Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV4006G series piezoresistive transducer is a state–of–the–art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This sensor combines a highly sensitive implanted strain gauge with advanced micromachining techniques, thin–film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- Temperature Compensated over 10° to 60°C
- Ideally Suited for Microprocessor or Microcontroller– Based Systems
- Available in Gauge Surface Mount (SMT) or Through– hole (DIP) Configurations
- Durable Thermoplastic (PPS) Package

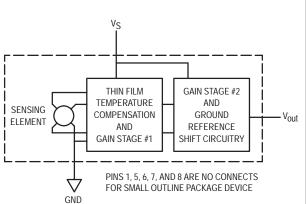
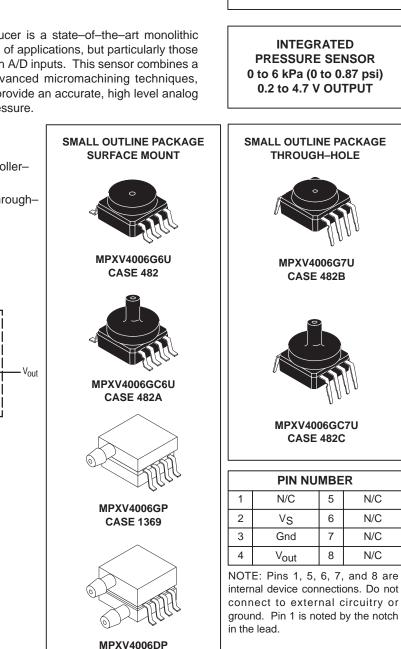



Figure 1. Fully Integrated Pressure Sensor Schematic

MPXV4006G

SERIES

Replaces MPXT4006D/D

REV 4

3-170

For More Information On This Product, Go to: www.freescale.com

CASE 1351

Freescale Semiconductor, Inc.

MAXIMUM RATINGS(NOTE)

Parametrics	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	24	kPa
Storage Temperature	T _{stg}	-30 to +100	°C
Operating Temperature	TA	+10 to +60	°C

NOTE: Exposure beyond the specified limits may cause permanent damage or degradation to the device.

OPERATING CHARACTERISTICS ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range		POP	0	—	6.0	kPa
Supply Voltage ⁽¹⁾		٧ _S	4.75	5.0	5.25	Vdc
Supply Current		IS	—	—	10	mAdc
Full Scale Span ⁽²⁾	(RL = 51kΩ)	VFSS	—	4.6	—	V
Offset(3)(5)	(RL = 51kΩ)	V _{off}	0.100	0.225	0.430	V
Sensitivity		V/P	_	766	—	mV/kPa
Accuracy(4)(5)	(10 to 60°C)	_	_	_	±5.0	^{%V} FSS

NOTES:

2. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.

3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.

- 4. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.

Offset Stability: Output deviation, after 1000 temperature cycles, - 30 to 100°C, and 1.5 million pressure cycles, with minimum rated pressure applied.

TcSpan: Output deviation over the temperature range of 10 to 60°C, relative to 25°C.

- TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 10 to 60°C, relative to 25°C.
- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 5. Auto Zero at Factory Installation: Due to the sensitivity of the MPXV4006G, external mechanical stresses and mounting position can affect the zero pressure output reading. To obtain the 5% FSS accuracy, the device output must be "autozeroed" after installation. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations.

^{1.} Device is ratiometric within this specified excitation range.

MPXV4006G SERIES Freescale Semiconductor, Inc.

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear–stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPXV4006G series sensor operating characteristics are based on use of dry air as pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Internal reliability and qualification test for dry air, and other media, are available from the factory. Contact the factory for information regarding media tolerance in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum and maximum output curves are shown for operation over a temperature range of 10°C to 60°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

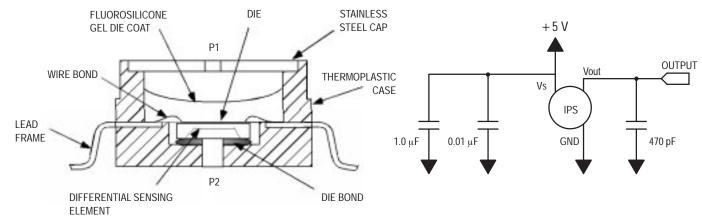


Figure 2. Cross–Sectional Diagram (Not to Scale)

Figure 3. Recommended power supply decoupling and output filtering recommendations. For additional output filtering, please refer to Application Note AN1646.

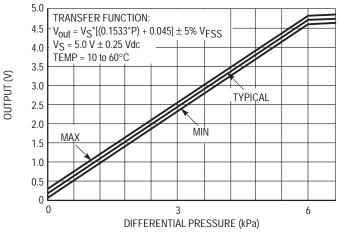


Figure 4. Output versus Pressure Differential

(See Note 5 in Operating Characteristics)

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Motorola designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Motorola pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier	
MPXV4006G6U/T1	482	Stainless Steel Cap	
MPXV4006GC6U/T1	482A	Side with Port Attached	
MPXV4006G7U	482B	Stainless Steel Cap	
MPXV4006GC7U	482C	Side with Port Attached	
MPXV4006GP	1369	Side with Port Attached	
MPXV4006DP	1351	Side with Part Marking	

ORDERING INFORMATION

MPXV4006G series pressure sensors are available in the basic element package or with pressure ports. Two packing options are offered for the 482 and 482A case configurations.

Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Marking
Basic Element	Element Only	482	MPXV4006G6U	Rails	MPXV4006G
	Element Only	482	MPXV4006G6T1	Tape and Reel	MPXV4006G
	Element Only	482	MPXV4006G7U	Rails	MPXV4006G
Ported Element	Axial Port	482A	MPXV4006GC6U	Rails	MPXV4006G
	Axial Port	482A	MPXV4006GC6T1	Tape and Reel	MPXV4006G
	Axial Port	482A	MPXV4006GC7U	Rails	MPXV4006G
	Side Port	1369	MPXV4006GP	Trays	MPXV4006G
	Dual Port	1351	MPXV4006DP	Trays	MPXV4006G

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

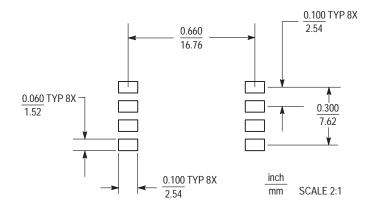


Figure 5. SOP Footprint (Case 482)