Low-Saturation 1200mA Regulators Monolithic IC MM176

0.21V typ. (lo=1200mA)

0.9 to 2.0V (0.1V steps)

65dB typ.

-40 to +85°C

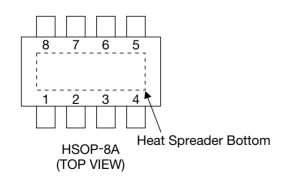
1µF (Ceramic)

Outline

This IC is a small stabilized power supply IC that provides output voltage accuracy of $\pm 2\%$, output current of 1200mA (max.), and dropout voltage of 0.21V typ. with 1200mA. It also provides an output noise reduction pin and output ON/OFF control pin.

Features

- 1. Current consumption (no load) 1mA typ.
- 2. High accuracy output voltage ±2.0%
- 3. Dropout voltage
- High ripple rejection
- 5. Operating temperature range
- 6. Output voltage
- 7. Output capacitor


Package

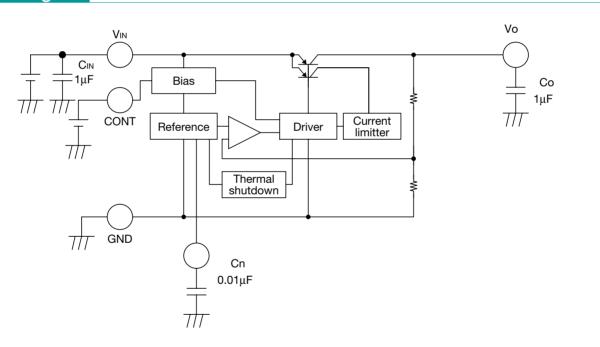
HSOP-8A

Applications

- 1. TVs
- 2. Printers
- 3. DVD equipment
- 4. Portable equipment

Pin Assignment

1	Vout			
2	NC			
3	GND			
4	Cn			
5	CONT			
6	NC			
7	NC			
8	Vin			


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

R No. table

Taping: B housing

Parts No.	Vo (V)	R No. (R59)
MM1760KHBE	0.9	1480
MM1761AHBE	1.0	1481
MM1761BHBE	1.1	1482
MM1761CHBE	1.2	1479
MM1761DHBE	1.3	1483
MM1761EHBE	1.4	1484
MM1761FHBE	1.5	1485
MM1761GHBE	1.6	1486
MM1761HHBE	1.7	1487
MM1761JHBE	1.8	1488
MM1761KHBE	1.9	1489
MM1762AHBE	2.0	1490

Block Diagram

Pin No. Pin name Function Internal equivalent circuit diagram 1 VOUT Output pin The capacitor must be connected with the output pin more than 1µF. 2 NC No connection GND Ground 3 Noise decrease pin 4 Cn Connecting with the 0.01µF capacitor can decrease output noise. If the capacitor is not connected, the pin may be influenced by outside noise. CONT 5 Control pin CONT Output 500k Η ON L OFF TTNC 6 No connection 7 NC No connection 8 VIN Input pin The capacitor is required Input to be connected with the circuit input pin more than 1µF. π

Pin Description

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-40~+150	°C
Supply voltage	Vin	-0.3~+12	V
Max output current	Iout max	1.5	A
Power dissipation	Pd	1800 (*1)	mW

Note1: *1 With the double sided PC Board of glass epoxy. (37×37×1.6mm copper plane 80%)

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Recommended Operating Conditions (Ta=25°C)

Item	Symbol	Ratings	Units	
Operating temperature	Topr	-40~+85	°C	
Output current	Iout	0~1.2	А	
Operating voltage	Vop	Vo (Typ.) 0.3~10 (*1)	V	

Note1: *1 The Operating voltage is 0.35~10V in the model less than Vout=1V.

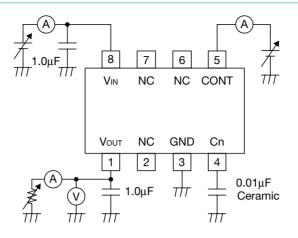
Electrical Characteristics 1 (Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, VCONT=0.8V, Io=1mA)

Item	Symbol	Measurement conditions		Тур.	Max.	Units
No-Load input current	Icc	Io=0mA		1	2	mA
Input current (OFF)	Iccoff	Vcont=0V		0	1	μA
Output voltage *2	Vout		×0.98		×1.02	V
Dropout voltage *3	Vio	VIN=VOUT-0.1V, Io=1.2A		0.21	0.3	V
Line regulation	⊿V1	VIN=Vo+0.5~Vo+1.5V		10	20	mV
Load regulation *1	riangle V2	Io=0~1.2A		15	40	mV
Vout temperature coefficient *1	$\Delta Vout / \Delta T$	π/⊿T Tj=-40~+85°C		100		ppm/°C
Ripple rejection *1	RR	f=1kHz	50	65		dB
		Vripple=0.5V, Io=250mA				
Output noise voltage *1	Vn	fBW=20~80kHz Cn=0.01µF		60		μVrms
Output hoise voltage Al	V 11	fBW=20~80kHz Cn=OPEN				μνιμο
CONT pin input current *4	Icont			0.3	0.6	μA
CONT pin high threshold level	VCONTH		0.8		10	V
CONT pin low threshold level	VCONTL		-0.3		0.2	V

