

8-bit Microcontroller with a Built-in LCD driver

GENERAL DESCRIPTION

This LSI is a high-performance 8-bit CMOS microcontroller into which rich peripheral circuits, such as synchronous serial port, UART, I2C bus interface (master), melody driver, battery level detect circuit, RC oscillation type A/D converter, and LCD driver, are incorporated around 8-bit CPU nX-U8/100.

The CPU nX-U8/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by 3-stage pipe line architecture parallel processing. The Mask ROM is installed and is most suitable for battery-driven applications.

FEATURES

- CPU
 - 8-bit RISC CPU (CPU name: nX-U8/100)
 - Instruction system: 16-bit instructions
 - Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on
 - Minimum instruction execution time 30.5 μs (@32.768 kHz system clock) 0.24 4μs (@4.096 MHz system clock)
- Internal memory
 - Internal 48KByte Mask ROM (24K×16 bits) (including unusable 1KByte TEST area)
 - Internal 3KByte Data RAM (3072×8 bits), 1KByte Display Allocation RAM (1024 x 8bit)
 - Internal 192-byte RAM for display
- Interrupt controller
 - 2 non-maskable interrupt sources (Internal source: 1, External source: 1)
 - 27 maskable interrupt sources (Internal sources: 19, External sources: 8)
- Time base counter
 - Low-speed time base counter ×1 channel Frequency compensation (Compensation range: Approx. –488ppm to +488ppm. Compensation accuracy: Approx. 0.48ppm)
 - High-speed time base counter ×1 channel
- Watchdog timer
 - Non-maskable interrupt and reset
 - Free running
 - Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s)
- Timers
 - 8 bits × 2 channels (16-bit configuration available)
- 1 kHz timer
 - 10 Hz/1 Hz interrupt function

FEDL610429-05

Issue Date: Apr.24, 2015

- PWM
 - Resolution 16 bits \times 3 channel
- Synchronous serial port
 - Master/slave selectable
 - LSB first/MSB first selectable
 - 8-bit length/16-bit length selectable
 - Timer interrupt is used as a serial clock and selection is possible
- UART
 - TXD/RXD \times 1 channel
 - Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
 - Positive logic/negative logic selectable
 - Built-in baud rate generator
- I²C bus interface
 - Master function only
 - Fast mode (400 kbps@4MHz), standard mode (100 kbps@4MHz, 50kbps@500kHz)
- Melody driver
 - Scale: 29 types (Melody sound frequency: 508 Hz to 32.768 kHz)
 - Tone length: 63 types
 - Tempo: 15 types
 - Buzzer output mode (4 output modes, 8 frequencies, 16 duty levels)
- RC oscillation type A/D converter
 - 24-bit counter
 - Time division \times 2 channels
- General-purpose ports
 - Non-maskable interrupt input port \times 1 channel
 - Input-only port \times 10 channels (including secondary functions)
 - Output-only port \times 3 channels (including secondary functions)
 - Input/output port: 20 channels (including secondary functions)

• LCD driver

- Dot matrix can be supported: 512 dots max. (64 seg \times 8 com), 1/1 to 1/8 duty
- 1/3 or 1/4 bias (built-in bias generation circuit)
- Frame frequency selectable (approx. 32Hz, 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
- Bias voltage multiplying clock selectable (8 types)
- Contrast adjustment (1/3 bias: 32 steps, 1/4 bias: 20 steps)
- LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
- Programmable display allocation function (available only when $1/1 \sim 1/8$ duty is selected)

• Reset

- Reset through the RESET_N pin
- Power-on reset generation when powered on
- Reset when oscillation stop of the low-speed clock is detected
- Reset by the watchdog timer (WDT) overflow
- Power supply voltage detect function
 - Judgment voltages: One of 16 levels
 - Judgment accuracy: ±2% (Typ.)
- Clock
 - Low-speed clock: (This LSI can not guarantee the operation without low-speed clock) Crystal oscillation (32.768 kHz)
 - High-speed clock: Built-in RC oscillation (2M/500kHz) Built-in PLL oscillation (8.192 MHz), crystal/ceramic oscillation (4.096 MHz), external clock
 Selection of high speed clock mode by software:
 - Selection of high-speed clock mode by software:
 Built-in RC oscillation, built-in PLL oscillation, crystal/ceramic oscillation, external clock
- Power management
 - HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
 - STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
 - Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, or 1/8 of the oscillation clock)
 - Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.
- Guaranteed operating range
 - Operating temperature: –20°C to 70°C
 - Operating voltage: $V_{DD} = 1.1V$ to 3.6V

• Product name – Supported Function

The line-up of the ML610Q429 is below.

- Chip (Die) -	ROM type	Operating temperature	Product availability
ML610429-xxxWA	Mask ROM	-20°C to +70°C	Yes

xxx: ROM code number (xxx of the blank product is NNN) WA: Chip

BLOCK DIAGRAM ML610429 Block Diagram

Figure 2 show the block diagram of the ML610429. "*" indicates the secondary function of each port.

