三通道 6 阶标清视频滤波驱动

产品简述

MS6364 是一个 3 通道视频缓冲器,它内部集成 6dB 增益的轨到轨输出驱动器和 6 阶输出重建滤波器。MS6364 的-3dB 带宽为 10MHz,压摆率为 46V/μs。与无源 LC 滤波器与外加驱动的解决方案相比,MS6364 能提供更好的图像质量。单电源供电范围为+2.5V 到+5.5V,并有极低的工作电流43.5mA,非常适用于电池供电应用。

MS6364 的输入信号为 DAC 的输出,可直流耦合输入或交流耦合输入。内部二极管钳位和偏置电路可用于交流耦合输入方式。MS6364 还包含内部电平移位电路,从而避免了同步脉冲被截断,并允许直流耦合输出。MS6364 的输出可驱动直流或交流耦合单(150Ω)或双(75Ω)负载。

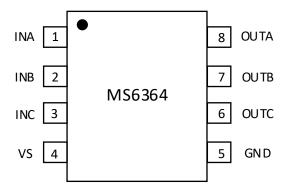
MS6364 采用 SOP8 封装, ESD 保护可达到 8kV。

主要特点

- 3 通道 6 阶 10MHz 滤波器
- 透明的输入钳位
- 6dB 增益输出驱动器和驱动双视频负载
- 轨到轨输出
- 输入电压范围包括地
- 交流或直流耦合输入
- 交流或直流耦合输出
- 单电源供电范围为 2.5V 到 5.5V
- 低功耗,总工作电流为 43.5mA,单通道 12.2mA
- SOP8 封装

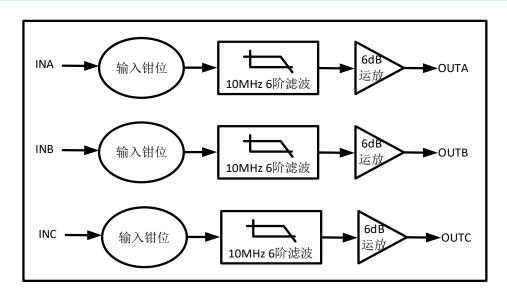
应用

- 视频放大器
- 有线电视和卫星机顶盒
- 通信设备
- 消费类视频
- 便携式和手持式产品
- 个人视频录像机
- DVD播放机
- 标清电视
- 放映机和幻灯机


产品规格分类

产品	封装形式	丝印名称
MS6364	SOP8	MS6364

SOP8


管脚图

管脚说明

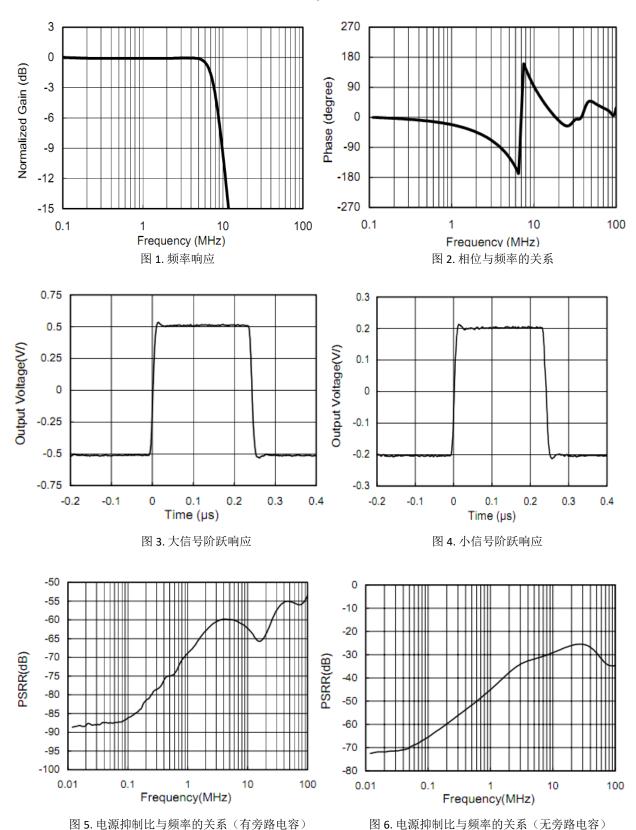
管脚编号	管脚名称	管脚属性	管脚描述
1	INA	1	A 通道输入
2	INB	I	B 通道输入
3	INC	I	C 通道输入
4	VS	-	电源电压
5	GND	-	地
6	OUTC	0	C 通道输出
7	OUTB	0	B 通道输出
8	OUTA	0	A 通道输出