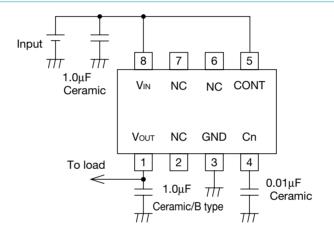
Note 1: *1 The parameter is guaranteed by design.

Note 2: *2 Please refer to Electrical Characteristics 2.

Note 3: *3 The parameter is not guaranteed in the model less than Vout=1V.


Note 4: *4 Please refer to 'Characteristics'.

Electrical Characteristics 2 (Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, Io=1mA)

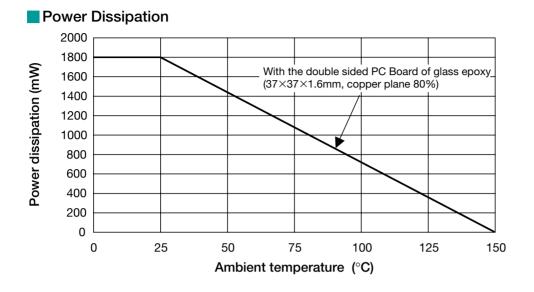

Output Voltage					
Model No.	Test	Output voltage			
	conditions	Min.	Тур.	Max.	
MM1760K		0.870	0.9	0.930	
MM1761A		0.970	1.0	1.030	
MM1761B		1.070	1.1	1.130	
MM1761C		1.170	1.2	1.230	
MM1761D		1.270	1.3	1.330	
MM1761E		1.370	1.4	1.430	
MM1761F		1.470	1.5	1.530	
MM1761G		1.568	1.6	1.632	
MM1761H		1.666	1.7	1.734	
MM1761J		1.764	1.8	1.836	
MM1761K		1.862	1.9	1.938	
MM1762A		1.960	2.0	2.040	

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

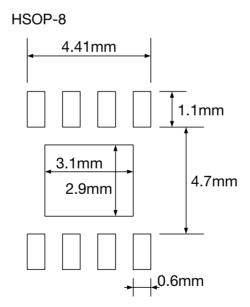
Measuring Circuit

Application Circuit

CIN		Co	DUT	
Capacity	Kind	Capacity	Kind	Characteristics
2.2µF or more	Ceramic	10µF	Ceramic	B type/X5R
1.0µF	Ceramic	1.0µF	Ceramic	B type/X5R


Note

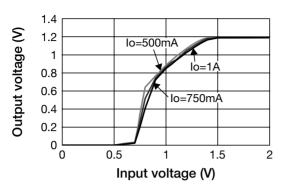
- 1. The output capacitor is required between output and GND to prevent oscillation.
- 2. The output capacitor must be used in ESR stable area.
- 3. The wire of Vcc and GND is required to print full ground plane for noise and stability.
- 4. The input capacitor must be connected in 1cm from input pin.
- 5. The capacitor connected to Cn must have low leakage current characteristics, because Cn pin is high impedance.
- 6. In case the output voltage is above the input voltage, the overcurrent flows by internal parasitic diode from output to input. In such application, the external bypass diode must be connected between the output pin and the input pin.

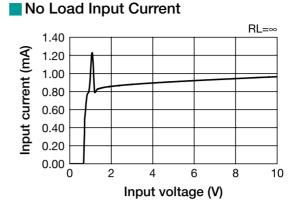

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Power Dissipation

This IC's GND pin and the Heat Spreader Bottom effectively radiate heat. By increasing these copper foil pattern area of PCB, power dissipation improves. Please kindly design PCB pattern taking care of above features about the power dissipation.

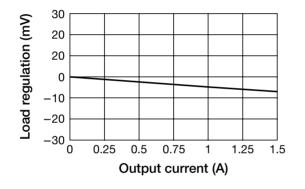
Land Pattern Recommendation

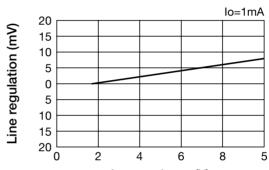



Note: These Dimensions are the reference values.

