

四通道差分线路接收器

产品特性

MS2375 系列芯片是四路差分线路接收器,适用于平衡或非平衡的数字信号传输系统。使能模块同时控制四个接收器,支持高电平有效使能输入和低电平有效使能输入。三态输出保证接收器可以直接连接到总线结构的系统中。失效防护的特殊设计保证了当输入脚开路悬空,所有输出脚维持高电平。

MS2375 的输入级集成了额外的放大电路以提高灵敏度,因而增加了输入阻抗,减轻了输入驱动总线的负载。额外的放大电路会增加传输延时,但是在大多数应用中不会影响可交换性。

主要特点

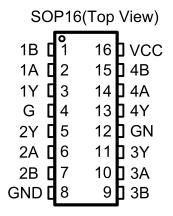
- MS2375 符合或超出 ANSI TIA/EIA-422-B, TIA/EIA-423-B 和 ITU 建议 V.10, V.11 要求
- ±12V 共模输入范围, 100mV 灵敏度
- 典型输入滞回电压范围 50mV
- 5V 单电源供电
- 低功耗肖特基电路
- 三态输出
- 互补输出,使能输入
- 最小 12kΩ输入阻抗
- 输入开路失效防护

应用

- 高可靠性汽车应用
- 工厂自动化设备
- ATM 和点钞机
- 智能电网
- 交流和伺服电机驱动

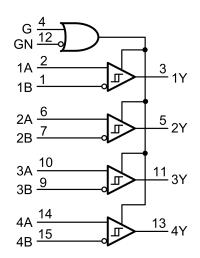
产品规格分类

产品	封装形式	丝印名称
MS2375	SOP16	MS2375
MS2375T	TSSOP16	MS2375T


SOP16

TSSOP16

管脚排列图



管脚描述

管脚编号	管脚名称	管脚属性	管脚描述
2	1A	ı	RS422/RS485 接收器 1 同相差分输入
1	1B	ı	RS422/RS485 接收器 1 反相差分输入
3	1Y	0	接收器 1 输出
6	2A	I	RS422/RS485 接收器 2 同相差分输入
7	2B	ı	RS422/RS485 接收器 2 反相差分输入
5	2Y	0	接收器 2 输出
10	3A	I	RS422/RS485 接收器 3 同相差分输入
9	3B	I	RS422/RS485 接收器 3 反相差分输入
11	3Y	0	接收器 3 输出
14	4A	ı	RS422/RS485 接收器 4 同相差分输入
15	4B	I	RS422/RS485 接收器 4 反相差分输入
13	4Y	0	接收器 4 输出
4	G	I	接收器使能(高电平有效)
12	GN	I	接收器使能(低电平有效)
16	VCC	-	电源管脚
8	GND	-	地管脚

内部框图

极限参数

参数	符号	参数范围	单位
供电电压	V _{CC}	4.5~7	٧
最大输入电压(差分输入端)	V _{DIMAX}	±25	V
最大输入电压(使能输入端)	V _{ENIMAX}	7	V
差分输入电压	V _{ID}	±25	V
10s 焊接温度	T _{SOLDERING}	260	$^{\circ}$
存储温度范围	Tstg	-65∼+150	$^{\circ}$
ESD(HBM),ANSI/ESDA/JEDEC JS-001 标准	ESD(HBM)	±500	V

- (1) 芯片使用中,任何超过极限工作参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作状态可能会影响器件的可靠性。上述极限工作参数只是由一系列极端测试得出,并不代表芯片可以正常工作在此极限条件下。正常工作条件请参考下文的推荐工作条件。
- (2)除了差分输入电压,所有电压值的参考电位都是对 GND。
- (3) 差分输入电压是指同相输入端 A 与反相输入端 B 之间的电位之差。
- (4) JEDEC 的文档 JEP155 说明了在标准 ESD 测试流程下,HBM500V 符合安全生产条件。

电气参数

1 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
供电电压	V _{CC}	4.5	5	5.5	V
高电平输入电压	V _{IH}	2			V
低电平输入电压	V _{IL}			0.8	V
共模输入电压	V _{IC}			±12	V
高电平输出电流	Іон			35	mA
低电平输出电流	I _{OL}			-46	mA
工作温度范围	T _A	-40		+125	$^{\circ}\!\mathbb{C}$

