MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current — Continuous	۱c	1.0	Adc
Total Device Dissipation @ T _C = 25°C(1) Derate above 25°C	PD	5.0 28.6	Watts mW/°C
Storage Temperature	Tsta	-65 to +200	°C

MRF8004 CASE 79-02, STYLE 1

TO-39 (TO-205AD)

RF AMPLIFIER TRANSISTOR

NPN SILICON

14

(1) This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V(BR)CEO	30	-	—	Vdc
Collector-Emitter Breakdown Voltage (I _C = 200 mAdc, V _{BE} = 0)	V(BR)CES		-	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)	V(BR)EBO	3.0	—	-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, $I_E = 0$)	^I СВО	—	—	0.01	mAdc
ON CHARACTERISTICS					
DC Current Gain $(I_C = 400 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	hFE	10	_	—	-
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	—	35	70	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (See Figure 1) (P _{out} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	GPE	10	-	-	dB
Collector Efficiency(2) (See Figure 1) (P _{out} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	η	62.5	70	-	%
Percentage Up-Modulation(1) (See Figure 1) (f = 27 MHz)	_	_	85	-	%
Parallel Equivalent Input Resistance (P _{OUt} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	R _{in}	_	21	—	Ohms
Parallel Equivalent Input Capacitance (P _{out} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	C _{in}	-	900	_	pF
Parallel Equivalent Output Capacitance (P _{out} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	C _{out}	—	200		pF

(1) Percentage Up-Modulation is measured in the test circuit (Figure 1) by setting the Carrier Power (P_C) to 3.5 Watts with V_{CC} = 12.5 Vdc and noting the power input. Then the Peak Envelope Power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined by the relation:

modulation (at a 25% duty cycle for thermal considerations) an Percentage Up-Modulation is then determined by the relation: Percentage Up-Modulation = $\left[\left(\frac{PEP}{P_{C}}\right)^{\frac{1}{2}} - 1\right] \cdot 100$ (2) $\eta = \frac{RFP_{OUL}}{(V_{CC})(I_{C})} \cdot 100$

MRF8004

FIGURE 1 - 27 MHz TEST CIRCUIT

FIGURE 3 - CIRCUIT TUNED AT 12.5 V, Pout = 4 W

