

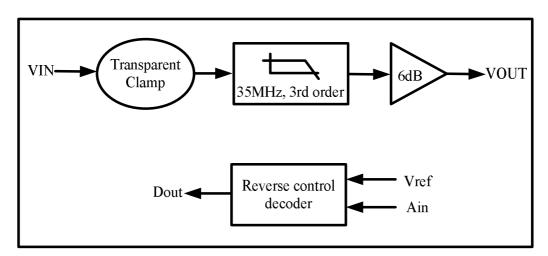
# Integrates Single Video Amplifier And Video Coaxial Control Decoder ------MS7682/MS7682M

#### PRODUCT DESCRIPTION

The MS7682/MS7682M integrated Single video amplifier and video coaxial control decoder. The video amplifiers integrated Single 6dB Gain rail-to-rail output driver and 3rd output reconstruction filter, it has 35MHz -3dB bandwidth and 160V/µs slew rate. The video coaxial control decoder integrated a high-speed processor, effective separation for mixed-signal. Operating from single supplies ranging from +2.7V to +5V and sinking an ultra-low 15mA quiescent current, the MS7682/MS7682M is ideally suited for battery powered applications. The MS7682/MS7682M features a low-power shutdown pin that is activated by driving SP low. The MS7682 has lead SOP-8 package, the MS7682M has lead MSOP-8 package, and ESD (HBM) reaches 2KV.

#### **FEATURES**

- Sixth-order 35MHz (HD) Filter
- Transparent input clamping
- 6dB output driver Gain and drive dual video load
- Rail-to-Rail Output
- Input Voltage Range Includes Ground
- AC or DC Coupled Inputs
- AC or DC Coupled Outputs
- Operates from 2.7V to 5V Single power supply
- Low Power 15mA Supply Current
- Lead SOP-8/MSOP-8 package


#### **APPLICATIONS**

- Video On Demand (VOD)
- Communications device
- Portable and handheld product
- AHD/TVI/CVI video driver and reverse control decoder

## PACKAGE/ORDERING INFORMATION

| Part Number | Package | Marking |
|-------------|---------|---------|
| MS7682      | SOP-8   | MS7682  |
| MS7682M     | MSOP-8  | MS7682M |

#### **BLOCK DIAGRAM**





#### PIN CONFIGURATIONS

#### MS7682/MS7682M

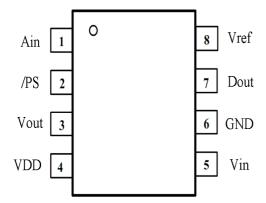



Figure 1. SOP-8/MSOP-8

### 1. Pin Description

| Pin | Name | Function                   |
|-----|------|----------------------------|
| 1   | Ain  | Reverse signal input       |
| 2   | /PS  | Shutdown Mode (active low) |
| 3   | Vout | Video output               |
| 4   | VDD  | Power supply               |
| 5   | Vin  | Video input                |
| 6   | GND  | Ground                     |
| 7   | Dout | Reverse control output     |
| 8   | Vref | Internal reference         |

#### **CAUTION**

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| PARAMETER                                 | MAXIMUM                |
|-------------------------------------------|------------------------|
| Supply Voltage, V+ to V-                  | 7.5V                   |
| Input Voltage                             | GND-0.3V to (+VS)+0.3V |
| Storage Temperature Range                 | -65°C to +150°C        |
| Junction Temperature                      | 160℃                   |
| Operating Temperature Range               | -40°C to +125°C        |
| Power Dissipation, PD @ TA = 25°C         | 0.8W                   |
| Package Thermal Resistance, θJA           | 128℃/W                 |
| Lead Temperature Range (Soldering 10 sec) | 260℃                   |
| ESD Susceptibility (HBM)                  | 2000V                  |



#### **ELECTRICAL CHARACTERISTICS**

(At RL =  $150\Omega$  connected to GND, Vin=1Vpp, and CIN =  $0.1\mu F$ , all outputs AC coupled with  $220\mu F$ , unless otherwise noted).

