

16-bit Σ-Δ Analog to Digital Converter

PRODUCT DESCRIPTION

The MS7705/MS7706 is an analog-to-digital converter for low-frequency measurement. It uses Σ - Δ conversion technology to realize 16-bit no missing codes feature. The operating voltage range is 2.7V-3.3V or 4.75V-5.25V.

The MS7705/MS7706 is ideal for intelligent, micro-controller, or DSP-based systems. It can set gain, signal polarity and output rate through serial interface. Self-calibration and system calibration can be applied to eliminate gain and offset errors of the system. The typical power dissipation is $20\mu W$ in standby mode.

SOW16

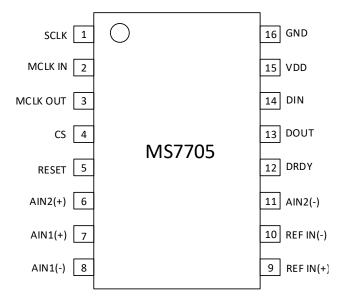
FEATURES

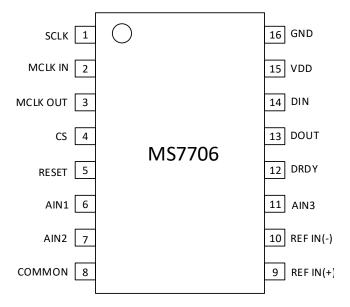
- MS7705: Two Fully Differential Input Channels
- MS7706: Three Pseudo Differential Input Channels
- 16-bit No Missing Codes
- 0.003% Non-linearity
- PGA: Gain from 1 to 128
- Serial Port: SPI, QSPI, PMICROWIRE, DSP Compatible
- Operating Voltage: 2.7V to 3.3V or 4.75V to 5.25V
- Maximum Power Dissipation: 1mW under 3V supply voltage
- Maximum Standby Current: 8μA
- SOW16 and DIP16 Package

DIP₁₆

APPLICATIONS

- Stress Measurement
- Temperature Measurement
- Battery Monitoring
- Smart Transmitter

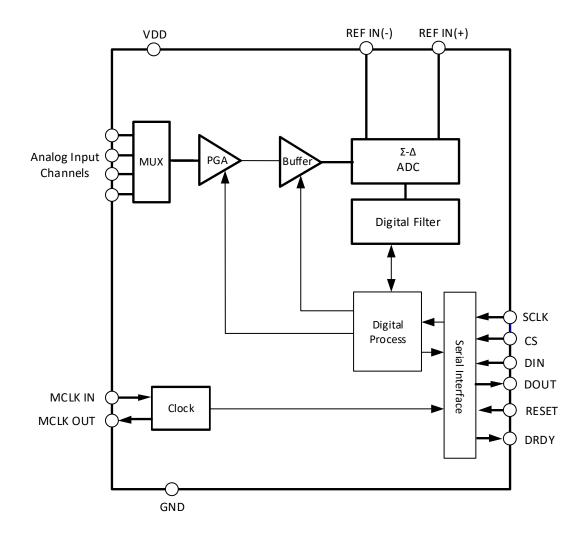

PRODUCT SPECIFICATION


Part Number	Package	Marking
MS7705	SOW16	MS7705
MS7705D	DIP16	MS7705D
*MS7706	SOW16	MS7706
*MS7706D	DIP16	MS7706D

^{*} The package is not available temporarily. If necessary, please contact Hangzhou Ruimeng Sales Department Center.

PIN CONFIGURATION

PIN DESCRIPTION


	Na	me	_	
Pin	MS7705	MS7706	Type	Description
1	SCLK	SCLK	1	Serial Clock Input
				Master Clock Signal. It can be provided in the form of crystal/resonator or external clock.
2	MCLK IN	MCLK IN	1	The crystal/resonator can be connected between MCLK IN and
-				MCLK OUT pins. MCLK IN can also be driven by CMOS compatible
				clock, but MCLK OUT is not connected.
				The clock frequency ranges from 500kHz to 5MHz.
				When master clock is crystal / resonator, it is connected between
				MCLK IN and MCLK OUT pins. If the external clock is connected on
	MCLK	MCLK	0	MCLK IN, the MCLK OUT will provide an inverted clock signal.
3	OUT	OUT	0	This clock can be used to provide clock source for external circuit
				and drive a CMOS load.
				MCLK OUT can be turned off by CLKDIS bit in clock register.
4	CS	CS	I	Chip Selection, Active Low Logic Input.
5	RESET	RESET	1	Reset Input, Active Low Input.
				For MS7705, Positive Input of Differential Analog Input Channel 2;
6	AIN2(+)	AIN1	-	For MS7706, Input of Analog Input Channel 1.
_				For MS7705, Positive Input of Differential Analog Input Channel 1;
7	AIN1(+)	AIN2	I	For MS7706, Input of Analog Input Channel 2.
				For MS7705, Negative Input of Differential Analog Input Channel 1;
8	AIN1(-)	COMMON	ı	For MS7706, COMMON Input, Analog Channel 1, 2, 3 Input with
				reference to the Input Terminal.
				Reference Input Terminal. The reference input is differential and
9	REF IN(+)	REF IN(+)	- 1	requires that REFIN (+) must be more than REFIN (-).
				REFIN (+) can be any value between VDD and GND.
10	DEE 1817.)	DEE MALA	,	Reference Input Terminal. REFIN (-) can be any value between VDD
10	REF IN(-)	REF IN(-)	I	and GND, and REFIN (+) must be more than REFIN (-).
11	AIN2(-)	AIN3	1	For MS7705, Negative Input of Differential Analog Input Channel 2. For Ms7706, Input of Analog Input Channel 3.

