

低电压、单电源、高精度推挽输出比较器

产品简述

MS751 是一款低噪声,低输入失调电压的高精度比较器,它采用 2.5V 至 5.5V 单电源(±1.25 V 至 ±2.5 V 双电源)供电。其输入失调电压室温下典型值为 1mV。MS751 具有 CMOS 输入及推挽输出,因此,MS751 具有很低的偏置电流和很大的输入阻抗,不需要外部上拉电阻。

MS751 具有小尺寸、低功耗以及高性能的特点,工作温度范围为-40 \mathbb{C} 到 125 \mathbb{C} ,适用于手持和电池供电系统。使用了小体积的 S0T23-5 封装。

主要特点

- 低功耗
- 低失调电压: 1mV (TYP)
- 单电源 2.5V 到 5.5V 的工作范围
- 0.1%建立时间: 58ns
- 输入电压范围 (Vs=5V): -0.2V 到+3.8V

应用

- 汽车传感器
- 压力和位置传感器
- 应变计放大器
- 医疗仪器
- 热电偶放大器
- 精密电流检测
- 光电二极管放大器

产品规格分类

产品	封 装 形 式	丝印名称
MS751	SOT23-5	751

极限参数

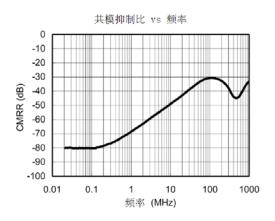
绝对最大额定值

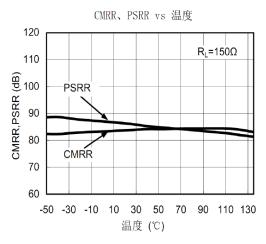
参数	符号	参数范围	单位
电源电压	V+	7. 5	V
输入管脚电压		-Vs-0.3到(+V+)+0.3	
差分输入电压		-5 到 5 (或电源电压,以较小者为准)	
结温范围		$-65{\sim}150$	°C
工作温度	TA	-40∼125	
存储温度	Tstg	$-65 \sim 150$	
引脚温度范围(焊接,60秒)		260	°C
ESD 保护: 人体模式 HBM		4000	V
机器模式 MM		200	

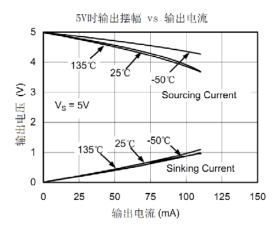
注意:

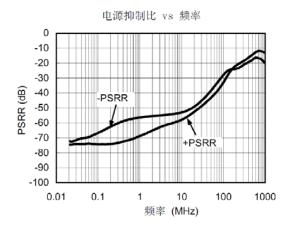
超出上述绝对最大额度值可能对器件造成永久的损害。这些只是最大额度值,不表示在这些条件下或者在任何其他超出本技术规格操作部分所示规格的条件下,器件能够正常工作。长期在最大绝对额度值下工作会影响到器件的可靠性。

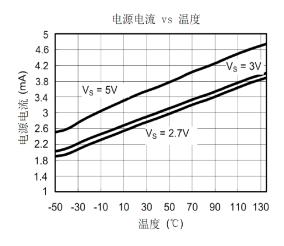
电气参数

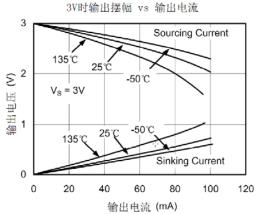

(若无特别说明, Vs = +5V, VCM = +2.5V, Vo = +2.5V, TA = 25℃。)

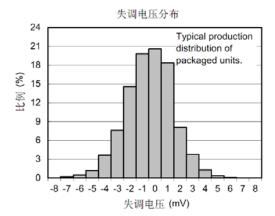

参	数	符号	测 试 条 件	最小值	典型值	最大值	单位	
输入特性								
输入失调电压		V_{os}			±2	±9.8		
			-40℃到 125℃			±10	mV	
输入保	富置电流	$I_{\scriptscriptstyle B}$			6		PA	
44.5.4					2	10		
输入失调电流		I_{OS}	-40℃到 125℃			10	рA	
输入电	1. 压范围		-40℃到 125℃	0		3.8	V	
共模	抑制比	CMRR	VCM = OV to 5V	62	80		dB	
	青 由亚	V _{OH}	$I_L = 2mA$, $V_{ID} = 200mA$	(V+) -	(V+) -		V	
输出电压	高电平		Zimit, tip Zoomit	0.35	0.1		V	
	低电平	V_{OL}	$I_L = -2mA$, $V_{ID} = -200mA$		90	130	mV	
±∆.11.16	三肋 山 达	I_{SC}	$V_0 = 1.35$, $V_{ID} = 200 \text{mA}$	6.0 20			mA	
制出为	国路电流		$V_0 = 1.35, V_{ID} = -200 \text{mA}$					
电源	原电流	I_S			6		mA	
传输延迟 R_L =5. 1 k Ω , C_L = 50pF		+	过驱动电压 = 5mV		10.0			
		t _{PD}			18.8		ns	
延迟变形		t _{SKEW}			2		ns	
上チ		t_{r}	10% 到 90%		22.6		ns	
下降	科时间	t_{f}	90% 到 10%		26		ns	




