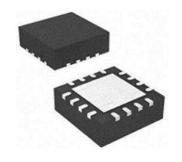


四通道'地'隔离放大器


产品简述

MS8124N 是一款应用于车载音频系统的'地'隔离放大

- 器。芯片可以很好地解决汽车音频系统中的绕线电阻问
- 题,以及由车载电子设备带来的噪声问题。

另外,芯片所需要的外围电容小,而且集成了四个通

道,便于系统的集成。

主要特点

- 不需要大电容
- 低偕波失真(thd=0.002%)
- 高共模抑止比(57dB at 1kHz)
- 四通道
- 低躁声

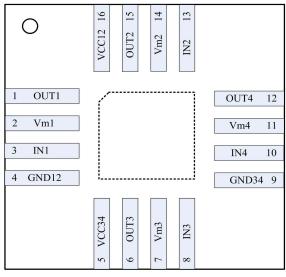
产品规格分类

产品	封装形式	丝印名称
MS8124N	QFN16(0404X0.75-e0.65)	MS8124N


QFN16

应用

■ 车载音频


内部框图

MS8124N 内部框图

管脚排列图

QFN16

管脚描述

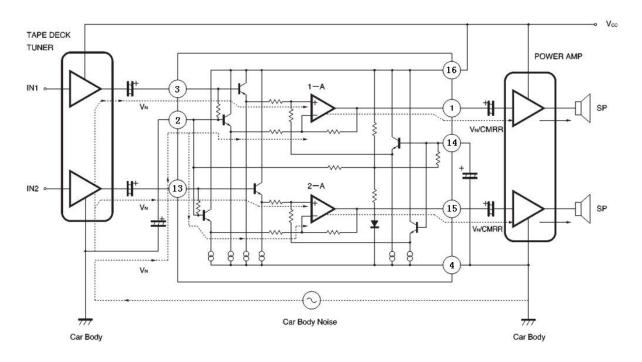
管脚编号	管脚名称	管脚属性	管脚描述
1	OUT1	0	通道 1 输出
2	Vm1	1/0	通道 1, 2共模输入 1
3	IN1	I	通道 1 输入
4	GND12	gnd	通道 1, 2'地'
5	VCC34	Power	通道 3, 4 电源
6	OUT3	0	通道 3 输出
7	Vm3	1/0	通道 3, 4共模输入 3
8	IN3	I	通道 3 输入
9	GND34	gnd	通道 3, 4'地'
10	IN4	I	通道 4 输入
11	Vm4	I/0	通道 3, 4共模输入 4
12	OUT4	0	通道 4 输出
13	IN2	I	通道 2 输入
14	Vm2	I/0	通道 1, 2共模输入 2
15	OUT2	0	通道 2 输出
16	VCC12	Power	通道 1, 2 电源

极限参数(无其他说明,**T=25**℃)

参数	符号	参数范围	单位
供电电压	VCC	18	V
功耗	PD	700	
工作温度	Topr	−30~+85	
储存温度	Tstg	−55∼+150	

电气参数(无其他说明,Ta=25, VCC=12V, f=1kHz, Rg=1.8k)

电气特性: (无其他说明, T=25℃, VCC=5V)


参数	符号	测 试 条 件	最小值	典型值	最大值	单位
逻辑高输入电压	VIH			0. 40*VC C	0. 5*VCC	V
电源电压	Vpp		4	12	18	V
静态电流	IQ	Vin=0Vrms	5. 6	9. 0	14. 0	mA
输出噪声	Vno	BPF=20HZ~20kHz	-	3. 5	8. 0	uV
电压增益	Gv	V0=-10dbM, Rg=0	-1.5	-0. 04	1. 5	D
最大输出电压	Vom	THD=0.1%, VCC= 8V	1.8	2. 0	-	V
总偕波失真	THD	V0=0.7Vrms	-	0.002	0.02	%
共模抑止	CMRR		41	57	_	dB
共模电压	Vcm	VCC=8V, CMRR= 40dB	2. 5	3. 75	_	V
电源抑止	RR	f=100Hz, V=-10dbm, Rg	72	80	-	dB
		=0				

功能描述

工作原理

以第 1,2 通道为例

汽车音频系统的'地'接在汽车的车身,由于这个原因,汽车电子系统的电子噪声通过汽车底盘进入音频放大器,从而影响音频质量。

MS8124N 通过它的高共模抑制特性来有效消除噪声。如果没有 MS8124N, 噪声直接进入音频放大器; 而使用 MS8124N, 运放 1-A 和 2-A 的共模抑制特性则可以消除噪声。