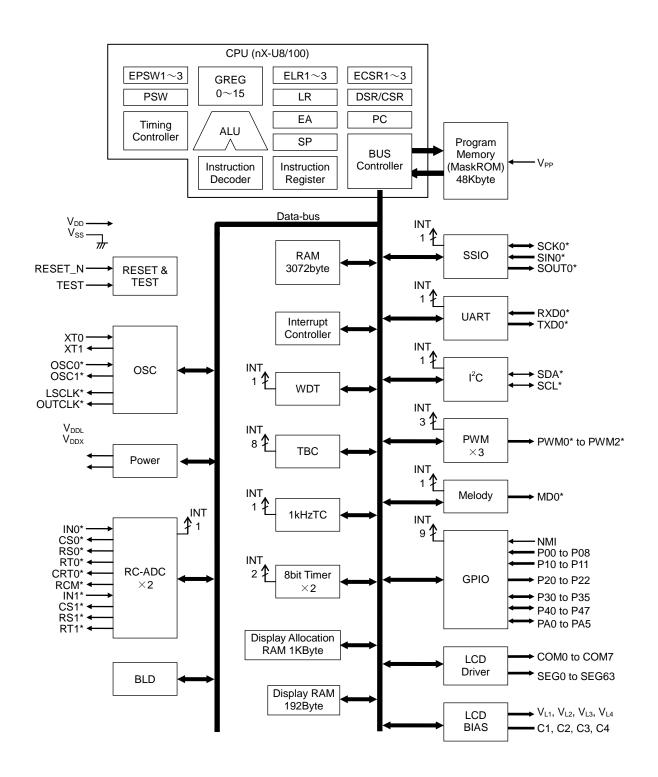
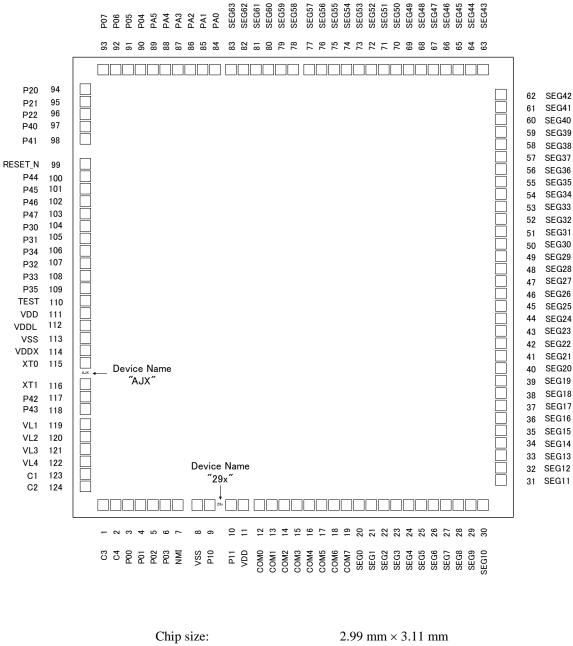



Figure 1 ML610429 Block Diagram

ML610429 Chip Dimension

PAD count:124 pinsMinimum PAD pitch: $80 \ \mu m$ PAD aperture: $70 \ \mu m \times 70 \ \mu m$ Chip thickness: $350 \ \mu m$ Voltage of the rear side of chip: V_{ss} level

Figure 2 ML610429 Chip Dimension

Note:

Figure 6 is an image figure of the order of PAD, and it differs from an actual image. Refer to the PAD coordinate for detailed arrangement.

A chip angle can be checked by the distinguishing mark of three figures.

PIN LIST

PAD No.		Prima	ary function	S	Secor	ndary function		Tert	tiary function
429	Pin name	I/O	Function	Pin name	-	Function	Pin name		Function
8,113	Vss	_	Negative power supply pin		_	_	_		_
11,111	V _{DD}	_	Positive power supply pin		_	_	_		_
112	V _{DDL}		Power supply pin for internal logic (internally generated)	_		_	_	_	_
114	V _{DDX}	_	Power supply pin for low-speed oscillation (internally generated)			_	_	_	_
119	V _{L1}		Power supply pin for LCD bias (internally generated)	_	—	—	_	_	—
120	V _{L2}		Power supply pin for LCD bias (internally generated)	_	—	_	_		_
121	V _{L3}	—	Power supply pin for LCD bias (internally generated)	_	_	_	_		_
122	V _{L4}		Power supply pin for LCD bias (internally generated)		_	_	_		
123	C1	_	Capacitor connection pin for LCD bias generation	_	_	_	—	—	_
124	C2	—	Capacitor connection pin for LCD bias generation	_	_	_	—	—	_
1	C3	—	Capacitor connection pin for LCD bias generation	_	—		—	_	_
2	C4	—	Capacitor connection pin for LCD bias generation	_	_	_	—	_	_
110	TEST	I/O	Input/output pin for testing	_	—		—	—	_
99	RESET_N	Ι	Reset input pin		—	—		—	—
115	XT0	I	Low-speed clock oscillation pin	_	_		_	—	
116	XT1	0	Low-speed clock oscillation pin		—		—	—	
7	NMI	Ι	Non-maskable interrupt pin	—	—	—	—	—	_
3	P00/EXI0	I	Input port, External interrupt 0 input		_		_	—	
4	P01/EXI1	I	Input port, External interrupt 1 input		—	_	—	—	_
5	P02/EXI2 /RXD0 /P2CK	I	Input port, External interrupt 2, UART0 receive, PWM2 external clock input		_	_			_
6	P03/EXI3	I	Input port, External interrupt 3	_		_	_		_
90	P04/EXI4	I/O	Input port, External interrupt 4	_	_	_	_		_
91	P05/EXI5	I/O	Input port, External interrupt 5	_	_	—	—	—	—
92	P06/EXI6	I/O	Input port, External interrupt 6			—	_		_
93	P07/EXI7	I/O	Input port, External interrupt 7		_	_		—	
9	P10	I	Input port	OSC0	I	High-speed oscillation	—	—	—