2 直流电气参数

参数	符号	测试条件		最小值	典型值	最大值	单位
正向输入阈值电压	V _{IT+}	V _O =V _{OH} min, I _{OH} =-440μA				0.02	٧
负向输入阈值电压	V _{IT-}	V _O =0.2V, I _{OL} =8mA				-0.03	٧
滯回电压(V _{IT+} -V _{IT-})	V _{hys}				50		mV
使能输入钳位电压	V _{IK}	V _{CC} =MIN, I _I =-18mA	1			-1.5	٧
高电平输出电压	V _{OH}	V _{CC} =MIN, V _{ID} =1V V _{I(G)} =0.8V, I _{OH} =440	V _{CC} =MIN, V _{ID} =1V V _{I(G)} =0.8V, I _{OH} =440μA				V
低电平输出电压	Vol	V _{CC} =MIN,	V _{CC} =MIN, I _{OL} =4mA				V
	VOL	V _{ID} =-1V,V _{I(G)} =0.8V	I _{OL} =8mA			0.4	•
关断态(高阻态)电流	l _{oz}	V _{CC} =MAX	V ₀ =0.5V			0.06	
八则心(问阻心)电机	102	VCC-IVIAX	V ₀ =2.5V			0.00	μΑ
线路输入电流		V _i =15V, 另一个输	V _I =15V, 另一个输入-10-15V			0.7	A
线 增制八电机	l _l	V _I =-15V,另一个输。	λ-15-10V			-0.9	mA
使能输入电流	I _{I(EN)}	V _I =5.5V				1	μΑ
高电平使能电流	I _{IH}	V _I =2.7V				1	μΑ
低电平使能电流	I _{IL}	V _I =0.4V	V _I =0.4V			-10	μΑ
输入电阻 r _i V _{IC} =		V _{IC} =-15V~15V,			35		kΩ
JIMAN & GLAT	• 1	一个输入接交流地					1/75
短路输出电流	los	V _{CC} =MAX		38		70	mA
供电电流	I _{CC}	V _{cc} =MAX, 所有输	V _{cc} =MAX, 所有输出悬空		50		mA

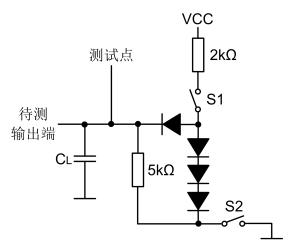
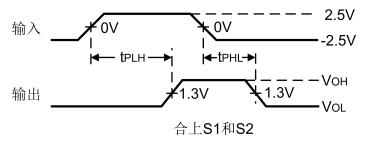
- (1) 所有典型值的工作条件是 V_{CC}=5V, T_A=25℃, V_{IC}=0V。
- (2) 正负阈值电压和滞回电压的数值仅代表设计时的最大和最小值,实际数值会有所变化。
- (3) 同一时间最多只能有一个输出端短路,且短路持续时间不应超过 1s。

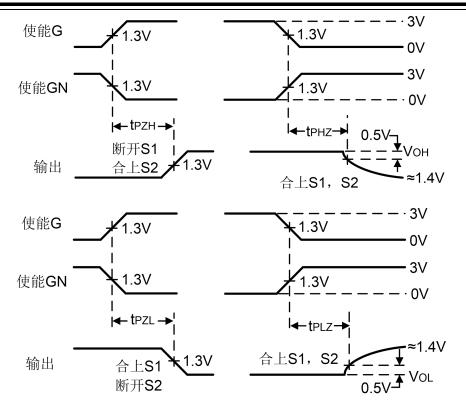
2021.08.19

3 开关特性参数

参数	符号	最小值	典型值	最大值	单位
传输延迟时间(输出低到高电平)	t _{PLH}		24	30	ns
传输延迟时间(输出高到低电平)	t _{PHL}		22	30	ns
启动时间(输出高电平)	t _{PZH}		23	30	ns
启动时间(输出低电平)	t _{PZL}		24	30	ns
关断时间(由高电平关断)	t _{PHZ}		50	65	ns
关断时间(由低电平关断)	t _{PLZ}		55	65	ns

- (1) 测试条件是 V_{CC}=5V, T_A=25℃, V_{IC}=0V, C_L=15pF。
- (2)除非特别说明,每个输出端的关断态即高阻态。
- (3)测试电路如图 1,其中 CL包括了探针和插座的寄生电容;所有二极管为 1N3064 或等效的元件。


