 20, TDM, in the MSC8144 Reference Manual for details.

3.3.8 Miscellaneous Pins

Table 68 lists the board connections for the pins if they are required by the system design. Table 68 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 68. Connectivity of Individual Pins When They Are Not Required

Signal Name	Pin Connection			
CLKOUT	NC			
EE0	GND			
EE1	NC			
GPIO[0-31]	NC			
SCL	See the GPIO connectivity guidelines in this table.			
SDA	See the GPIO connectivity guidelines in this table.			
ĪNT_OUT	NC			
ĪRQ[0-15]	See the GPIO connectivity guidelines in this table.			
NMI	V _{DDIO}			
NMI_OUT	NC			
RC[0-16]	GND			
RC_LDF	NC			
STOP_BS	GND			
тск	GND			
TDI	GND			
TDO	NC			
TMR[0-4]	See the GPIO connectivity guidelines in this table.			
TMS	GND			
TRST	GND			
URXD	See the GPIO connectivity guidelines in this table.			
UTXD	See the GPIO connectivity guidelines in this table.			
V _{DDIO} 3.3 V				
Note: When using I/O multiplexing mode 5 or 6, tie the TDM7TSYN/PCI_AD4 signal (ball number AC9) to GND.				

Note: For details on configuration, see the *MSC8144 Reference Manual*. For additional information, refer to the *MSC8144 Design Checklist* (AN3202).

3.4 External DDR SDRAM Selection

TBD

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T₁, in °C can be obtained from the following:

$$T_J = T_A + (R_{\Theta JA} \times P_D)$$
 Equation 1

where

 T_A = ambient temperature near the package (°C)

 $R_{\text{OJA}} = \text{junction-to-ambient thermal resistance } (^{\circ}\text{C/W})$

 $P_D = P_{INT} + P_{I/O} =$ power dissipation in the package (W)

 $P_{INT} = I_{DD} \times V_{DD} = internal power dissipation (W)$

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC8144 are listed in **Table 5**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8144 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T₁:

$$T_J = T_T + (\theta_{JA} \times P_D)$$
 Equation 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Spheres	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number
MSC8144	Flip Chip Plastic Ball Grid Array (FC-PBGA)	Lead-free	1.0 V	-40° to 105°C	800	TBD
				0° to 90°C	1000	TBD

5 Package Information

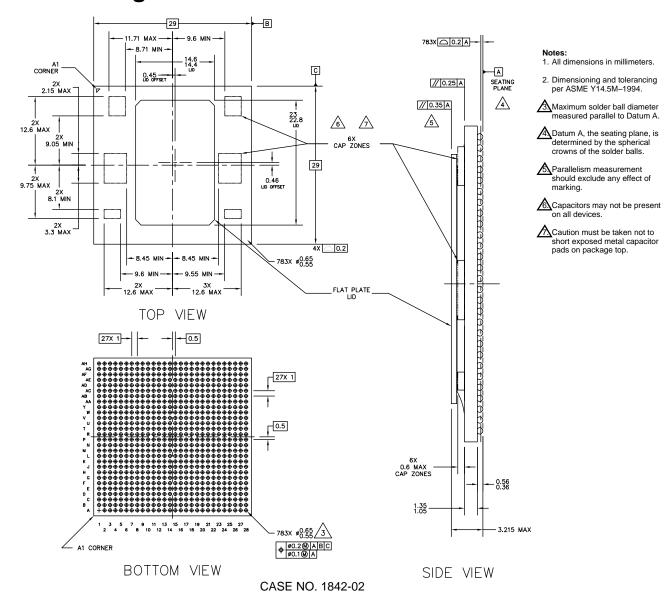


Figure 47. MSC8144 Mechanical Information, 783-ball FC-PBGA Package

6 Product Documentation

- *MSC8144 Technical Data Sheet* (MSC8144). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8144 device.
- *MSC8144 Reference Manual* (MSC8144RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8144 device.
- *SC3400 DSP Core Reference Manual*. Covers the SC3400 core architecture, control registers, clock registers, program control, and instruction set.
- MSC8144 SC3400 DSP Core Subsystem Reference Manual. Covers core subsystem architecture, functionality, and registers.

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

7 Revision History

Table 69 provides a revision history for this data sheet.

Table 69. Document Revision History

Revision	Date	Description
0	Feb. 2007	Initial public release.
1	Apr. 2007	 Adds new I/O multiplexing mode 7 that supports POS functionality. Updates reference voltage supply for pins G5, H7, and H8 in Table 1. Updates start-up timing recommendations with regard to TRST and M3_RESET in Section 2.7.1. Adds input clock duty cycles in Table 20. Updates PCI AC timings in Table 38. Removes UTOPIA internal clock specifications in Table 49. Updates JTAG timings in Table 53. Clarifies connectivity guidelines for Ethernet pins in Section 3.3.4. Miscellaneous pin connectivity guidelines were updated in Table 68.
		Updates name of core subsystem reference manual.

MSC8144 Quad Core Digital Signal Processor Data Sheet, Rev. 1

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MSC8144

Rev. 1 5/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™], the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the RapidIO Trade Association. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