PAD No.	D. Primary function			Secondary function				Tertiary function		
429	Pin name	1/0	Function	Pin name	1/0	Function	Pin name		Function	
10	P11	1/0	Input port	OSC1	0	High-speed oscillation		1/0	T difetion	
94	P20/LED0	0	Output port	LSCLK	0	Low-speed clock output	PWM2	0	PWM2 output	
95	P21/LED1	0	Output port	OUTCLK	0	High-speed clock output			_	
96	P22/LED2	0	Output port	MD0	0	Melody output	_			
104	P30	I/O	Input/output port	IN0	Ι	RC type ADC0 oscillation input pin	PWM2	0	PWM2 output	
105	P31	I/O	Input/output port	CS0	0	RC type ADC0 reference capacitor connection pin	_	_	_	
107	P32	I/O	Input/output port	RS0	0	RC type ADC0 reference resistor connection pin	_		_	
108	P33	I/O	Input/output port	RT0	0	RC type ADC0 resistor sensor connection pin		_	_	
106	P34	I/O	Input/output port	RCT0	0	RC type ADC0 resistor/capacitor sensor connection pin	PWM0	0	PWM0 output	
109	P35	I/O	Input/output port	RCM	0	RC type ADC oscillation monitor	PWM1	0	PWM1 output	
97	P40	I/O	Input/output port	SDA	I/O	I ² C data input/output	SIN0	Ι	SSIO data input	
98	P41	I/O	Input/output port	SCL	I/O	I ² C clock input/output	SCK0	I/O	SSIO synchronous clock	
117	P42	I/O	Input/output port	RXD0	Ι	UART data input	SOUT0	0	SSIO data output	
118	P43	I/O	Input/output port	TXD0	0	UART data output	PWM0	0	PWM0 output	
100	P44/T02P 0CK	I/O	Input/output port, Timer 0/Timer 2/PWM0 external clock input	IN1	I	RC type ADC1 oscillation input pin	SIN0	Ι	SSIO0 data input	
101	P45/T13P 1CK	I/O	Input/output port, Timer 1/Timer 3/PWM1 external clock input	CS1	0	RC type ADC1 reference capacitor connection pin	SCK0	I/O	SSIO0 synchronous clock	
102	P46/T46P 2CK	I/O	Input/output port, PWM2 external clock input	RS1	0	RC type ADC1 reference resistor connection pin	SOUT0	0	SSIO0 data output	
103	P47	I/O	Input/output port	RT1	0	RC type ADC1 resistor sensor connection pin	PWM1	0	PWM1 output	
84	PA0	I/O	Input/output port	_	_	_		_		
85	PA1	I/O	Input/output port	_	—	_	_		—	
86	PA2	I/O	Input/output port						—	
87	PA3	I/O	Input/output port	_		_			_	
88	PA4	I/O	Input/output port			_			_	
89	PA5	I/O	Input/output port	_			_	_		
12	COM0	0	LCD common pin	_		_				
13	COM1	0	LCD common pin		_	—		_	_	
14	COM2	0	LCD common pin		_	—		_	_	
15	COM3	0	LCD common pin	_	_	—	_	_	_	
16	COM4	0	LCD common pin	_		_	_	_	_	
17	COM5	0	LCD common pin		_			_	_	
18	COM6	0	LCD common pin		_			_		
10	COM7	0	LCD common pin					_		
	COM8	0	LCD common pin					_		
	COM9	0	LCD common pin							
	COMI9 COM10	0	LCD common pin							
	COM10 COM11	0	LCD common pin		-					
	COM12	0	LCD common pin					_		
			LCD common pin						—	
	COM13 COM14	0	LCD common pin	_					—	
									—	
	COM15	0	LCD common pin		_					
	COM16	0	LCD common pin		—			—	—	
	COM17	0	LCD common pin		—			—	—	

429	D'			1					tiary function
	Pin name	I/O	Function	Pin name	I/O	Function	Pin name	I/O	Function
	COM18	0	LCD common pin		_				_
_	COM19	0	LCD common pin	_		_	_	_	—
	COM20	0	LCD common pin	_			_	_	
_	COM21	0	LCD common pin	_	_	_	_		
	COM22	0	LCD common pin			_		_	
	COM23	0	LCD common pin	_	_	_	_		
20	SEG0	0	LCD segment pin	_	_	_	_		_
21	SEG1	0	LCD segment pin	_	_	_	_		_
22	SEG2	0	LCD segment pin	_		_	_		_
23	SEG3	0	LCD segment pin	_					_
24	SEG4	0	LCD segment pin	_			_		
25	SEG5	0	LCD segment pin	_	_				
26	SEG6	0	LCD segment pin	_	_			_	
27	SEG7	0	LCD segment pin	_	_		_		
28	SEG8	0	LCD segment pin						
20	SEG9	0	LCD segment pin	_	_			_	
29 30	SEG10	0	LCD segment pin					-	
30 31	SEG10 SEG11	0	LCD segment pin					_	
31	SEG12	0	LCD segment pin						
		0	LCD segment pin						
33 34	SEG13 SEG14	0	LCD segment pin					—	—
		-		—	_			_	
35	SEG15	0	LCD segment pin		—				
36	SEG16	0	LCD segment pin	—	—				—
37	SEG17	0	LCD segment pin		—				—
38	SEG18	0	LCD segment pin		—				—
39	SEG19	0	LCD segment pin		—	—			—
40	SEG20	0	LCD segment pin	—	—		—	_	—
41	SEG21	0	LCD segment pin	—	—			—	—
42	SEG22	0	LCD segment pin	—	—				—
43	SEG23	0	LCD segment pin		—			—	—
44	SEG24	0	LCD segment pin	—	—			_	—
45	SEG25	0	LCD segment pin	—	—			_	—
46	SEG26	0	LCD segment pin	—	—	_	—	—	—
47	SEG27	0	LCD segment pin	—	—	—	—	—	—
48	SEG28	0	LCD segment pin	_	—	_	—	_	—
49	SEG29	0	LCD segment pin	—	—		—	_	—
50	SEG30	0	LCD segment pin	—			—	_	—
51	SEG31	0	LCD segment pin	—	_	_	—	_	—
52	SEG32	0	LCD segment pin	—	_	_	—	_	—
53	SEG33	0	LCD segment pin				—	_	
54	SEG34	0	LCD segment pin						_
55	SEG35	0	LCD segment pin		_			_	_
56	SEG36	0	LCD segment pin		_	_	_	_	
57	SEG37	0	LCD segment pin	_	_	_	_	_	
58	SEG38	0	LCD segment pin	_	_				—
59	SEG39	0	LCD segment pin	_	_	_		_	—
60	SEG40	0	LCD segment pin	_	_			_	
61	SEG41	0	LCD segment pin		_		_	_	
62	SEG42	0	LCD segment pin						
63	SEG43	0	LCD segment pin	_	_		_	_	
64	SEG43	0	LCD segment pin		_			_	
65	SEG44 SEG45	0	LCD segment pin						
	02040		LOD boginent pin	I —	·				

