

MPSW06

NPN General Purpose Amplifier

This device is designed for general purpose amplifier applications at collector currents to 300 mA. Sourced from Process 33. See MPSA06 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	80	V
V _{CBO}	Collector-Base Voltage	80	V
V _{EBO}	Emitter-Base Voltage	4.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		MPSW06	
P_D	Total Device Dissipation	1.0	W
	Derate above 25°C	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	50	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

^{**}Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

NPN General Purpose Amplifier

(continued)

Electrical (

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
	DACTEDICTION		•		
	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Sustaining Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	80		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	4.0		V
I _{CEO}	Collector-Cutoff Current	$V_{CE} = 60 \text{ V}, I_{B} = 0$		0.1	μΑ
I _{CBO}	Collector-Cutoff Current	$V_{CB} = 80 \text{ V}, I_{E} = 0$		0.1	μΑ
ON CHAF	RACTERISTICS				
	RACTERISTICS DC Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100		
h _{FE}	DC Current Gain	$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100 100	0.25	
	DC Current Gain Collector-Emitter Saturation Voltage	$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$		0.25	V
h_{FE} $V_{\text{CE(sat)}}$	DC Current Gain	$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$		0.25	V
h _{FE}	DC Current Gain Collector-Emitter Saturation Voltage	$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$			<u> </u>
$\begin{array}{c} h_{FE} \\ V_{CE(sat)} \\ V_{BE(On)} \end{array}$	DC Current Gain Collector-Emitter Saturation Voltage	$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$			<u> </u>

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Spice Model

NPN (ls=8.324f Xti=3 Eg=1.11 Vaf=100 Bf=12.16K Ne=1.368 lse=73.27f lkf=.1096 Xtb=1.5 Br=11.1 Nc=2 lsc=0 lkr=0 Rc=.25 Cjc=18.36p Mjc=.3843 Vjc=.75 Fc=.5 Cje=55.61p Mje=.3834 Vje=.75 Tr=72.15n Tf=516.1p ltf=.5 Vtf=4 Xtf=6 Rb=10)