特性曲线


测试条件: TA = +25℃, VS = +5V, 除非另有说明。





应用实例

简单比较器

一个简单的比较器电路用来把输入的模拟信号转换成数字信号输出。比较器比较非反向输入端的电压(VIN)和反向端的基准电压(VREF),如果VIN小于VREF,输出为低,VIN大于VREF,则输出为高。

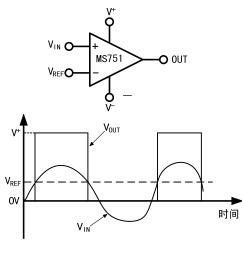


图1 简单比较器

迟滞效应

如果简单比较器的差分输入与比较器失调电压接近,那么比较器输出就会出现波动或则噪声波动,这在一个输入电压与另一个输入电压相等或很接近时容易出现。迟滞可以解决这个问题,迟滞可以产生两个比较阈值(一个用于上升过程,一个用于下降过程),迟滞大小就是两个比较阈值的差。当两个输入很接近时,迟滞可以使一个电压可以迅速的超过另一个电压,这样,把输入电压移出了是输出波动的区域。

如图2所示,迟滞可以通过两个电阻连接到非反向端构成,即构成正反馈。当输入VIN上升到 VIN1,输出由低变为高,VIN1可通过下式得出:

$$V_{IN1} = V_{REF} \cdot \frac{R_1 + R_2}{R_2}$$

当输入VIN下降到VIN2时,输出由高变低,VIN2可通过下式得出:

$$V_{IN2} = V_{REF} \cdot \frac{R_1 + R_2}{R_2} - V_{CC} \cdot \frac{R_1}{R_2}$$

迟滞大小为VIN1和VIN2的差值:

$$\Delta VIN = V_{IN1} - V_{IN2} = V_{CC} \cdot \frac{R_1}{R_2}$$

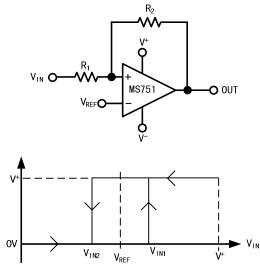
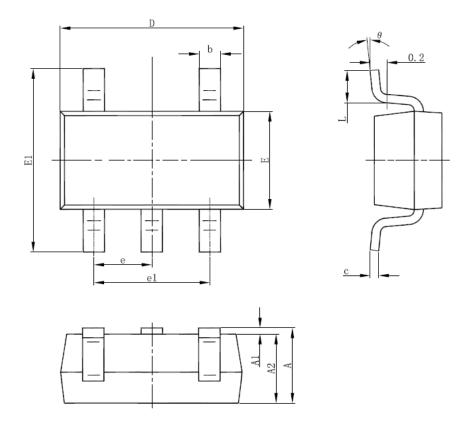


图2 非反向迟滞比较器电路

输入

MS751的输入偏置电流几乎为零,这使得可以使用大阻抗的电路,而不需要考虑阻抗匹配, 也可以使用小电容的R-C时序电路,减小了电容的使用以及电路板空间。


电路板走线及旁路

虽然MS751很稳定,并具有一定抗干扰能力,但采用合适的旁路电容和地线收集很重要。采用0.1μF的陶瓷电容可以提供干净电源,最短的信号线可以减小杂散电容。

封装外形图

SOT23-5

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050 1.250		0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

印章与包装规范

一、印章内容介绍

一,印章内容介绍

751: 产品型号

生产批号:

范例: L5H1

当月订单区分批次序号, 依次以 1-9 共 9 个数据做为区分;

1-12 月份分别记 A/B/C/D/E/F/G/H/J/K/L/M;

年份,比如 2014 年记作 4,2015 年记作 5.....;

供应商代码;

- 二,印章规范要求
- 1. 采用激光打印,整体居中且采用 Arial 字体。
- 三、包装规范

型号	只/盘	盘/盒	只/盒	盒/箱	只/箱
MS751	3000	10	30000	4	120000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电 放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-181 2023 5245

室

武汉市江夏区光谷大道联 享企业中心G栋二单元901

https://www.vertex-icbuy.com/