PAD No.		Prima	ary function	S	Secor	ndary function		Ter	tiary function
429	Pin name	I/O	Function	Pin name	I/O	Function	Pin name	I/O	Function
67	SEG47	0	LCD segment pin			_	_		_
68	SEG48	0	LCD segment pin			_	_		_
69	SEG49	0	LCD segment pin		—	_	_	_	_
70	SEG50	0	LCD segment pin			_	_		_
71	SEG51	0	LCD segment pin			_	_		_
72	SEG52	0	LCD segment pin		—	_	_	_	_
73	SEG53	0	LCD segment pin			_	_		_
74	SEG54	0	LCD segment pin			_	_		
75	SEG55	0	LCD segment pin			_			
76	SEG56	0	LCD segment pin		_	_			_
77	SEG57	0	LCD segment pin			_	_		_
78	SEG58	0	LCD segment pin			—			_
79	SEG59	0	LCD segment pin		_	_			
80	SEG60	0	LCD segment pin						
81	SEG61	0	LCD segment pin			_	_		_
82	SEG62	0	LCD segment pin			_			
83	SEG63	0	LCD segment pin				_		

PIN DESCRIPTION

			Primary/	
Pin name	I/O	Description	Secondary/	Logic
1 in name	"0	Description	Tertiary	Logic
System			Tertiary	
RESET_N	1	Reset input pin. When this pin is set to a "L" level, system reset mode is		Negative
RESET_N	'	set and the internal section is initialized. When this pin is set to a "H" level		Negative
		subsequently, program execution starts. A pull-up resistor is internally		
		connected.		
XT0	1	Crystal connection pin for low-speed clock.		
XT1	0	A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to		
		this pin. Capacitors CDL and CGL are connected across this pin and V_{SS}		
		as required.		
OSC0	Ι	Crystal/ceramic connection pin for high-speed clock.	Secondary	
OSC1	0	A crystal or ceramic is connected to this pin (4.1 MHz max.). Capacitors	Secondary	
		CDH and CGH (see measuring circuit 1) are connected across this pin		
		and V _{SS} .		
		This pin is used as the secondary function of the P10 pin(OSC0) and P11		
		pin(OSC1).		
LSCLK	0	Low-speed clock output pin. This pin is used as the secondary function of	Secondary	_
	_	the P20 pin.		
OUTCLK	0	High-speed clock output pin. This pin is used as the secondary function of	Secondary	_
General-purp	ose in	the P21 pin.		
P00-P03		General-purpose input port.	Drimon	Positive
P00-P03	1	Since these pins have secondary functions, the pins cannot be used as a	Primary	Positive
		port when the secondary functions are used.		
P04-P07	1	General-purpose input port.	Primary	Positive
F04-F07	'	Since these pins have secondary functions, the pins cannot be used as a	Fiindry	FUSILIVE
		port when the secondary functions are used.		
P10-P11	1	General-purpose input port.	Primary	Positive
110-111		Since these pins have secondary functions, the pins cannot be used as a	Thinary	1 0311100
		port when the secondary functions are used.		
General-purp	ose oi			
P20-P22	0	General-purpose output port.	Primary	Positive
. 20 . 22	Ũ	Since these pins have secondary functions, the pins cannot be used as a	1 million y	1 001110
		port when the secondary functions are used.		
General-purp	ose in	put/output port		
P30-P35	I/O	General-purpose input/output port.	Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
P40-P47	I/O	General-purpose input/output port.	Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
PA0-PA5	I/O	General-purpose input/output port.	Primary	Positive