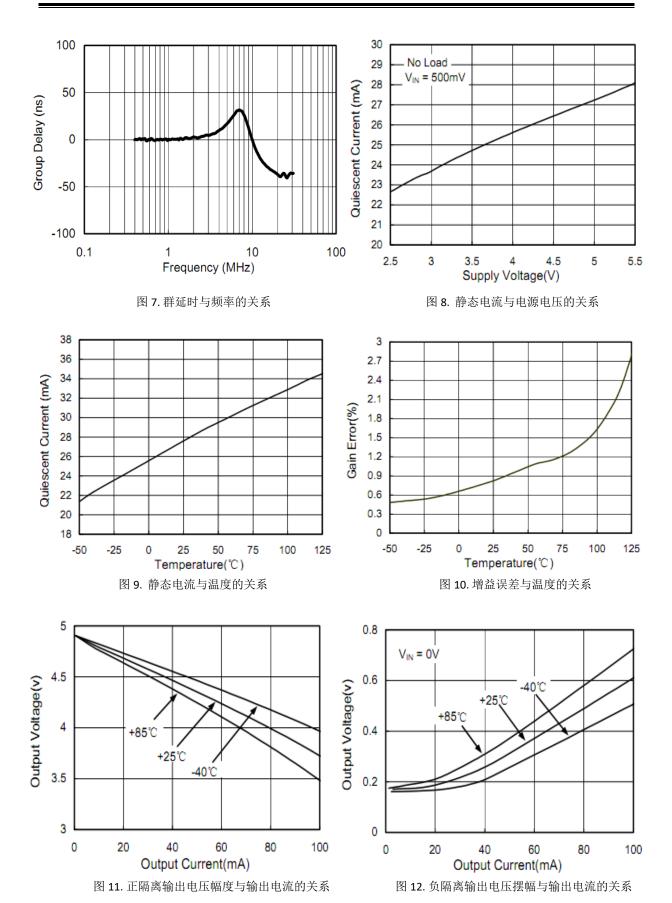
内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
电源电压	Vs	7.5	V
输入电压	Vin	GND-0.3V ~ (+VS)+0.3V	V
存储温度范围	T _{stg}	-65 ~ +1 50	°C
结点温度	Tj	160	°C
工作温度范围	T _A	-40 ~ +125	°C
功耗 @T _A =25°C	PD	0.8W	W
封装热阻		128	°C/W
引脚温度(焊接 10 秒)		260	°C
ESD(HBM)		8000	V


电气参数


RL=150Ω 连接到地,Vin=1Vpp,Cin=0.1 μ F,所有输出通过 220 μ F 电容交流耦合输出,除非另有说明。

RL=150Ω 连接到地,Vin=1Vpp,Cin=0.1μF,所有输出通过 220μF 电容交流耦合输出,除非另有说明。							1		
		典型	型 最小/最大温度变化						
参数	测试条件	+25°C	+25°C	0°C∼	-40°C	-40°C	单位	最大/	
		123 0	123 C	70°C	~85°C	~ 125°C	平位	最小	
	输入特性								
输出电平偏移电压	Vin=0V,无负载	235	327	330	340	370	mv	最大值	
输入钳位电压(Vclp)	lin= -1mA	-4.5	-15	-16	-19	-22	mV	最小值	
钳位充电电流	Vin=Vclp-100mV	-5	-6.0	-6.1	-6.6	-7.2	mA	最小值	
电压增益(Av)	RL=150	2	1.92	1.90	1.88	1.85	V/V	最小值	
C/22 H III. (111)	1130		2.04	2.06	2.08	2.1	V/V	最大值	
	T	输出特	性			T		I	
输出电压摆幅	Vin=3V,RL=150Ω	4.5	4.3	4.28	4.25	4.2	V	最小值	
	Vin=3V 通过 10Ω 接地	-105	-102				mA	最大值	
输出短路电流	Vin=0.1V,输出通过 10Ω 接于电源	115	103				mA	最小值	
		供电电	 [压					l	
			2.5	2.7	2.7	2.7	V	最小值	
工作电压范围			5.5	5.5	5.5	5.5	V	最大值	
电源抑制比	Vs=+2.7V 至+5.5V	60	58	58	57	56	dB	最小值	
工作电流	Vin=500mV	43.5	42.5	43	44	45	mA	最大值	
静态电流	无输入,无负载	15					mA	最大值	
		动态性	能						
±0.1dB 带宽	RL=150Ω	5.4					MHz	典型值	
-3dB 带宽	RL=150Ω	10					MHz	典型值	
压摆率	Vin=1V 步进,20%至80%	46					V/µs	典型值	
	NTSC & PAL DC	0.02					%	典型值	
微分增益(DG)	NTSC & PAL AC	0.3					%	典型值	
微分相位(DP)	NTSC & PAL DC	0.02						典型值	
	NTSC & PAL AC	0.36						典型值	
群延时变化	f = 400kHz, 26.5MHz	1.2					ns	典型值	
串扰(通道-通道)	在 1MHz 处	-64					dB	典型值	
上升时间	2V 步进,80%20%	28					ns	典型值	
下降时间	2V 步进,80%20%	27					ns	典型值	

典型工作特性

VS=+5.0V, T_A =+25°C,RL=150 Ω , 所有输出通过 220 μ F 电容交流耦合,除非另有说明。

应用信息

功能描述

MS6364 单电源工作电压为+2.5V 到+5V。在应用中,MS6364 是一个完整的对标清视频信号译码和编码的滤波器和缓冲器。例如,MS6364 可以在机顶盒和 DVD 播放机的 R\G\B 和 Y\Pb\Pr 输出中,代替三个无源低通滤波器和三个运放驱动。与使用分立元件的传统设计相比,MS6364 的解决方案能节省PCB 板面积、降低成本以及提高视频信号性能。