	Na	me		
Pin	MS7705	MS7706	Type	Description
12	DRDY	DRDY	0	Logic Output. The low logic level on this output terminal indicates that the newest results can be obtained from the MS7705/7706 data register. After completing read operation of a complete output word, DRDY immediately returns to high level. If there is no data readout between the two output updates, DRDY will return to high level for 500× tCLKIN before the next update occurs. When DRDY is high level, it can not read data, for fear that data in the data register is read when it is updating. After data is updated, DRDY returns to low level. DRDY is also used to indicate when the MS7705/7706 has completed the on-chip calibration sequence.
13	DOUT	DOUT	0	Serial Data Output Terminal.
14	DIN	DIN	I	Serial Data Input Terminal.
15	VDD	VDD	Р	Power Supply, + 2.7V to + 5.25V.
16	GND	GND	-	Ground Reference Point of Internal Circuit.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because long-time absolute operation state affects device reliability. The absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Parameter	Symbol	Range	Unit
Power Supply	VDD	-0.3 ∼ + 7.0	V
Analog Input Voltage	VIN	-0.3 ~ VDD+0.3	V
Reference Input Voltage	V _{REF}	-0.3 ∼ VDD+0.3	V
Digital Input Voltage	V _{DIN}	-0.3 ∼ VDD+0.3	V
Digital Output Voltage	Vout	-0.3 ∼ VDD+0.3	V
Operating Temperature	TA	-40 ~ 85	°C
Storage Temperature	T _{Stg}	-60 ∼ 1 50	°C
Lead Temperature(10s)	348	260	°C
Electrostatic Protection	ESD	>4000	V

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, VDD=3V,5V or 2.5V, REF(+)=1.225V, REF(-)=GND, MCLK IN=2.4576MHz.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
		Static Characteristic	.		1	T
No Missing Codes				16		Bits Min
Output Noise			See Ta	ble 2 and T	able 4	
Integral Nonlinearity ¹				±0.003		%of FSR
Unipolar Offset Error ²						MAX
Unipolar Offset Drift ³				0.5		μV/°C
Bipolar Offset Error ²						
		Gain=1~4		0.5		/°C
Bipolar Offset Drift ³		Gain=8~128		0.1		μV/°C
	P	ositive Full-Scale Error ^{2,4}				
Full-Scale Drift ^{3,5}				0.5		μV/°C
Gain Error ^{2,6}						
Gain Drift ^{3,7}				0.5		ppm of
Gaill Dillt "				0.5		FSR/°C
		Negative Full-Scale Error	1		ı	T
Bipolar Negative				±0.001	±0.003	%of FSR
Full-Scale Error ¹				10.001	10.003	700113IX
Bipolar Negative		Gain=1~4		1		μV/°C
Full-Scale Drift ³		Gain=8~128		0.6		μV/°C
Analog Inp	out / Reference	Input (if not specified, O	nly for AIN	and REF II	N)	T
	CMR	VDD=5V, Gain=1		96		
		VDD=5V, Gain=2		105		
		VDD=5V, Gain=4		110		
		VDD=5V, Gain=8~128		130		
Common-mode Rejection ¹		VDD=3V, Gain=1		105		dB
		VDD=3V, Gain=2		110		
		VDD=3V, Gain=4		120		
		VDD=3V, Gain=8~128		130		

Parameter	Symbol	Condition	Min	Тур	Max	Unit
		Filter Notches 25Hz,50Hz,				15
		±0.02 × f _{NOTCH}		98		dB
		Filter Notches 20Hz,60Hz,				
Normal-mode		±0.02 × f _{NOTCH}		98		dB
50 Hz Rejection ¹		Filter Notches 25Hz,50Hz,				
		±0.02 × f _{NOTCH}		150		dB
		Filter Notches 20Hz,60Hz,				
		±0.02 × f _{NOTCH}		150		dB
Absolute/Common-mode			CNID		7/00	V
REF IN Voltage ¹			GND		VDD	V
Absolute/Common-mode		Register Bit BUF=0	GND-0.1		VDD+0.03	V
AIN Voltage 1,8,9		Register bit bor-o	GND-0.1		VDD+0.03	V
Absolute/Common-mode		Register Bit BUF =1	GND+0.05		VDD-1.5	V
AIN Voltage ^{1,8}		Register bit bor -1	GND+0.03		VDD-1.3	V
AIN DC Input Current ¹					1	nA
AIN Sample Capacitance ¹					10	pF
AINI D:ff		Register Bit B/U =1		0 to +V _{REF} /Gain		.,
AIN Differential Voltage ¹⁰		Register Bit B/U =0		±V _{REF} /Gain ¹¹		V
				Gain×f _{CLKIN} /64		
AIN Input Sample Rate	fs			f _{CLKIN} /8		MHz
		VDD=2.7~3.3V				
_		V _{REF} =1.225±1%	1		1.75	
Reference Input Range		VDD=4.75~5.25V				V
		V _{REF} =2.5±1%	1		3.5	
REF IN Input Sample Rate				f _{CLKIN} /64		MHz
		Logic Input				
		All Inputs				
Input Current		Except MCLK IN		±1nA	±1μA	μΑ
		MCLK IN		±2	±10	