Pin name	I/O	Description	Primary/ Secondary/ Tertiary	Logic
UART	1			
TXD0	0	UART data output pin. This pin is used as the secondary function of the P43 pin.	Secondary	Positive
RXD0	I	UART data input pin. This pin is used as the secondary function of the P42 or the primary function of the P02 pin.	Primary/Se condary	Positive
I ² C bus interfa	ace			
SDA	I/O	I^2C data input/output pin. This pin is used as the secondary function of the P40 pin. This pin has an NMOS open drain output. When using this pin as a function of the I^2C , externally connect a pull-up resistor.	Secondary	Positive
SCL	0	I^2C clock output pin. This pin is used as the secondary function of the P41 pin. This pin has an NMOS open drain output. When using this pin as a function of the I^2C , externally connect a pull-up resistor.	Secondary	Positive
Synchronous	serial	(SSIO)		
SCK0	I/O	Synchronous serial clock input/output pin. This pin is used as the tertiary function of the P41 or P45 pin.	Tertiary	—
SIN0	I	Synchronous serial data input pin. This pin is used as the tertiary function of the P40 or P44 pin.	Tertiary	Positive
SOUT0	0	Synchronous serial data output pin. This pin is used as the tertiary function of the P42 or P46 pin.	Tertiary	Positive
PWM				
PWM0	0	PWM0 output pin. This pin is used as the tertiary function of the P43 or P34 pin.	Tertiary	Positive
T0P0CK	I	PWM0 external clock input pin. This pin is used as the primary function of the P44 pin.	Primary	_
PWM1	0	PWM1 output pin. This pin is used as the tertiary function of the P47 or P35 pin.	Tertiary	Positive
T1P1CK	Ι	PWM1 external clock input pin. This pin is used as the primary function of the P45 pin.	Primary	_
PWM2	0	PWM2 output pin. This pin is used as the tertiary function of the P20 or P30 pin.	Tertiary	Positive
P2CK	I	PWM2 external clock input pin. This pin is used as the primary function of the P02 pin.	Primary	
External inter	rupt			
NMI	I	External non-maskable interrupt input pin. An interrupt is generated on both edges.	Primary	Positive/ negative
EXI0-7	Ι	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the P00-P07 pins.	Primary	Positive/ negative
Timer				
T0P0CK	I	External clock input pin used for Timer 0. This pin is used as the primary function of the P44 pin.	Primary	
T1P1CK	I	External clock input pin used for Timer 1. This pin is used as the primary function of the P45 pin.	Primary	_
Melody				
MD0	0	Melody/buzzer signal output pin. This pin is used as the secondary function of the P22 pin.	Secondary	Positive/ negative
LED drive				
LED0-2	0	Nch open drain output pins to drive LED.	Primary	Positive/ negative

.ogic
<u> </u>
_
—
—
_
_
_
_
_
_
_
_
_
_
_
_

TERMINATION OF UNUSED PINS

Table 3 shows methods of terminating the unused pins.

Pin	Recommended pin termination
V _{PP}	Open
$V_{L1}, V_{L2}, V_{L3}, V_{L4}$	Open
C1, C2, C3, C4	Open
RESET_N	Open
TEST	Open
NMI	Open
P00 to P07	V _{DD} or V _{SS}
P10 to P11	V _{DD}
P20 to P22	Open
P30 to P35	Open
P40 to P47	Open
PA0 to PA5	Open
COM0 to 23	Open
SEG0 to 63	Open

Table 3 Termination of Unused Pins

Note:

It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or the output mode since the supply current may become excessively large if the pins are left open in the high impedance input setting.

DIFFERENCES BETWEEN MASKROM VERSION and FLASHROM VERSION

This section describes differences between ML610429 (MaskROM version) and ML610Q429 (FlashROM version).

PAD Number

The PAD number is changed.

In MaskROM version, VPP pin which is power supply pin for Flash ROM was deleted.

On-Chip debug function

There is not On-Chip debug dunction in MaskROM version.

Chip behavior by RESET_N pin

The following table describes the difference of ML610429 and ML610Q428/ML610Q429 about RESET_N.

Table 5 Differences of ML610429 and ML610Q428/ML610Q429 about RESET_N

	ML610429	ML610Q428/ML610Q429
	(MaskROM version)	(FlashROM version)
Internal power supply	is shutdown by RESET_N.	is not shutdown by RESET_N.
(vddl, vddx)		vddl and vddx keep power on.
POR bit of RSTAT	is set to "1" after negating RESET_N, if	is set nothing.
	activating period is long.	There is no register flag by RESET_N.
ALL LSI pin directions	are not fixed during RESET_N is activated.	are fixed to "Z" by RESET_N.
	After negating, those pin are fixed to "Z"	
	normally.	

Figure 7 show Chip behavior by RESET_N pin.

Figure 7 Chip behavior by RESET_N pin

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

				$(V_{SS} = 0V)$
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V _{DD}	Ta = 25°C	-0.3 to +4.6	V
Power supply voltage 3	V _{DDL}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 4	V _{DDX}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 5	V _{L1}	Ta = 25°C	-0.3 to +1.75	V
Power supply voltage 6	V _{L2}	Ta = 25°C	-0.3 to +3.5	V
Power supply voltage 7	V _{L3}	Ta = 25°C	-0.3 to +5.25	V
Power supply voltage 8	V _{L4}	Ta = 25°C	-0.3 to +7.0	V
Input voltage	V _{IN}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	Port3–A, Ta = 25°C	-12 to +11	mA
Output current 2	I _{OUT2}	Port2, Ta = 25°C	-12 to +20	mA
Power dissipation	PD	Ta = 25°C	122	mW
Storage temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

				$(V_{SS} = 0V)$
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}		-20 to +70	°C
Operating voltage	V _{DD}		1.1 to 3.6	V
		V _{DD} = 1.1 to 3.6V	30k to 36k	
Operating frequency (CPU)	f _{OP}	V _{DD} = 1.3 to 3.6V	30k to 650k	Hz
		V _{DD} = 1.8 to 3.6V	30k to 4.2M	
Capacitor externally connected to	C _{L0}		1.0±30%	
V _{DDL} pin	C _{L1}		0.1±30%	μF
Capacitor externally connected to V_{DDX} pin	C _x		0.1±30%	μF
Capacitors externally connected to $V_{L1, 2, 3, 4}$ pins	Ca, b, c, d		1.0±30%	μF
Capacitors externally connected across C1 and C2 pins and across C3 and C4 pins	C _{12,} C ₃₄		1.0±30%	μF

CLOCK GENERATION CIRCUIT OPERATING CONDITIONS

	01 21011110	00121101				$(V_{SS} = 0V)$
Demonster	Quarteral	Ocardition		Rating		1.1
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-speed crystal oscillation frequency	f _{XTL}	_		32.768k		Hz
Recommended equivalent series resistance value of low-speed crystal oscillation	R∟	_		_	40k	Ω
		C _L =6pF of crystal oscillation ^{*2}		0		
Low-speed crystal oscillation external capacitor ^{*1}	C _{DL} /C _{GL}	C _L =9pF of crystal oscillation	_	6	_	pF
		C _L =12pF of crystal oscillation		12	_	
High-speed crystal/ceramic oscillation frequency	f _{XTH}	_	_	4.0M / 4.096M	_	Hz
High-speed crystal oscillation	C _{DH}	—		24		pF
external capacitor	C _{GH}	—	—	24		P

^{*1}: The external C_{DL} and C_{GL} need to be adjusted in consideration of variation of internal loading capacitance C_D and C_G, and other additional capacitance such as PCB layout.