图 1 开关特性测试电路

(4)测试传输延时时间,需要合上S1和S2,对应的测试波形如图2。

(5)测试启动时间和关断时间,注意 S1 和 S2 状态有所不同,请参考图 3 和图 4 分别调整开关状态 并测试。使能输入信号由波形发生器提供,应当满足: tr≤5ns, tr≤5ns; 每个使能端都是单独测试的, 测试 G 端时 GN 保持高电平,测试 GN 端时 G 端保持低电平。

应用信息

1 芯片概述

MS2375 是一颗符合 ANSI EIA/TIA-422-B,ANSI EIA/TIA-423-B 和 ITU V.10,V.11 标准的四通道差分线路接收器。这颗芯片提供了一个高可靠性和简单易用的接口,将低压低功耗的 MCU 与大型高压设备或系统,通过长达 1000m 的总线连接起来。与大多数 RS-422 接口类似,MS2375 工作在差分输入电压范围内,保证了良好的信号完整性。

2 功能概述

MS2375 可以通过 G 和 GN 两个使能输入来设置接收器进入不同的工作状态,如果设置 G 为高电平或 GN 为低电平,4 个接收器的输出端就打开了,可以正常接收信号。如果将 G 设置为低电平且 GN 设置

为高电平,4个接收器就进入关断态(高阻态),这样可以方便地通过控制器或微处理器来配置芯片的工作状态。更具体的使能设置可以参考下面的真值表。

3 芯片功能模式

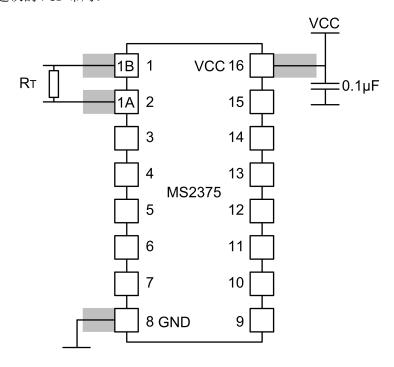
差分输入	使能		输出	
A-B	G	GN	Υ	
	Н	Х	Н	
$V_{ID} \ge V_{IT+}$	Х	L	Н	
V 4V 4V	Н	Х	?	
$V_{IT-} \le V_{ID} \le V_{IT+}$	Х	L	?	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Н	Х	L	
$V_{ID} \le V_{IT}$	Х	L	L	
Х	L	Н	Z	
工品	Н	Х	Н	
开路	Х	L	Н	

表中 H=高电平, L=低电平, X=无关态, Z=高阻态 (关断态), ?=不确定的状态。

4 供电注意事项

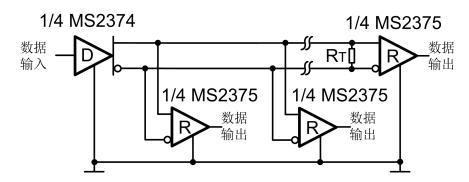
在电源脚旁边放置一个 0.1μF 的电容,可以减小电源耦合噪声,降低电源的内阻。

5 PCB 版图指导


在设计接口电路的 PCB 时需要考虑很多东西,充分且谨慎地设计版图可以提高系统的性能。

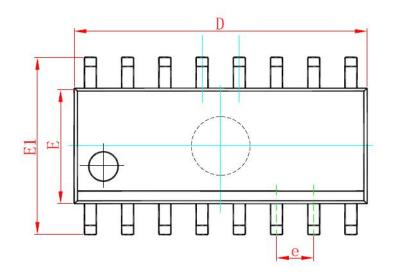
- 1.在模拟电路中,噪声经常会通过电源脚进入电路内部,可以在电源脚旁边放置一个旁路电容以减小耦合噪声。具体的做法是,将一个低 ESR,0.1μF 的陶瓷电容连接在电源管脚和地线之间,这个电容尽可能靠近芯片管脚。单个旁路电容适用于单电源供电的应用方案。
- 2.模拟地线和数字地线分开的版图布局,是一种最简单但是十分有效的噪声抑制方案。在单层或多层 PCB 板上通常有大量接地的焊盘,这些接地的焊盘可以帮助系统散热,减小 EMI 噪声拾取。请确保物理层面上将模拟地和数字地分开,特别注意地线电流的流向。