| PARAMETER                         | CONDITION                      | TYP          | MIN  | MAX  | UNITS  |
|-----------------------------------|--------------------------------|--------------|------|------|--------|
| DYNAMIC PERFORM                   | ANCE: Amplifier channel        |              |      |      | ·      |
| ±0.1dB Bandwidth                  | Rl=150 Ω                       | 11.8         |      |      | MHz    |
| -3dB Bandwidth                    | Rl=150 Ω                       | 35           |      |      | MHz    |
| Gain                              |                                | 6            |      |      | dB     |
| Slew Rate                         | Vin=1V step, 20%80%            | 160          |      |      | V/us   |
| Differential Gain (DG)            | NTSC & PAL DC<br>NTSC & PAL AC | 0.02         |      |      | %<br>% |
| Differential Phase (DP)           | NTSC & PAL DC<br>NTSC & PAL AC | 0.02<br>0.36 |      |      |        |
| Group Delay Variation (D/DT)      | f = 400KHz, 26.5MHz            | 1.2          |      |      | ns     |
| Crosstalk (channel to channel)    | at 1MHz                        | -64          |      |      | dB     |
| Rise Time                         | 2.0V step, 80%20%              | 8.5          |      |      | ns     |
| Fall Time                         | 2.0V step, 80%20%              | 8.7          |      |      | ns     |
| Control decoding chan             | nel                            |              |      | •    |        |
| Propagation Delay                 | $RL = 5.1k\Omega$ , $CL = 50p$ |              |      | 270  | ns     |
| Output Swing High                 | I=2mA                          | VDD-0.1      |      |      | V      |
| Output Swing Low                  | I=2mA                          | 100          |      |      | mV     |
| Input Offset Current              |                                |              |      | 50   | pA     |
| INPUT CHARACTERI                  | STICS: Amplifier channel       |              |      | 1    |        |
| Output Level Shift Voltage (VOLS) | Vin=0V, no load                | 235          | 230  | 370  | mv     |
| Input Bias Current (Ib)           |                                |              |      |      | pA     |
| Input Voltage Clamp<br>(VCLAMP)   |                                |              | -4   | -22  | mV     |
| Clamp Charge Current              | Vin=Vclp-100mV                 | -5           |      | -7.2 | mA     |
| Voltage Gain (Av) RL=150          |                                | 2            | 1.90 | 2.1  | V/V    |



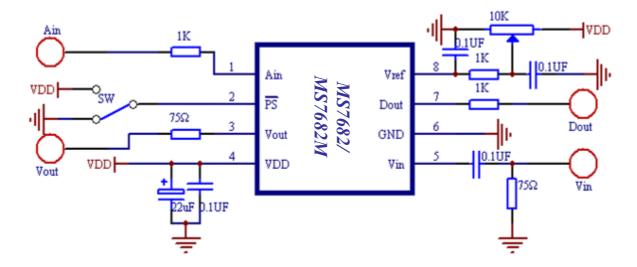
| OUTPUT CHARACTERISTICS: Amplifier channel |                            |      |     |      |    |
|-------------------------------------------|----------------------------|------|-----|------|----|
| Output Voltage High                       | Vin=3V, RL=150 Ω           | 4.5  | 4.2 | 4.5  | V  |
| Swing                                     |                            |      |     |      |    |
| Output Short-Circuit                      | Vin=0.1V, out short to VDD | 103  |     | 115  | mA |
| Current (ISC) through 10Ω                 |                            |      |     |      |    |
| POWER SUPPLY                              |                            |      |     |      |    |
| Operating Voltage                         |                            |      | 2.7 | 5    | V  |
| Range                                     |                            |      |     |      |    |
| Quiescent Current                         | iescent Current no load    |      |     | 6.7  | mA |
| Operating Current                         | Vin=500mV                  | 15.0 |     | 16.1 | mA |

#### APPLICATIONS INFORMATION

#### **Functional Description**

MS7682/MS7682M operates from a single +2.7V to +5V supply. In application, MS7682/MS7682M is a fully integrated solution for filtering and buffering HDTV signals in front of video decoder or behind video encoder, and reverse control decoder. MS7682/MS7682M's solution can help you save PCB size and production cost, it also improves video signal performance comparing with traditional design using discrete components. MS7682/MS7682M features a DC-coupled input buffer, 3-pole low-pass filter to eliminate out-of-band noise of video encoder, and a gain of +6dB in the output amplifier to drive  $75\Omega$  load. The AC or DC-coupled input buffer eliminates sync crush, droop, and field tilt. The output of MS7682/MS7682M also can be DC-coupled or AC-coupled.