		1	1	1	T	1
Input Low Voltage,		VDD=5V			0.8	V
Except SCLK and MCLK IN	V _{INL}	VDD=3V			0.4	V
Input High Voltage, Except SCLK and MCLK IN	Vinh	VDD=3 or 5V	2.0			٧
	V _{T+}		1.4		3	
	V _T -	VDD=5V	0.8		1.4	
CCLK largest Walter as	V _{T+} - V _{T-}		0.4		0.8	
SCLK Input Voltage	V _{T+}		1		2	V
	V _T -	VDD=3V	0.4		1.1	
	V _{T+} - V _{T-}		0.375		0.8	
AAGUKANA AYA		VDD=5V			0.8	.,
MCLK IN Low Voltage		VDD=3V			0.4	V
	L	ogic Output (including I	MCLK OUT)			
		VDD=5V,I _{SINK} =800μA (Except MCLK OUT) ¹²			0.4	
Output Low Voltage		VDD=3V,Isink=100μA (Except MCLK OUT) 12			0.4	V
		VDD=5V,I _{SOURCE} =200μA (Except MCLK OUT) ¹²	4			
Output High Voltage		VDD=3V,I _{SOURCE} =100μA (Except MCLK OUT) ¹²	VDD-0.6			V
Leakage Current,					±10	μΑ
Floating State					110	μΛ
Output Capacitance,				9		pF
Floating State ¹³						Pi
Data Output Code		Unipolar Mode	Binary			
		Bipolar Mode	Offset Binary			
	1	System Calibrati	on 			
Positive Full-Scale Limit 14		Gain=1~128			(1.05×V _{REF})/Gain	V
Negative Full-Scale Limit 14		Gain=1~128			-(1.05×V _{REF})/Gain	V
Offset Limit 14		Gain=1~128			-(1.05×V _{REF})/Gain	V
Input Range ¹⁵		Gain=1~128	(0.8×V _{REF})/Gain		(2.1×V _{REF})/Gain	V

Parameter	Symbol	Condition	Min	Тур	Max	Unit			
Power Dissipation (Apply External Clock , CLKDIS =1, Digital I/Ps = 0V or VDD)									
		VDD=2.7~3.3V							
		BUF=0,f _{CLKIN} =1MHz, Gain=1~128			0.32				
Dower Supply Current 16		BUF=1,f _{CLKIN} =1MHz, Gain=1~128			0.6				
Power Supply Current 16		BUF=0,f _{CLKIN} =2.4576MHz, Gain=1~4			0.4				
	I _{DD}	BUF=0,f _{CLKIN} =2.4576MHz, Gain=8~128			0.6	mA			
		BUF=1,f _{CLKIN} =2.4576MHz, Gain=1~4			0.7				
		BUF=1,f _{CLKIN} =2.4576MHz, Gain=8~128			1.1				
		VDD=4.75~5.25V							
		BUF=0,f _{CLKIN} =1MHz, Gain=1~128			0.45				
		BUF=1,f _{CLKIN} =1MHz, Gain=1~128			0.7				
Power Supply Current 16		BUF=0,f _{CLKIN} =2.4576MHz, Gain=1~4			0.6				
	I _{DD}	BUF=0,f _{CLKIN} =2.4576MHz, Gain=8~128			0.85	mA			
		BUF=1,f _{CLKIN} =2.4576MHz, Gain=1~4			0.9				
		BUF=1,f _{CLKIN} =2.4576MHz, Gain=8~128			1.3				
		MCLK IN = 0 V or VDD, VDD = 3 V		8		μΑ			
Standby Power Dissipation ¹⁷		MCLK IN = 0 V or VDD, VDD = 5 V		16					
Power Supply Rejection ^{18,19}						dB			

- 1. These data has been determined at initial design.
- 2. Calibration is one conversion, Table 2 and Table 4 show these noise error. This is suitable for after calibration under expected temperature.
- 3. These drift error would be eliminated after re-calibration under any temperature.
- 4. Full-scale error includes zero-scale error (unbipolar drift error or bipolar zero-scale error) and it is applicable for unbipolar and bipolar input ranges.
- 5. Full-scale drift includes zero-scale drift (unbipolar offset drift or bipolar zero-scale drift). It is applicable for unbipolar and bipolar input ranges.
- 6. Gain error doesn't include zero-scale error. The calculation method : unbipolar range (full-scale error-unbipolar offset error); bipolar range (full-scale error-bipolar zero-scale error).
- 7. Gain drift doesn't include unbipolar offset drift and bipolar zero-scale drift. When zero-scale calibration is executed, gain drift is the system drift value.
- 8. Common-mode voltage range: analog input voltage (GND-100mV) to (VDD+30mV).
- 9. The analog input voltage of the MS7705/7706 can low to GND-200mV, but leakage current would be increased.

- 10. The voltage range on AIN(+) is respective to AIN(-) terminal for the MS7705, COMMON terminal for the MS7706 .
- 11. $V_{REF} = REF IN(+) REF IN(-)_{\circ}$
- 12. Only when one CMOS load is loaded, these logic output levels are applicable for MCLK OUT.
- 13. Test sample at +25°C to ensure consistency.
- 14. After calibration, if analog input is more than positive full-scale, converter would output all 1; if less than negative full-scale, converter would output all 0.
- 15. Calibration voltage limit shouldn't more than VDD+30mV or less than GND-100mV applied on analog input terminal. Offset calibration limit is suitable for unbipolar point and bipolar zero point.
- 16. When use crystal or ceramic oscillator as clock source of MCLK, the current and power dissipation of VDD depend on the type of crystal and ceramic oscillator (see "clock and oscillator").
- 17. In standby mode, if external master clock works continuously, the typical value of standby current would increase to $150\mu(VDD=5V)$ or $75\mu A(VDD=3V)$. When use crystal or ceramic oscillator as clock source, internal oscillator would work continuously work in standby mode, and the power supply current would vary with the type of crystal and ceramic oscillator (see "standby mode").
- 18. The measurement in DC only apply to the selected passband frequency. PSRR exceeds 120dB at 50Hz (filter notch is 25Hz or 50Hz). PSRR exceeds 120dB at 60Hz (filter notch is 20Hz or 60Hz).