^{*2}: When using a crystal oscillator $C_L = 6pF$, there is a possibility that can not be adjusted by external C_{DL} and C_{GL} .

DC CHARACTERISTICS (1/5)

	/	V _{DD} = 1.1 t	to 3.6V, $V_{SS} = 0V$,	Ta = -20	to +70°C	, unless c	otherwise	specified) (1/5)
Parameter	Symbol	(Condition		Rating			Measuring
	Symbol		Condition		Тур.	Max.	Unit	circuit
500kHz PC assillation fraguency	f	$V_{DD} =$	Ta = 25°C	Тур. –10%	500	Typ. +10%	kHz	
500kHz RC oscillation frequency	f _{RC}	1.3 to 3.6V	Ta = −20 to +70°C	Тур. –25%	500	Тур. +25%	kHz	
PLL oscillation frequency*4	f _{PLL}	LSCLK = 32.768kHz V _{DD} = 1.8 to 3.6V		-2.5%	8.192	+2.5%	MHz	
Low-speed crystal oscillation start time* ²	T _{XTL}	—		_	0.3	2	s	
500kHz RC oscillation start time	T _{RC}			—	50	500	μS	
High-speed crystal oscillation start time* ³	T _{XTH}	V _{DD} :	= 1.8 to 3.6V	_	2	20		1
PLL oscillation start time	T _{PLL}	V _{DD} :	= 1.8 to 3.6V	_	1	10	ms	
Low-speed oscillation stop detect time ^{*1}	T _{STOP}		_	0.2	3	20		
Reset pulse width	P _{RST}	—		200				
Reset noise elimination pulse width	P _{NRST}	_		—		0.3	μS	
Power-on reset activation power rise time	T _{POR}		_	_		10	ms	

*1: When low-speed crystal oscillation stops for a duration more than the low-speed oscillation stop detect time, the system is reset to shift to system reset mode.

 $*^{2}$: Use 32.768kHz crystal resonator DT-26 (Load capacitance 6pF) (made by KDS:DAISHINKU CORP.) is used (C_{GL}=C_{DL}=12pF).

*³: Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).

*⁴ : 1024 clock average.

[Reset pulse width]

VIL1 VIL1 RESET_N PRST Reset pulse width (P_{RST})

[Power-on reset activation power rise time]

Power-on reset activation power rise time (TPOR)

DC CHARACTERISTICS (2/5)

LCD bias voltage

generation time

 $\mathsf{T}_{\mathsf{BIAS}}$

Parameter	Symbol	C	dition		Rating		Unit	Measuring
Parameter	Symbol	Cor	lation	Min.	Тур.	Max.	Unit	circuit
			CN4–0 = 00H	0.89	0.94	0.99		
			CN4–0 = 01H	0.91	0.96	1.01		
			CN4–0 = 02H	0.93	0.98	1.03		
			CN4–0 = 03H	0.95	1.00	1.05		
			CN4–0 = 04H	0.97	1.02	1.07		
			CN4–0 = 05H	0.99	1.04	1.09		
			CN4–0 = 06H	1.01	1.06	1.11		
			CN4–0 = 07H	1.03	1.08	1.13		
			CN4–0 = 08H	1.05	1.10	1.15		
			CN4-0 = 09H	1.07	1.12	1.17		
			CN4-0 = 0AH	1.09	1.14	1.19		
			CN4-0 = 0BH	1.11	1.16	1.21		
			CN4-0 = 0CH	1.13	1.18	1.23		
			CN4-0 = 0DH	1.15	1.20	1.25		
			CN4-0 = 0EH	1.17	1.22	1.27		
		$V_{DD} = 3.0V$,	CN4-0 = 0FH	1.19	1.24	1.29	V	
V _{L1} voltage	V _{L1}	Tj = 25°C	CN4–0 = 10H	1.21	1.26	1.31	V	
		CN4–0 = 11H	1.23	1.28	1.33			
		CN4–0 = 12H	1.25	1.30	1.35			
			CN4–0 = 13H	1.27	1.32	1.37		
			CN4–0 = 14H ^{*1}	1.29	1.34	1.39		
			CN4–0 = 15H ^{*1}	1.31	1.36	1.41		1
			CN4–0 = 16H ^{*1}	1.33	1.38	1.43		
			CN4–0 = 17H ^{*1}	1.35	1.40	1.45		
			CN4–0 = 18H ^{*1}	1.37	1.42	1.47		
			CN4–0 = 19H ^{*1}	1.39	1.44	1.49		
			CN4–0 = 1AH ^{*1}	1.41	1.46	1.51		
			$CN4-0 = 1BH^{*1}$	1.43	1.48	1.53		
			CN4–0 = 1CH ^{*1}	1.45	1.50	1.55		
			CN4–0 = 1DH ^{*1}	1.47	1.52	1.57		
			$CN4-0 = 1EH^{*1}$	1.49	1.54	1.59		
			CN4–0 = 1FH ^{*1}	1.51	1.56	1.61		
V _{L1} temperature deviation	ΔV_{L1}	V _{DD}	= 3.0V		-1.5		mV/°C	
V _{L1} voltage dependency	ΔV_{L1}	$V_{DD} = 1$.3 to 3.6V		5	20	mV/V	
V _{L2} voltage	V _{L2}		V, Tj = 25°C ad (V _{L4} –V _{SS})	Typ. -10%	V _{L1} ×2	Тур. +4%		
V _{L3} voltage	V_{L3}	V _{DD} = 3.0V, Tj = 25°C	1/3 bias 1/4 bias	Typ. -10%	V _{L1} ×2 V _{L1} ×3	Тур. +4%	V	
V _{L4} voltage	V_{L4}	300kΩ load (V _{L4} –V _{SS})	1/3 bias 1/4 bias	Typ. –10%	V _{L1} ×3 V _{L1} ×4	Тур. +5%		
	-	(-1	17 + 0103	.070	VLIAT	. 370		