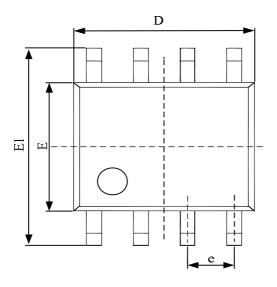
#### **Shutdown Mode**

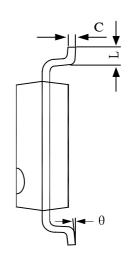

The MS7682/MS7682M features a low-power shutdown pin that is activated by driving SP low. In shutdown mode, the output is in a high impedance state, supply current is reduced. Driving SP high will turn the comparator on. The SP pin should not be left unconnected due to the fact that it is a high impedance input. When left unconnected, the output will be at an unknown voltage. Also do not three-state the SP pin.

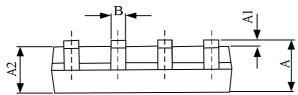
### **Power-Supply Bypassing and Layout**

Correct power supply bypassing is very important for optimizing video performance in design. One  $0.1\mu F$  and one  $10\mu F$  capacitors are always used to Bypass VCC pin of MS7682/MS7682M, please place these two capacitors as close to the MS7682/MS7682M output pin as possible, a large ground plane is also needed to ensure optimum performance. The input and output termination resistors should be placed as close to the related pin of MS7682/MS7682M as possible to avoid performance degradation. The PCB traces at the output side should have  $75\Omega$  characteristic impedance in order to match the  $75\Omega$  characteristic impedance cable connecting external load. In design, please keep the board trace at the inputs and outputs of the MS7682/MS7682M as short as possible to minimize the parasitic stray capacitance and noise pickup.

### **Typical Application Diagram**


The following schematic is normally used.

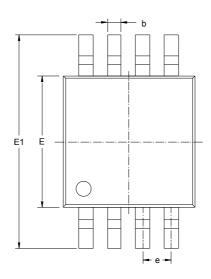


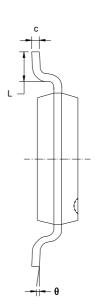



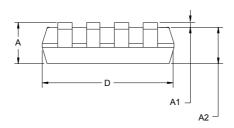

### **PACKAGE OUTLINE DIMENSIONS**

### SOP-8







| Symbol | Dimensions In Millimeters |        | <b>Dimensions In Inches</b> |        |
|--------|---------------------------|--------|-----------------------------|--------|
|        | MIN                       | MAX    | MIN                         | MAX    |
| A      | 1. 350                    | 1. 750 | 0.053                       | 0.069  |
| A1     | 0. 100                    | 0. 250 | 0.004                       | 0.010  |
| A2     | 1. 350                    | 1. 550 | 0.053                       | 0.061  |
| В      | 0. 330                    | 0. 510 | 0.013                       | 0.020  |
| С      | 0. 190                    | 0. 250 | 0.007                       | 0.010  |
| D      | 4. 780                    | 5. 000 | 0. 188                      | 0. 197 |
| Е      | 3.800                     | 4.000  | 0. 150                      | 0. 157 |
| E1     | 5. 800                    | 6. 300 | 0. 228                      | 0. 248 |
| е      | 1. 270TYP                 |        | 0. 050TYP                   | •      |
| L      | 0.400                     | 1. 270 | 0.016                       | 0.050  |
| θ      | 0°                        | 8°     | 0°                          | 8°     |



### MSOP-8







| Cymhol | <b>Dimensions In Millimeters</b> |        | <b>Dimensions in Inches</b> |        |  |
|--------|----------------------------------|--------|-----------------------------|--------|--|
| Symbol | MIN                              | MAX    | MIN                         | MAX    |  |
| A      | 0.820                            | 1. 100 | 0. 032                      | 0.043  |  |
| A1     | 0.020                            | 0. 150 | 0.001                       | 0.006  |  |
| A2     | 0.750                            | 0.950  | 0.030                       | 0. 037 |  |
| b      | 0. 250                           | 0.380  | 0.010                       | 0.015  |  |
| С      | 0.090                            | 0. 230 | 0.004                       | 0.009  |  |
| D      | 2. 900                           | 3. 100 | 0. 114                      | 0. 122 |  |
| Е      | 2. 900                           | 3. 100 | 0. 114                      | 0. 122 |  |
| E1     | 4. 750                           | 5. 050 | 0. 187                      | 0. 199 |  |
| е      | 0. 650BSC                        |        | 0. 026BSC                   |        |  |
| L      | 0.400                            | 0.800  | 0.016                       | 0.031  |  |
| θ      | 0°                               | 6°     | 0°                          | 6°     |  |