19. PSRR is decided by gain and power as follows

Gain	1	2	4	8~28
VDD=3V	86	78	85	93
VDD=5V	90	78	84	91

TIMING CHARACTERISTICS

If there is no special description, VDD=2.7 to 5.25V, GND=0V; fCLKIN=2.4576MHz, input logic low is 0V, input logic high is VDD.Test at 25°C. All input signals meet tR=tF =5ns (10% to 90% of VDD) and start timing from 1.6V. See Figure 1 and Figure 2.

Table 1. Timing Characteristic 1,2

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Master Clock Frequency 3,4	f _{CLKIN}		0.4		2.5	MHz
Master Clock Cycle	tCLKIN		2500		400	ns
Master Clock Low Level Time	tCLK LO		0.4×t _{CLKIN}			ns
Master Clock High Level Time	t _{CLK} HI		0.4×t _{CLKIN}			ns
CS High Level Time	t1			500×t _{CLKIN}		ns
RESET Pulse Width	t2		100			ns
	Re	ad Operation				
DRDY to CS Setup Time	t3		0			
CS Falling Edge to SCLK Rising Edge Setup Time	t4		120			ns
SCLK Falling Edge to Data	15	VDD=5V	0		80	
Valid Delay ⁵	t5	VDD=3V	0		100	ns
SCLK High Pulse Width	t6		100			ns
SCLK Low Pulse Width	t7		100			ns
CS Rising Edge to SCLK Rising Edge Holding Time	t8		0			ns
Bus Release Time		VDD=5V	10		60	
after SCLK Rising Edge ⁶	t9	VDD=3V	10		100	ns
SCLK Falling Edge to DRDY High Level ⁷	t10				100	ns
	Wr	ite Operation				
CS Falling Edge to SCLK Rising Edge Setup Time	t11		120			ns
Data Valid to SCLK Rising Edge Setup Time	t12		30			ns
Data Valid to SCLK Falling Edge Setup Time	t13		20			ns
SCLK High Pulse Width	t14		100			ns
SCLK Low Pulse Width	t15		100			ns
CS Rising Edge to SCLK Rising Edge Holding Time	t16		0			ns

- 1. Test at 25°C. All input signals meet: $t_R = t_F = 5$ ns (VDD 10%~90%), start timing from 1.6V.
- 2. See Figure 7 and Figure 8.
- 3. fCLKIN duty cycle is 45%~55%. As long as the MS7705/7706 is not in standby mode, fCLKIN must be provided. If clock is not provided, the device would extract higher current more than rating value and may become uncalibrated.
- 4. When the MS7705/7706 in manufacture test, use fCLKIN =2.4576MHz (1MHz is used for some tests of I_{DD}) to ensure that device operates at 400kHz.
- 5. These values are measured in load shown in Figure 1. It is defined that the time required for output crossing V_{OL} or V_{OH}.
- 6. These values are measured when data output is 0.5V (load situation is shown in Figure 1). Then backstep by measured data to remove the effect of charging and discharging 50pF capacitor. It indicates all time values in parameter table are real bus release time and are independent of external load capacitors.
- 7. After result data is updated, DRDY returns high level after the first read. When DRDY is high level, read operation can be performed again. However, it is noted that following read operations couldn't too close to next update.

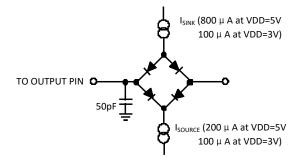


Figure 1. Load Circuit (excess time and bus release time)

OUTPUT NOISE

Table 2 and 4 show the output noise (RMS) of MS7705/7706 at the selectable notch and -3dB frequencies, selected by the clock registers FSO and FS1. Data is at bipolar input, VREF=+2.5V/1.225, VDD=5V/3V. These values are typical values when the device operates in buffered or unbuffered mode and the analog input voltage is 0V.

Table 3 and Table 5 show the peak to peak output noise. Note that the resolution represented by these numbers is not code blinking. These values apply to the bipolar input range in buffered and unbuffered modes (VREF = $\pm 2.5 \text{V} / \pm 1.225$). These values are typical and close to the nearest LSB. It's required that CLKDIV bit of clock register is set 0.

Table 2. Output Noise VS. Gain and Output Rate @ 5V

Filter Notch	2 10 5								
and Data Rate	-3dB Freq	Gain=1	Gain=2	Gain=4	Gain=8	Gain=16	Gain=32	Gain=64	Gain=128
			М	CLK IN = 2.	4576MHz				
50Hz	13.1Hz	4.1	2.1	1.2	0.75	0.7	0.66	0.63	0.6
60Hz	15.72Hz	5.1	2.5	1.4	0.8	0.75	0.7	0.67	0.62
250Hz	65.5Hz	110	49	31	17	8	3.6	2.3	1.7
500Hz	131Hz	550	285	145	70	41	22	9.1	4.7
				MCLK IN =	= 1MHz				
20Hz	5.24Hz	4.1	2.1	1.2	0.75	0.7	0.66	0.63	0.6
25Hz	6.55Hz	5.1	2.5	1.4	0.8	0.75	0.7	0.67	0.62
100Hz	26.2Hz	110	49	31	17	8	3.6	2.3	1.7
200Hz	52.4Hz	550	285	145	70	41	22	9.1	4.7

Table 3. Effective Bits VS. Gain and Output Rate @5V

						o cp ac mare			
Filter Trap and									
Data Rate	-3dB Freq	Gain=1	Gain=2	Gain=4	Gain=8	Gain=16	Gain=32	Gain=64	Gain=128
	MCLK IN = 2.4576MHz								
50Hz	13.1Hz	16	16	16	16	16	16	15	14
60Hz	15.72Hz	16	16	16	16	15	14	14	13
250Hz	65.5Hz	13	13	13	13	13	13	12	12
500Hz	131Hz	10	10	10	10	10	10	10	10