*1: When using 1/4 bias, the V_{L1} voltage is set to typ. 1.32 V (same voltage as in CN4–0 = 13H).

600

ms

DC CHARACTERISTICS (3/5)

Parameter	Symbol	Con	dition			Rating		Unit	Measuring circuit
	-,				Min.	Тур.	Max.		
			LD2–0 = 0H LD2–0 = 1H			1.35			
						1.4			
				–0 = 2H		1.45			
			LD2	–0 = 3H		1.5			
			LD2	–0 = 4H		1.6			
			LD2	–0 = 5H		1.7			
			LD2	–0 = 6H		1.8			
BLD threshold			LD2	–0 = 7H	Тур.	1.9	Тур.	v	
voltage	V _{BLD}	$V_{DD} = 1.35$ to 3.6V	LD2	–0 = 8H	-2%	2.0	+2%	v	
			LD2	–0 = 9H		2.1			
			LD2-0 = 0AH LD2-0 = 0BH		-	2.2	-		
						2.3			
			LD2-	-0 = 0CH		2.4			
			LD2-0 = 0DH LD2-0 = 0EH LD2-0 = 0FH		_	2.5			
						2.7			
						2.9			
BLD threshold voltage temperature deviation	ΔV_{BLD}	V _{DD} = 1.3	35 to 3.6V			0		%/°C	1
Supply surrent 1		CPU: In STOP state.	- illetie e	Ta = 25°C	—	0.15	0.50	٥	
Supply current 1	IDD1	Low-speed/high-speed os stopped.	cillation.	Ta = -20 to +70°C	_	_	2.50	μA	
Oursela compart O		CPU: In HALT state (LTB) Operating* ^{3*5}).	C, RTC:	Ta = 25°C		0.5	1.3		
Supply current 2 IDD2 High-spee		High-speed oscillation: St LCD/BIAS circuits: Stoppe		Ta = -20 to +70°C			3.5	μΑ	
		CPU: In 32.768kHz opera state.* ^{1*3}	ting	Ta = 25°C		5	7		
Supply current 3	IDD3	High-speed oscillation: St LCD/BIAS circuits: Opera		Ta = -20 to +70°C			12	μΑ	
	1		-	1					1

Ta = 25°C

Ta = -20 to

Ta = 25°C

Ta = -20 to

Ta = 25°C

Ta = -20 to

+70°C

+70°C

+70°C

70

0.4

0.8

85

100

0.5

0.6

1.0

1.2

μΑ

mΑ

mΑ

*1: CPU operating rate is 100% (No HALT state).

IDD4

IDD5

IDD6

Supply current 4

Supply current 5

Supply current 6

*2: All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz,

CPU: In 500kHz CR operating state.

LCD/BIAS circuits: Operating.*2*3

CPU: In 2MHz CR operating state.

CPU: In 4.096MHz operating state.

LCD/BIAS circuits: Operating. *2*3

PLL: In oscillating state.

 V_{DD} = 1.8 to 3.6V

LCD/BIAS circuits: Operating.*2*3

Bias voltage multiplying clock: 1/128 LSCLK (256Hz)

 $*^3$: Use 32.768kHz crystal resonator DT-26 (Load capacitance 6pF) (made by KDS:DAISHINKU CORP.) is used (C_{GL}=C_{DL}=12pF).

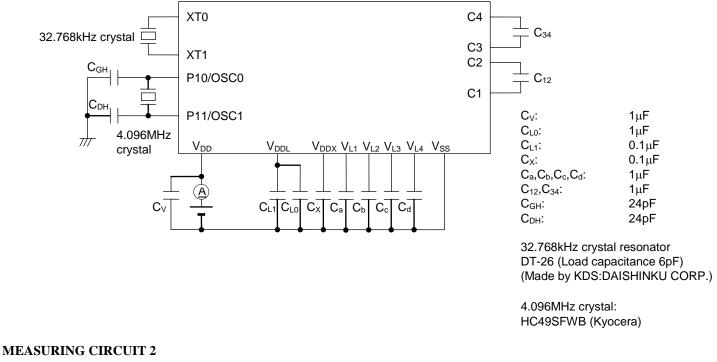
*⁴ : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).

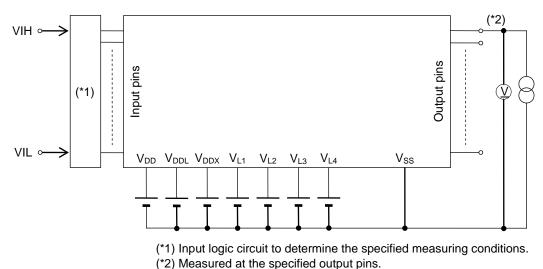
*5 : Significant bits of BLKCON0~BLKCON4 registers are all "1".