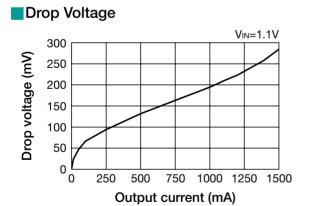
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

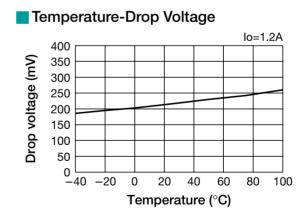
Characteristics (Vo=1.2V Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, VCONT=0.8V, CIN=1.0µF, Co=1.0µF)


Input Voltage-Output Voltage



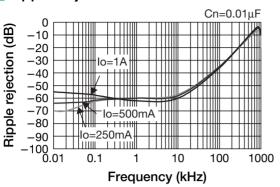
Load Regulation

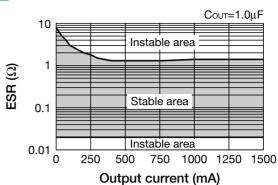

ation



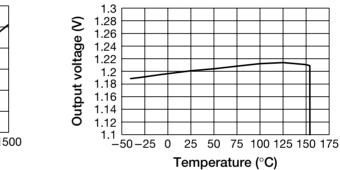
Line Regulation

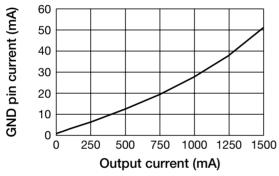
Input voltage (V)

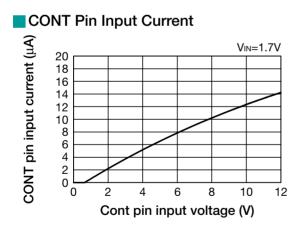


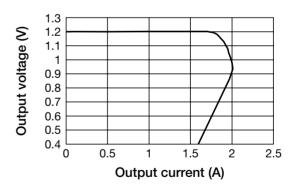

Characteristics (Vo=1.2V Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, VCONT=0.8V, CIN=1.0µF, Co=1.0µF)

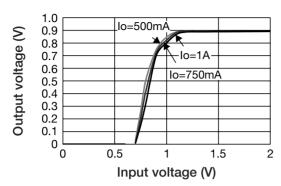
Ripple Rejection

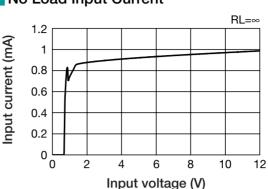

GND Pin Current


ESR Stable Area

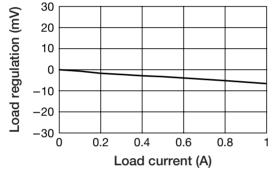


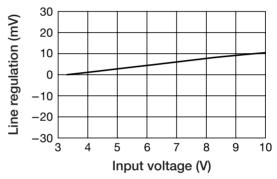

Output Voltage-Temperature

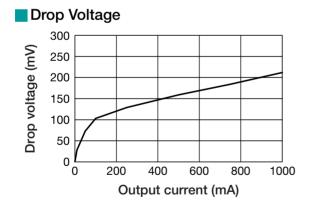

Current Limit

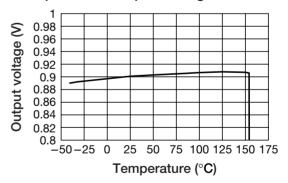


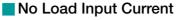
Characteristics (Vo=0.9V Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, VCONT=0.8V, CIN=1.0µF, Co=1.0µF)

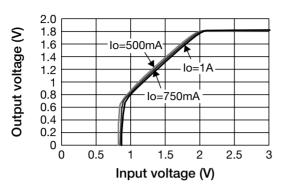

Input Voltage-Output Voltage

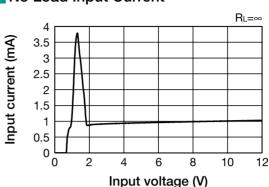




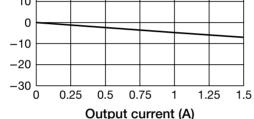


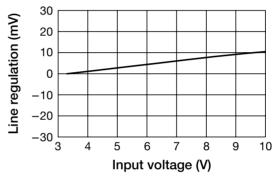



Temperature-Output Voltage

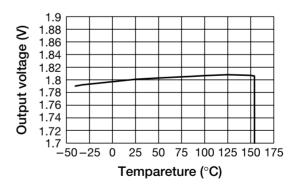


Characteristics (Vo=1.8V Except where noted otherwise, Ta=25°C, VIN=Vo+0.5V, VCONT=0.8V, CIN=1.0µF, Co=1.0µF)


Input Voltage-Output Voltage



Load Regulation 30 Load regulation (mV) 20 10



Line Regulation

Drop Voltage VIN=1.7V 300 Drop voltage (mV) 250 200 150 100 50 0 250 500 750 1000 1250 1500 0 Output current (mA)

Temperature-Output Voltage