				MCLK IN =	= 1MHz				
20Hz	5.24Hz	16	16	16	16	16	16	15	14
25Hz	6.55Hz	16	16	16	16	15	14	14	13
100Hz	26.2Hz	13	13	13	13	13	13	12	12
200Hz	52.4Hz	10	10	10	10	10	10	10	10

Table 4. Output Noise VS. Gain and Output Rate @ 3V

Filter Notch	0.10.5								
and Data Rate	-3dB Freq	Gain=1	Gain=2	Gain=4	Gain=8	Gain=16	Gain=32	Gain=64	Gain=128
			M	CLK IN = 2.	4576MHz				
50Hz	13.1Hz	3.8	2.4	1.5	1.3	1.1	1.0	0.9	0.9
60Hz	15.72Hz	5.1	2.9	1.7	1.5	1.2	1.0	0.9	0.9
250Hz	65.5Hz	50	25	14	9.9	5.1	2.6	2.3	2.0
500Hz	131Hz	270	135	65	41	22	9.7	5.1	3.3
				MCLK IN =	= 1MHz				
20Hz	5.24Hz	3.8	2.4	1.5	1.3	1.1	1.0	0.9	0.9
25Hz	6.55Hz	5.1	2.9	1.7	1.5	1.2	1.0	0.9	0.9
100Hz	26.2Hz	50	25	14	9.9	5.1	2.6	2.3	2.0
200Hz	52.4Hz	270	135	65	41	22	9.7	5.1	3.3

Table 5. Effective Bits VS. Gain and Output Rate @3V

Filter Trap and									
Data Rate	-3dB Freq	Gain=1	Gain=2	Gain=4	Gain=8	Gain=16	Gain=32	Gain=64	Gain=128
			M	CLK IN = 2.	4576MHz				
50Hz	13.1Hz	16	16	15	15	14	13	13	12
60Hz	15.72Hz	16	16	15	14	14	13	13	12
250Hz	65.5Hz	13	13	13	13	12	12	11	11
500Hz	131Hz	10	10	10	10	10	10	10	10
				MCLK IN =	1MHz				
20Hz	5.24Hz	16	16	15	15	14	13	13	12
25Hz	6.55Hz	16	16	15	14	14	13	13	12
100Hz	26.2Hz	13	13	13	13	12	12	11	11
200Hz	52.4Hz	10	10	10	10	10	10	10	10

FUNCTIONAL DESCRIPTION

On-chip Register

The MS7705/7706 contains registers (communication register, setting register, clock register, data register, test register, zero-scale calibration register, full-scale calibration register), which are accessed through serial ports of the device.

Communication Register (RS2, RS1, RS0=0, 0, 0)

Communication register is an 8-bit register, which can read and write data. The data written determines which register the next read or write occurs on. Once the next read or write operation is completed on the selected register, the interface returns to the communication register to receive a write operation. This is interface default state. After power on or reset, the MS7705/7706 is in this default state, waiting for a write operation to the communication register. Under the condition of lost interface sequence, if write operation at DIN level persists for a long time (at least 32 serial clock cycles), MS7705/7706 will go back to default state.

Table 6. Communication Register

Bi	t	7	6	5	4	3	2	1	0
Nar	ne	0/DRDY(0)	RS2(0)	RS1(0)	RS0(0)	R/W(0)	STBY(0)	CH1(0)	CH0(0)

Note: The content in bracket is the default value of power on reset.

Table 7. Function Description of Each Bit in Communication Register

Register	Description
	To write to the communication register, a "0" must be written to this one. If "1" is written to
	this, subsequent bits will not be able to write to the register. It will stay in this bit until a "0"
0/DRDY	is written to it, and the next seven bits will be loaded into the communication register. For
	read operation, this bit provides DRDY flag of the device. The state of the bit is the same as
	the state of DRDY output pin.
RS2-RS0	Register Select Bit. These three bits choose which register to read / write next.
R/W	Read / Write Selection. "0" indicates that the next operation is write, and "1" indicates that
K/VV	the next operation is read.
	Standby Mode. If "1" is written to this bit, it is in wait or power down mode. In this mode,
STBY	the power supply current consumed by the device is only 10 μ A. In standby mode, the device
3101	will maintain its calibration coefficient and control word information. Write "0" and the
	device is in normal operation mode.
	Channel Selection. These two bits select a channel for data conversion or access calibration
	coefficient, as shown in Table 9. Three pairs of calibration registers in the device are used to
	store the calibration coefficients. Table 9 and Table 10 indicate which channel combinations
CU1 CU0	have independent calibration coefficients. When CH1 is logic 1 and CH0 is logic 0, AIN (-)
CH1, CH0	/COMMON input pin of MS7705/7706 is shorted to itself respectively. This can be used as a
	test method to evaluate the noise performance (without external noise source). In this
	mode, the AIN1 (-) /COMMON input terminal must be connected to an external voltage and
	within the allowable common mode voltage range.

Tah	٥ ما	Register	Sal	loction	
Tab	ıe o.	Register	Se	iection	

RS2	RS1	RS0	Register	Register bits
0	0	0	Communication Register	8 bits
0	0	1	Setting Register	8 bits
0	1	0	Clock Register	8 bits
0	1	1	Data Register	16 bits
1	0	0	Test Register	8 bits
1	0	1	None	
1	1	0	Offset Register	24 bits
1	1	1	Gain Register	24 bits

Table 9. MS7705 Input Channel Selection

CH1	CH0	AIN(+)	AIN(-)	Calibration Register Pair
0	0	AIN1(+)	AIN1(-)	Register Pair 0
0	1	AIN2(+)	AIN2(-)	Register Pair 1
1	0	AIN1(-)	AIN1(-)	Register Pair 0
1	1	AIN1(-)	AIN2(-)	Register Pair2

Table 10. MS7706 Input Channel Selection

CH1	CH0	AIN	Reference	Calibration Register Pair
0	0	AIN1	COMMON	Register Pair O
0	1	AIN2	COMMON	Register Pair 1
1	0	COMMON	COMMON	Register Pair 0
1	1	AIN3	COMMON	Register Pair 2

Setting Register (RS2, RS1, RS0 = 0, 0, 1), Power On / Reset Status: 01Hex

The setting register is an 8-bit register, which can read and write data.

