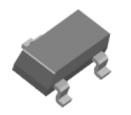


P-Channel 20-V (D-S) MOSFET

Description

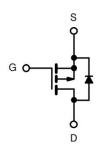

These miniature surface mount MOSFETs utilize High Cell Density process. Low rDS(on) assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

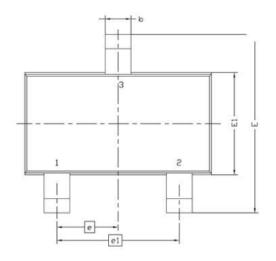
Features

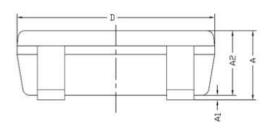
- Low rDS(on) provides higher efficiency and extends battery life
- · High power and current handling capability
- · Low side high current DC-DC Converter
- Applications
- Miniature SOT-23 Surface Mount Package
- · Saves Board Space
- · RoHS compliant package

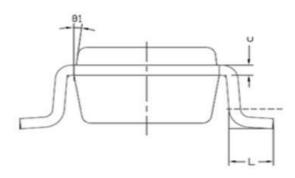
Packing & Order Information

3,000/Reel




RoHS COMPLIANT




ESD Protected

Graphic symbol

Cumbal	MILLIMET	TERS
Symbol	MIN	MAX
Α	0.8	1.2
A1	0	0.1
A2	0.7	1.1
b	0.3	0.5
С	0.1	0.2
D	2.7	3.1
E	2.6	3
E1	1.4	1.8
е	0.95	BSC
e1	1.9 BSC	
Les	0.3	0.6
θ1	7° N	MON

P-Channel 20-V (D-S) MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (T _A =25°C unless otherwise specified)						
Symbol	Parameter	Value	Unit			
V_{DS}	Drain-Source Voltage	20	V			
V _{GS}	Gate-Source Voltage	±20	V			
	Continuous Drain Current ^a (T _A = 25°C)	4.0	Α			
I _D	Continuous Drain Current _a (T _A =70°C)	3.1	Α			
I _{DM}	Pulsed Drain Current ^b	±20	Α			
Is	Continuous Source Current (Diode Conduction) ^a	1.6	А			
T _J /T _{STG}	Operating Junction and Storage Temperature	-55 to +150	°C			
P _D	Power Dissipation ^a (T _A =25°C)	1.3	W			
	Power Dissipation ^a (T _A =70°C)	0.8	W			

Thermal Resistance Ratings						
Symbol	Parameter	Maximum	Units			
R _{THJA}	Maximum Junction-to-Ambient ^a (t <= 5 sec)	100	°C/W			
	Maximum Junction-to-Ambient ^a (Steady-State)	166	C/VV			

Notes:

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Static						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
$V_{GS(th)}$	Gate-Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.7			V
I _{GSS}	Gate-Body Leakage	V_{DS} =0 V , V_{GS} = ±8 V			±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V , V _{GS} = 0 V V _{DS} = 16 V , V _{GS} = 0 V , T _J = 55°C			1 10	uA
I _{D(on)}	On-State Drain Current ^A	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10			Α
I _{DS(on)}	Drain-Source On-Resistance ^A	$V_{GS} = 4.5 \text{ V}, I_D = 4.6 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 3.9 \text{ A}$			32 44	mΩ
g _{fs}	Forward Tranconductance ^A	V _{DS} = 10 V, I _D = 4.0 A		11.3		S
V _{SD}	Diode Forward Voltage	I _S = 1.6 A , V _{GS} = 0 V		0.75		V

Dynamic ^b							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_{D} = 4.0 \text{ A},$ $V_{GS} = 4.5 \text{ V}$		13.4		nC	
Q _{gs}	Gate-Source Charge			0.9		nC	
Q_{gd}	Gate-Drain Charge			2.0		nC	

P-Channel 20-V (D-S) MOSFET

Dynamic ^b							
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
$t_{d(on)}$	Turn-On Delay Time	$V_{DD} = 10 \text{ V}, R_L = 15 \Omega,$ $V_{GEN} = 4.5 \text{ V}, I_D = 5 \text{ A}$		8		ns	
t _r	Rise Time			24		ns	
t _{d(off)}	Turn-Off Delay Time			35		ns	
t _f	Fall Time			10		ns	
t _{rr}	Source-Ddrain Reverse Recovery Time	I _F = 1.6 A , di/dt=100 A/uS		40		ns	

Notes:

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

P-Channel 20-V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.