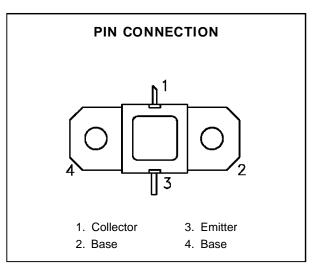


MSC81350M

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

- REFRACTORY/GOLD METALLIZATION
- RUGGEDIZED VSWR 20:1
- INTERNAL INPUT/OUTPUT MATCHING
- LOW THERMAL RESISTANCE
- METAL/CERAMIC HERMETIC PACKAGE
- Pout = 350 W MIN. WITH 7.0 dB GAIN



DESCRIPTION

The MSC81350M device is a high power pulsed transistor specifically designed for IFF avionics applications.

This device is capable of withstanding a minimum 20:1 load VSWR at any phase angle under full rated conditions. Low RF thermal resistance and semi automatic wire bonding techniques ensure high reliability and product consistency.

The MSC81350M is housed in the unique AMPAC™ package with internal input/output matching structures.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
Poiss	Power Dissipation* (T _C ≤ 55°C)	720	W
Ic	Device Current*	19.8	А
Vcc	Collector-Supply Voltage*	55	V
TJ	Junction Temperature (Pulsed RF Operation)	250	°C
T _{STG}	Storage Temperature	- 65 to +200	°C

THERMAL DATA

R _{TH(j-c)}	Junction-Case Thermal Resistance*	0.20	°C/W

^{*}Applies only to rated RF amplifier operation

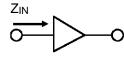
October 1992 1/5

MSC81350M

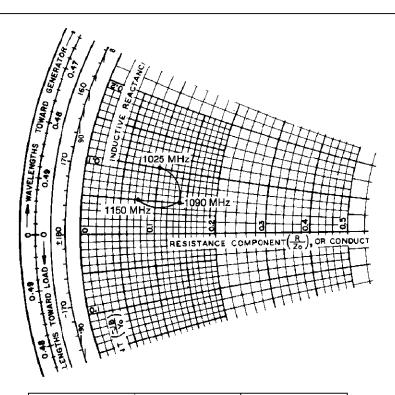
ELECTRICAL SPECIFICATIONS (T_{case} = 25°C)

STATIC

Symbol		Test Conditions	Value			11!4	
	Test Conditions		Min.	Тур.	Max.	Unit	
ВУсво	I _C = 10mA	$I_E = 0mA$		65	_	_	V
BV _{EBO}	I _E = 1mA	$I_C = 0mA$		3.5	_	_	V
BV _{CER}	IC = 25mA	$R_{BE} = 10\Omega$		65	_	_	V
ICES	V _{CE} = 50V			_	_	25	mA
hFE	V _{CE} = 5V	$I_C = 1A$		15	_	120	_

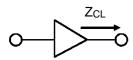

DYNAMIC

Symbol		Test Conditions		Value			Unit
Symbol		rest Conditions			Тур.	Max.	Unit
Pout	f = 1090 MHz	$P_{IN} = 70 \text{ W}$	$V_{CC} = 50 V$	350	360	_	W
ης	f = 1090 MHz	$P_{IN} = 70 \text{ W}$	$V_{CC} = 50 \text{ V}$	40	44	_	%
G _P	f = 1090 MHz	P _{IN} = 70 W	V _{CC} = 50 V	7.0	7.1	_	dB

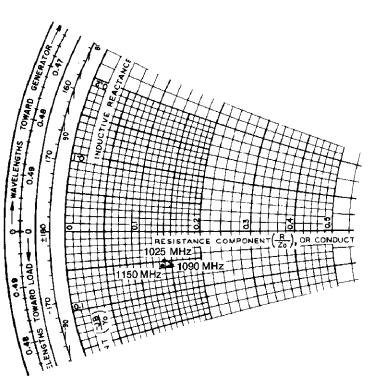

Note: Pulse Width = $10\mu Sec$ Duty Cycle = 1%

IMPEDANCE DATA

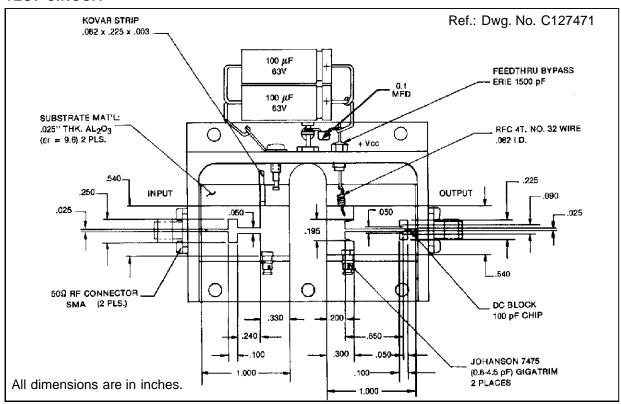
TYPICAL INPUT IMPEDANCE

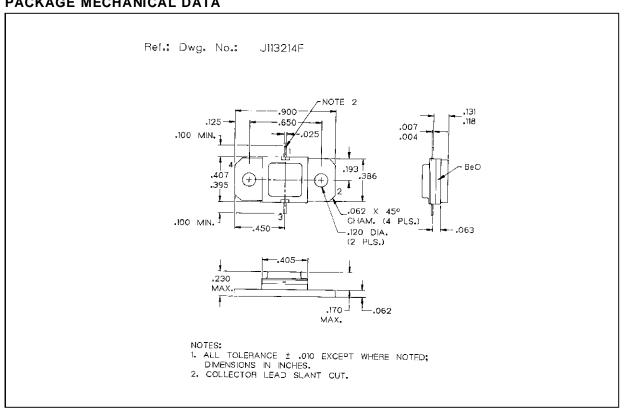


 $P_{IN} = 70 \text{ W}$ $V_{CC} = 50 \text{ V}$ Normalized to 50 ohms



FREQ.	$Z_{IN}\left(\Omega\right)$	Z _{CL} (Ω)
L = 1025 MHz	5.0 + j 5.0	7.0 – j 2.5
M = 1090 MHz	7.0 + j 2.5	7.5 – j 2.8
H = 1150 MHz	3.6 + j 2.5	6.8 – j 2.7


TYPICAL COLLECTOR LOAD IMPEDANCE


$$\begin{split} P_{IN} &= 70 \text{ W} \\ V_{CC} &= 50 \text{ V} \\ \text{Normalized to 50 ohms} \end{split}$$

TEST CIRCUIT

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