Table 11. Setting Register

Bit	7	6	5	4	3	2	1	0
NAME	MD1(0)	MD0(0)	G2(0)	G1(0)	G0(0)	B/U(0)	BUF(0)	FSYNC(1)

Table 12. Function Description of Each Bit in Setting Register

Register	Description
MD1 MD0	MSC Operation Mode Control.
MD1, MD0	These two bits control the operation mode of MSC, as shown in Table 13.
G2-G0	Gain Select Bit. These three bits control the gain of on-chip PGA, as shown in Table 14.
B/U	Bipolar / Unipolar Control.
Б/О	"0" indicates bipolar operation and "1" indicates unipolar operation.
	Buffer Control. This bit is "0", the on-chip buffer is short, and the VDD consumption current
BUF	is reduced. When this bit is "1", the on-chip buffer is connected with analog input, and it
	can connect to a higher impedance input source.
	Filter Synchronization. At high level, the node of digital filter, control logic and calibration
	control logic are in reset state, and the analog modulator is also controlled in reset state. At
FSYNC	low level, the modulator and filter begin to process data and produce a valid word within 3
	× (1/output rate) time (i.e. filter setup time). Fsync doesn't affect digital interface and reset
	the DRDY output (if it is low).

Table 13. Operation Mode Selection

MD1	MD0	Operation Mode
0	0	Normal Mode. In this mode, the converter performs normal analog-to-digital conversion.
		Self Calibration. Self calibration is activated on the channels selected by CH1 and CH2 in
		the communication register. This is a step calibration. After completing this task, it returns
		to normal mode, that is, MD1 and MD0 are 0. At the beginning of calibration, the DRDY
0	1	output pin or DRDY bit is high level and returns to low level after calibration. At this time,
		a new valid word is generated in the data register. The zero-scale calibration is performed
		at the input internal short circuit (zero input), and the full-scale calibration is performed at
		the selected gain and internally generated VREF / selected gain conditions.
		Zero-scale System Calibration. Activate zero-scale system calibration on the channel
		selected by CH1 and CH2 in the communication register. When this calibration sequence is
		used, the input voltage on the analog input is calibrated at the selected gain. During
1	0	calibration, the input voltage should be stable. At the beginning of calibration, DRDY
		outputs or the DRDY bit is high, and the zero-scale system returns to low level after the
		calibration is completed. At this time, a new valid word is generated on the data register.
		At the end of calibration, the device returns to normal mode, that is, MD1 and MD0 are 0.
		Full-scale System Calibration: activates full-scale system calibration on the selected input
		channel. In this calibration sequence, the input voltage on the analog input terminal
		completes the calibration at the selected gain. The input voltage should be stable during
1	1	calibration. At the beginning of calibration, DRDY outputs or DRDY bit is high level, and
		after the full-scale system calibration is completed, it returns to low level. At this time, a
		new valid word is generated in the data register. At the end of calibration, the device
		returns to normal mode, that is, MD1 and MD0 are 0.

Table 14. Gain Selection

G2	G1	G0	Gain
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Clock Register (RS2, RS1, RS0 = 0,1,0), Power On / Reset Status: 05Hex

The clock register is an 8-bit register that can read / write data.

Table 15. Clock Register

Bit	7	6	5	4	3	2	1	0
Name	ZERO(0)	ZERO(0)	ZERO(0)	CLKDIS(0)	CLKDIV(0)	CLK(1)	FS1(0)	FS0(0)

Table 16. Function Description of Each Bit in Clock Register

Register	Description
ZERO	Must write 0.
CLKDIS	Master Clock Inhibit Bit. Logic "1" prevents the master clock outputting from MCLK OUT pin. When prohibited, MCLK OUT output pin is at low level. This feature enables users to flexibly use MCLK OUT pin. For example, MCLK OUT can be used as the clock source of other devices in the system, or MCLK OUT can be turned off, so that the device has the power saving performance. When an external master clock is connected to MCLK IN, MS7705/7706 keeps the internal clock and performs normal conversion when CLKDIS bit is valid. When a crystal oscillator or a ceramic resonator is connected between MCLK IN and MCLK OUT, so when the CLKDIS bits are valid, the MS7705/7706 clock will stop and no analog-to-digital conversion will be performed.
CLKDIV	Clock Divider Bit. When set to logic 1, the clock frequency at the MCLK IN pin is divided by 2. When set to logic 0, the frequency at the MCLK IN pin is actually the internal frequency of the device.
CLK	Clock Bit. CLK bit should be set according to operation frequency of the MS7705/7706. If master clock frequency of converter is 2.4576MHz (CLKDIV=0) or 4.9152MHz (CLKDIV=1), CLK should be set "1". If master clock frequency of the device is 1MHz (CLKDIV== 0) or 2MHz (CLKDIV= 1), this bit should be set "0". This bit sets appropriate scale current for given operation frequency and also selects the output update rate of the device (along with FS1 and FS0). If CLK doesn't set correctly according to master clock frequency, the MS7705/7706 will not be able to achieve the target.
FS1,FS0	Filter Select Bit, which together with CLK determine the output update rate of the device. Table 17 shows the first notch and -3dB frequency of the filter. On-chip digital filter generates sinc3 (or (sinx/x)3) filter response. Along with gain select, it also determines the output noise. The change of filter notch and selected gain would have effect on resolution. Table 2 and Table 5 show the filter notch frequency and gain VS. output noise and resolution. The output data rate (or valid conversion time) is equal to the selected frequency of first notch. For example, if the first notch is selected in 50Hz, the output rate of each word is 50Hz, that is, output one new word every 2ms. When these bits are changed, one calibration must be performed. In worst condition, the settle time of filter, reaching full-scale stepping input, is 4×(1/Output data rate). For example, the first notch is in 50Hz, and the settle time of filter is 80ms (max) for reaching full-scale input. If the first notch is in 50Hz, the settle time is 8ms (max). According to the synchronous stepping input, the settle time could be reduced to 3×(1/Output data rate). In other words, if stepping input occurs when FSYNC bit is high, it needs 3×(1/Output data rate) to settle after FSYNC bit returns to low. -3dB frequency depends on the programmable first notch frequency, according to the equation below: Filter -3dB frequency=0.262×first notch frequency.