MS6364 集成一个直流耦合输入缓冲器、一个消除带外噪声的视频编码器和一个增益为+6dB 可驱动 75Ω 负载的运放驱动。交流或直流耦合输入缓冲器能够消除同步挤压、弯曲和场倾斜。MS6364 的输出也可以是直流耦合或交流耦合。

输入补偿

MS6364 可交流耦合输入,也可直流耦合输入。在直流耦合应用中,不需要输入耦合电容,因为输入视频信号来自数模转换器(DAC),该视频信号包括地和向上延伸至 1.4V。 MS6364 可直接连接到一个输出没有任何外部偏置、单电源供电的 DAC 网络。在以下应用中,应该使用交流耦合输入,比如 DAC 的输出超出 0V 到 1.4V 的范围, MS6364 被未知的外部信号源驱动, MS6364 被一个有它自己的钳位电流的 SCART 开关驱动。

输出补偿

MS6364 输出可以是直流耦合或交流耦合。输入为 0V 时,MS6364 的输出电压为 260mV 典型值。在直流耦合设计中,使用 75Ω 的电阻连接 MS6364 的输出引脚与外部负载。这一个背向端接电阻被用来匹配 MS6364 和外部负载之间的传输线阻抗,从而消除信号反射。MS6364 可与外部负载直接交流耦合,在交流耦合中用 220μF 电容消除场倾斜。

电源旁路和版图

在设计中,适当的电源旁路对优化视频性能是很重要的。MS6364 常使用一个 0.1μF 和一个 10μF 电容来旁路电源引脚,这两个电容应该尽可能靠近 MS6364 的输出引脚。为确保最佳的性能,还需要尽可能大的地平面。输入和输出终端电阻应尽可能接近 MS6364 相关引脚,以避免性能退化。

在输出端,PCB 走线有 75Ω 电阻,来匹配 75Ω 特性阻抗电缆。在设计中,请尽量保持 MS6364 的输入和输出电路板布线最短,尽可能减小寄生杂散电容和噪声。

典型应用图

如下图 14 的电路图,常用于交流耦合输出和输出电压范围为 0V-1.4V 的数模转换器的直流耦合输入。交流耦合输出提供较低的功耗和高的 ESD 保护能力。下图 13 原理图在设计中很受欢迎,图 15 的电路是在机顶盒中的一个特殊应用。 在光端机等方案的使用过程中,所有输入端口与输出端口均需要添加 TVS 管。

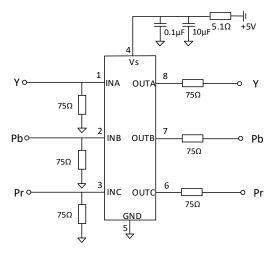


图 13. 直流耦合应用原理图

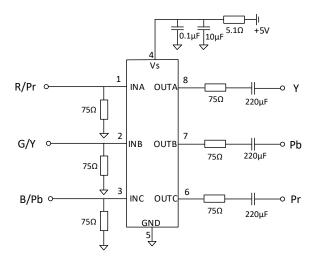
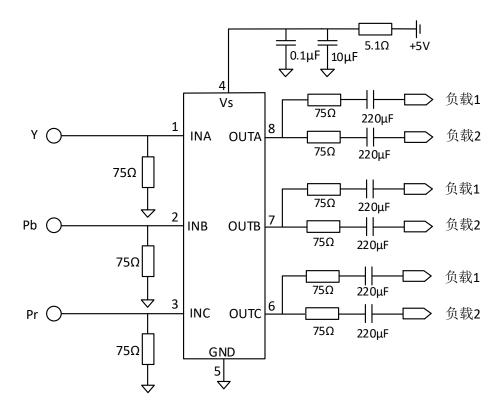
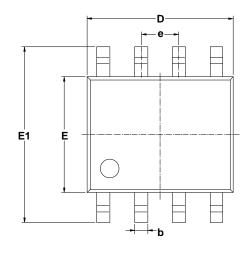
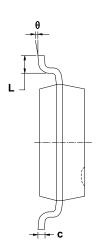
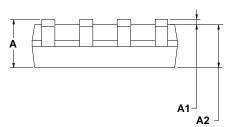


图 14. 直流耦合输入和交流耦合输出应用原理图


图 15. 机顶盒中直流耦合电路原理图

封装外形图

SOP8

符号	尺寸(毫	(米)	尺寸 (英寸)			
	最小	最大	最小	最大		
А	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.350 1.550 0.053		0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27(B	SC)	0.050(BSC)			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

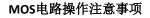
印章与包装规范

1. 印章内容介绍

产品型号: MS6364 生产批号: XXXXXX

2. 印章规范要求

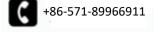
采用激光打印,整体居中且采用 Arial 字体。


3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS6364	SOP8	2500	1	2500	8	20000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!



静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