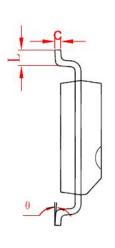
- 3.为了减小寄生耦合,输入走线应当尽量远离电源脚和输出走线。如果实际条件不允许两者远离,可以垂直地穿过有噪声的走线,而不是采用平行走线。
- 4.外部元件尽量放置在芯片附近,增益电阻 RF 和反馈电阻 RG 尽量靠近反相输入端以减小寄生电容。
- 5.输入走线尽量短一些,重点关注输入走线,因为输入走线是系统中最敏感的部分。
- **6.**如有必要,可以在关键走线的周围放置一圈低阻抗的保护环。保护环能有效减少附近不同电位的 连线产生的漏电流。

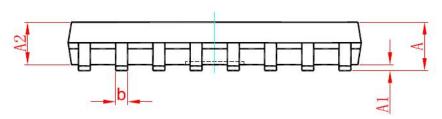

下图提供了一种建议的 PCB 布局。

典型应用电路

当使用 MS2375 作为接收器时,MS2374 的输出总线上可以同时并联数个 MS2375。下图展示了一种没有终端的总线方案。尽管没有终端电阻和电容,且总线传输的信号频率在 200kbps 左右会产生回波反射,但是符合 RS-422 要求的接收器只会读取两根传输线上的差分电压值,并在输出端输出一个干净的信号。

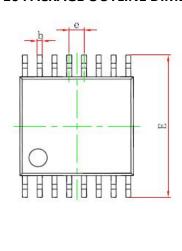

终端电阻和电容值大多由实验测定,根据不同的系统,取值也会不同。例如,终端电阻 R_T 一定不能超过传输线特征阻抗的 20%,一般取值范围是 80Ω 到 120Ω 。

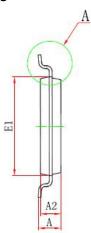

电源脚需要连接一个旁路电容(0.1μF 或更大)。任一使能脚(如 G)都可以打开接收器,所以需要将需要控制的使能脚连接到合适的逻辑电平总线上,并将另一使能脚(如 GN)连接到保持该使能脚失效的电源或地线上。比如,使用 G 脚作为使能脚,则需要将 GN 脚连接到 VCC 电源线上;反之亦然。如果需要保持接收器一直处于打开状态,可以将两个使能脚同时连接到电源线(或地线),这样就能保证至少有一个使能脚处于有效状态。VCC 最好稳定在 5V 左右不超过 10%的范围内,逻辑使能输入必须满足 TTL 逻辑电平要求。A 和 B 既可以连接到外部的接口电路,也可以保持悬空状态,不用的输出端 Y 也可以保持悬空状态。最后一个接收器必须在输入端并联一个外部的终端电阻。

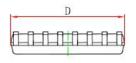


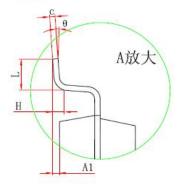
封装外形图

SOP16 PACKAGE OUTLINE DIMENSIONS

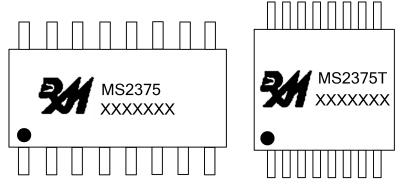





Company of	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Min Max		Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270	(BSC)	C) 0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	



TSSOP16 PACKAGE OUTLINE DIMENSIONS



	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
D	4.900	5.100	0.193	0.201
E	6.250	6.550	0.246	0.258
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
E1	4.300	4.500	0.169	0.177
А		1.200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
e	0.65	(BSC)	0.026(BSC)	
L	0.400	1.270	0.016	0.050
Н	0.25(TYP)		0.01	(TYP)
θ	1°	7°	1°	7°

印章与包装规范

一、印章内容介绍

MS2375,MS2375T: 产品名称

XXXXXXX: 生产批号

二、印章规范要求

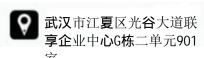
采用激光打印,整体居中且采用 Arial 字体。

三、包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS2375	SOP16	4000	1	4000	8	32000
MS2375T	TSSOP16	3000	1	3000	8	24000

声明

- 瑞盟科技保留说明书的更改权,恕不另行通知。请客户在下单前获取最新版本资料,并验证相关信息是否完整。
- 在使用瑞盟科技的产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施,以避免潜在失败风险可能造成的人身伤害或财产损失。
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品。



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

https://www.vertex-icbuy.com/