Table 17. Output Nate Selection							
CLK ¹	FS1	FS0	Output Rate	-3dB Cut-off Frequency of Filter			
0	0	0	20 Hz	5.24 Hz			
0	0	1	25 Hz	6.55 Hz			
0	1	0	100 Hz	26.2 Hz			
0	1	1	200 Hz	52.4 Hz			
1	0	0	50 Hz	13.1 Hz			
1	0	1	60 Hz	15.7 Hz			
1	1	0	250 Hz	65.5 Hz			
1	1	1	500 Hz	131 Hz			

Table 17. Output Rate Selection

Note 1: Assuming that the clock frequency of MCLK IN is correct, the setting of CLKDIV bit is also appropriate.

Data Register (RS2, RS1, RS0 = 0,1,1)

Data register is a 16-bit read-only register, which contains the latest conversion results from the MS7705/7706. If communication register sets device to write to the register, must perform one write operation to make device return the state, ready to perform write operation to communication register. But the written 16-bit data would be ignored by the MS7705/7706.

Test Register (RS2, RS1, RS0 = 1,0,0); Power On / Reset Status: 00Hex

Test register is used to test device. It is suggested that user should not change the default value of any bit in the test register.

Zero-Scale Calibration Register (RS2, RS1, RS0 = 1,1,0); Power On / Reset Status: 1f4000Hex

The MS7705/7706 contains several independent zero-scale registers, each of which is responsible for one input channel. They are all 24-bit read/write registers. 24-bit data must be written before it can be transferred to the zero-scale calibration register. Zero-scale register is used together with full-scale register and form one register pair. And each pair responds to one pair of channel, see Table 9.

When device is set to allow access to these registers via digital interface, device itself doesn't access register coefficient in order to make output data correct scale. Therefore, after accessing to calibration register (whether read or write operation), the first output data read from device may contain uncorrected data. In addition, during data calibration, calibration register can't perform write operation. This type of events could be avoided by following method: Before calibration register starts operation, FSYNC bit in the mode register would be set as high level. After task is finished, FSYNC bit is set as low level.

Full-Scale Calibration Register (RS2, RS1, RS0 = 1,1,1); Power on / Reset Status: 5761ABHex

The MS7705/7706 contains several independent full-scale registers, each of which is responsible for one input channel. They are all 24-bit read/write registers. 24-bit data must be written before it can be transferred to the full-scale calibration register. Full-scale register is used together with zero-scale register and form one register pair. And each pair responds to one pair of channels, see Table 9.

When device is set to allow access to these registers via digital interface, device itself doesn't access register coefficient in order to make output data correct scale. Therefore, after accessing to calibration register (whether read or write operation), the first output data read from device may contain uncorrected data. In addition, during data calibration, calibration register can't perform write operation. This type of events could be avoided by following method: Before calibration register starts operation, FSYNC bit in the mode register would be set as high level. After task is finished, FSYNC bit is set as low level.

Calibration Process

Table 18 summarizes these calibration types, operation contents and operation time. There are two ways to judge whether the calibration is over. The first method is to monitor DRDY. If DRDY returns to low level, it indicates that the calibration process has finished and that there is a new valid data in the data register. The second method is to monitor MD1 and MD0 bits in the setting register. If MD1 and MD0 return to "0" (after calibration, MD1 and MD0 return to "0"), it indicates that the calibration process has finished. This method cannot prompt whether there is a new conversion result in the data register, but it's earlier than the first judgment method in time, that is, that is, it can quickly know whether the calibration has finished. The duration time when Mode bits (i.e. MD1, MD0) return to "0" is shown in Table 18. The process of DRDY returning to low level includes a normal conversion time and a delay time tp with correct scale for the first conversion result. tp shall not exceed 2000 × tCLKIN. The time required for these two methods is shown in the table below.

Calibration Type MD1,MD0 Calibration Sequence **Setting Time DRDY Setting Time** Zero-scale Calibration @ **Self Calibration** 0,1 Selected Gain + Full-scale 6 ×1/Output Rate 9 ×1/Output rate+tP Calibration @ Selected Gain Zero-scale Zero-scale Calibration 1,0 3 ×1/Output Rate 4 ×1/Output rate+tP Calibration @ Selected Gain Full-Scale **Full-scale Calibration** 3 ×1/Output Rate 1×1/Output rate+tP 1,1, @ Selected Gain Calibration

Table 18. Calibration Process

Analog Input Range

In non-buffered mode, the common-mode input range is from GND to VDD. The absolute value of analog input voltage is between GND-30mV and VDD+30mV. In non-buffer mode, the analog input connects directly to a 7pF sampling capacitor, C_{SAMP}. As a result, the analog input connects a dynamic load that is converted at the input sampling rate. The typical value of the effective on-off resistance (Rsw) of the switch is 7K. Table 19 lists the allowable external resistance/capacitance values in non-buffer mode.