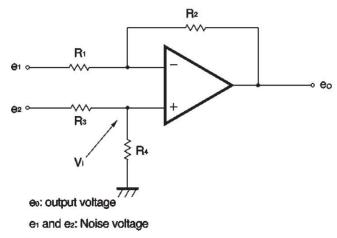


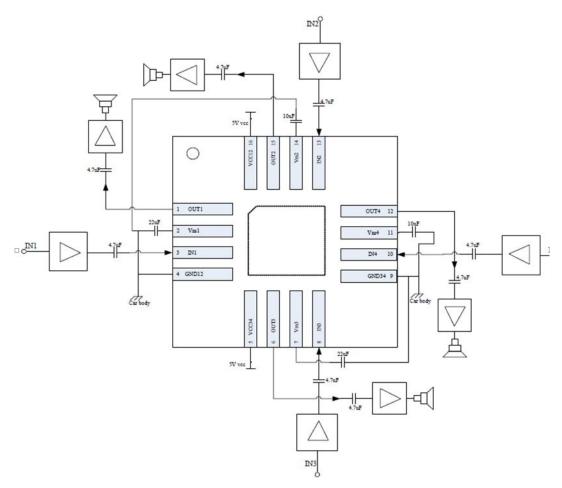
Fig. 4 The principle of noise rejection

如图所示,我们推出运放的输出电压公式:

$$V_i = \frac{R_4}{(R_3 + R_4)} \bullet e_2 \tag{1}$$

$$e_0 = -\frac{R_2}{R_1} e_1 + \frac{R_1 + R_2}{R_1} \cdot V_i$$
 (2)

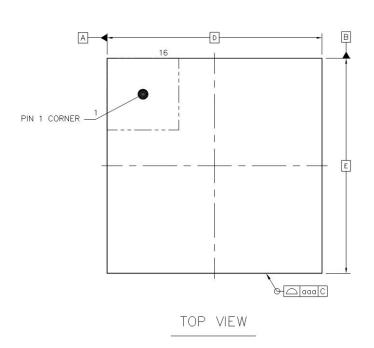
From (1) and (2)

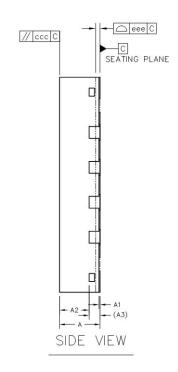

$$e_0 = -\frac{R_2}{R_1} e_1 + \frac{R_1 + R_2}{R_1} \cdot \frac{R_4}{(R_3 + R_4)} \cdot e_2$$
$$= -\frac{R_2}{R_1} \cdot (e_1 - e_2) + \frac{R_1R_4 - R_2R_3}{R_1(R_3 + R_4)} \cdot e_2$$

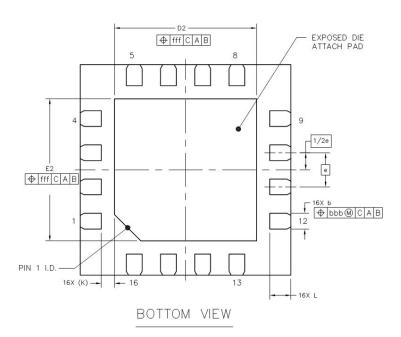
理论上来说,如果 R1R4=R2R3,并且 e1=e2,输出噪声电压削减为零。实际上,由于电路的非完全对称性,以及输入噪声电压 e1和e2的不同,输出噪声不能完全消除。使用MS8124N,噪声的抑制可以达到 41dB以上。使用注意:

Pin2 (Vm1) 和 Pin14 (Vm2) 的外围电容设置为 2:1以防止电容的波动带来的对电源纹波抑制的影响。如果 Pin2 (Vm1) 的外接电容为标准的两倍,低音频段运放共模抑制比 CMRR增大 6dB,如果电容为原来的一半, CMRR反之减小 6dB。

典型应用电路图




MS8124N 典型应用原理图



封装外形图

QFN16 (04X04)(背部带散热片):

		SYMBOL	MIN	NOM	MAX		
TOTAL THICKNESS		A	0.7	0.75	0.8		
STAND OFF		A1	0	0.02	0.05		
MOLD THICKNESS		A2		0.55			
L/F THICKNESS		А3	0.203 REF				
LEAD WIDTH	de .	b	0.25	0.3	0.35		
BODY SIZE	X	D	4 BSC				
BODT SIZE	Y	E	4 BSC				
LEAD PITCH		е	0.65 BSC				
EP SIZE	X	D2	2.6	2.7	2.8		
LF SIZE	Y	E2	2.6	2.7	2.8		
LEAD LENGTH	L 0.3 0.4		0.4	0.5			
LEAD TIP TO EXPOSE	D PAD EDGE	К	0.25 REF				
PACKAGE EDGE TOLERANCE		aaa	0.1				
MOLD FLATNESS		ccc	0.1				
COPLANARITY		eee	0.08				
LEAD OFFSET		bbb	0.1				
EXPOSED PAD OFFSET		fff	0.1				

印章规范

一、印章内容介绍

MS8124N: 产品型号

生产批号: XXXX

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装说明:

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS8124N	QFN16	4000	1	4000	8	32000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

杭州市滨江区伟业路 1号高新软件园 9号楼 701室

http://www.relmon.com