Table 19. External Resistance and Capacitance Values without 16-Bit Gain Error (Non-buffer Mode)

	External Capacitance(pF)						
Gain	10	50	100	500	1000	5000	
1	152kΩ	53.9kΩ	31.4kΩ	8.4kΩ	4.76kΩ	1.36kΩ	
2	75.1kΩ	26.6kΩ	15.4kΩ	4.14kΩ	2.36kΩ	670Ω	
4	34.2kΩ	12.77kΩ	7.3kΩ	1.95kΩ	1.15kΩ	320Ω	
8~128	16.7kΩ	5.95kΩ	3.46kΩ	924Ω	526Ω	150Ω	

Sampling Rate

The sampling frequency of the MS7705/7706 modulator maintains at fCLKIN/128 (fCLKIN=2.4576MHz at 19.2kHz), regardless of the selected gain. However, gain greater than 1 is a combination of multiple input sampling in each modulator cycle and the ratio of the reference capacitance to the input capacitance. So the input sampling rate varies with the selected gain (see Table 20).

Gain	Input Sampling Frequency(fs)
1	f _{CLKIN} /64(38.4kHz@f _{CLKIN} =2.4576MHz)
2	2×f _{CLKIN} /64(76.8kHz@f _{CLKIN} =2.4576MHz)
4	4×f _{CLKIN} /64(153.6kHz@f _{CLKIN} =2.4576MHz)
8~128	8×f _{CLKIN} /64(307.2kHz@f _{CLKIN} =2.4576MHz)

Table 20. Relationship Between Input Sampling Frequency and Gain

Digital Interface

The serial interface of MS7705/7706 includes five signals: CS, SCLK, DIN, DOUT and DRDY.DIN line is used to transmit data to on-chip registers, while DOUT line is used to access data in registers. SCLK is serial clock input. All data transmissions are related to SCLK signal. The DRDY acts as status signal to indicate when the data is ready to read from registers. DRDY becomes low when there are new data words in the output register. If DRDY becomes high before the output register data is updated, it is prompted not to read the data at this time to avoid reading the data during the register update process. CS is used to select devices.

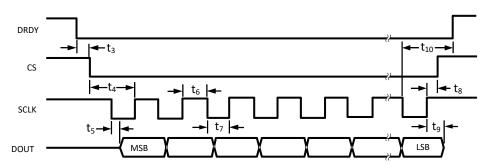


Figure 1. Read Cycle Timing Diagram

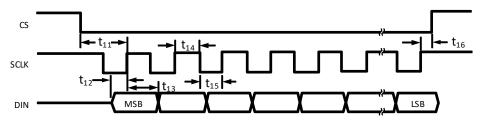
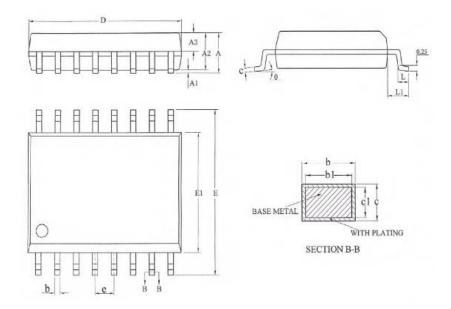
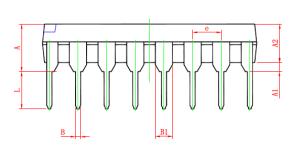
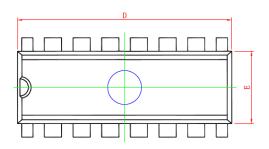



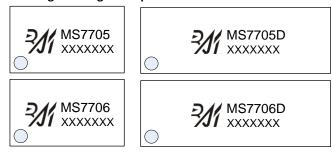
Figure 2. Writing Cycle Sequence Diagram

PACKAGE OUTLINE DIMENSIONS


SOW16


	Dimensions in Millimeters					
Symbol	Min	Тур	Max			
А	-	-	2.65			
A1	0.10	-	0.30			
A2	2.25	2.30	2.35			
А3	0.97	1.02	1.07			
b	0.35	-	0.44			
b1	0.34	0.37	0.39			
С	0.25	-	0.31			
c1	0.24	0.25	0.26			
D	10.10	10.30	10.50			
E	10.26	10.41	10.60			
E1	7.30	7.50	7.70			
e						
L	0.55	-	0.85			
L1		1.40BSC				
θ	0	-	8°			

DIP16



	Dimension	Dimensions in Millimeters				
Symbol	Min	Max				
А	3.710	4.310				
A1	0.510	-				
В	0.380	0.570				
B1	1.524BSC					
С	0.204	0.360				
D	18.800	19.200				
E	6.200	6.600				
E1	7.320	7.974				
e	2	540BSC				
L	3.000	3.600				
E2	8.400	9.000				

MARKING and PACKAGING SPECIFICATION

1. Marking Drawing Description

Product Name: MS7705, MS7706, MS7705D, MS7706D

Product Code: XXXXXXX

2. Marking Drawing Demand

Laser printing, contents in the middle, font type Arial.

3. Packaging Specification

Device	Package	Piece/Reel	Reel/Box	Piece/Box	Box/Carton	Piece/Carton
MS7705	SOW16	1000	8	8000	1	8000
MS7706	SOW16	1000	8	8000	1	8000

Device	Package	Piece/Tube	Tube/Box	Piece/Box	Box/Carton	Piece/Carton
MS7705D	DIP16	25	40	1000	10	10000
MS7706D	DIP16	25	40	1000	10	10000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.

MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

+86-571-89966911

Rm701, No.9Building, No. 1 WeiYe Road, Puyan Street, Binjiang District, Hangzhou, Zhejiang

VERSION: V1.7

http://www.relmon.com