DC CHARACTERISTICS (4/5)

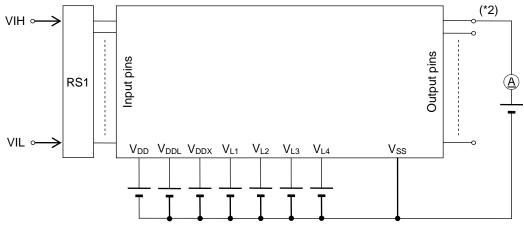
Doromoter	Currente - I	· · · · · · · · · · · · · · · · · · ·	dition		Rating		1.1	Measuring
Parameter	Symbol	Con	dition	Min.	Тур.	Max.	Unit	circuit
		IOH1 = -0.5mA,	V _{DD} = 1.8 to 3.6V	V _{DD} -0.5				
Output voltage 1 (P20–P22/2 nd	VOH1	IOH1 = -0.1mA,	V _{DD} = 1.3 to 3.6V	V _{DD} 0.3	—			
function is selected)		IOH1 = -0.03mA	, $V_{DD} = 1.1$ to 3.6V	V _{DD} -0.3				
(P30–P36) (P40–P47)		IOL1 = +0.5mA,	V _{DD} = 1.8 to 3.6V	_		0.5		
(PA0–PA5)	VOL1	IOL1 = +0.1mA,	V _{DD} = 1.3 to 3.6V			0.5		
	VOLT	IOL1 = +0.03mA	, $V_{DD} = 1.1$ to 3.6V	—	—	0.3		
		IOH1 = -0.5mA,	V _{DD} = 1.8 to 3.6V	V _{DD} -0.5				
Output voltage 2 (P20–P22/2 nd	VOH2	IOH1 = -0.1mA,	V _{DD} = 1.3 to 3.6V	V _{DD} -0.3				
function is Not selected)		IOH1 = -0.03mA	, V _{DD} = 1.1 to 3.6V	V _{DD} -0.3				
	VOL2	IOL2 = +5mA,	V _{DD} = 1.8 to 3.6V			0.5		
Output voltage 3 (P40–P41)	VOL3		$V_{DD} = 2.0$ to 3.6V ode is selected)	_	_	0.4	V	2
· · · · · ·	VOH4	, , , , , , , , , , , , , , , , , , ,	mA, VL1=1.2V	V _{L4} -0.2	_	_		
	VOMH4	IOMH4 = +0.2	2mA, VL1=1.2V	_	_	V _{L3} +0.2		
	VOMH4S	IOMH4S = -0.	2mA, VL1=1.2V	V _{L3} -0.2	_			
Output voltage 4 (COM0–23)	VOM4	IOM4 = +0.2	—	_	V _{L2} +0.2			
(SEG0-63)	VOM4S	IOM4S = -0.2	V _{L2} -0.2					
	VOML4	IOML4 = +0.2	_		V _{L1} +0.2			
	VOML4S	IOML4S = -0.1	2mA, VL1=1.2V	V _{L1} -0.2	_	_		
	VOL4	IOL4 = +0.2r	mA, VL1=1.2V			0.2		
Output leakage (P20–P22) (P30–P35)	ЮОН	VOH = V _{DD} (in hig	h-impedance state)	_	_	1	μA	3
(P40–P47) (P40–P45)	IOOL	VOL = V _{SS} (in hig	h-impedance state)	-1		_	μΛ	5
	IIH1	VIH1	= V _{DD}	0		1		
Input current 1			V_{DD} = 1.8 to 3.6V	-600	-300	-20		
(RESET_N)	IIL1	$VIL1 = V_{SS}$	V_{DD} = 1.3 to 3.6V	-600	-300	-10		
			$V_{DD} = 1.1 \text{ to } 3.6 \text{V}$	-600	-300	-2		
			$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	20	300	600		
nput current 1 (TEST)	IIH1	$VIH1 = V_{DD}$	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	10	300	600		
	IIL1	\/11.4	$V_{DD} = 1.1 \text{ to } 3.6\text{V}$ $ = V_{ss}$	2 -1	300	600	μA	4
	111	VILI	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	-1	30	200		
nput current 2	IIH2	$VIH2 = V_{DD}$			30	200		
(NMI) (P00–P03)	11112	(when pulled-down)	$V_{DD} = 1.3 \text{ to } 3.6\text{V}$ $V_{DD} = 1.1 \text{ to } 3.6\text{V}$	0.2	30	200		
(P04–P07)		VIL2 = V _{SS}	$V_{DD} = 1.1 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	-200	-30	200		
(P10–P11)	IIL2	(when pulled-up)	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	-200	-30	-0.2		

(P30–P35)			V _{DD} = 1.1 to 3.6V	-200	-30	-0.01	
(P40–P47) (PA0–PA5)	IIH2Z	$VIH2 = V_{DD}$ (in hig	h-impedance state)			1	
. ,	IIL2Z	VIL2 = V _{SS} (in higl	n-impedance state)	-1	_	_	

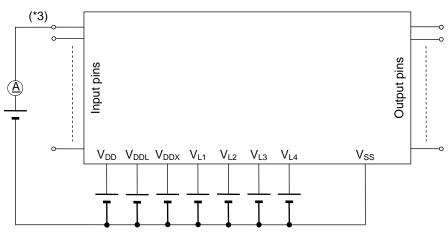

DC CHARACTERISTICS (5/5)


(V_{DD} = 1.1 to 3.6V, V_{SS} = 0V, Ta = -20 to $+70^{\circ}$ C, unless otherwise specified) (5/5)

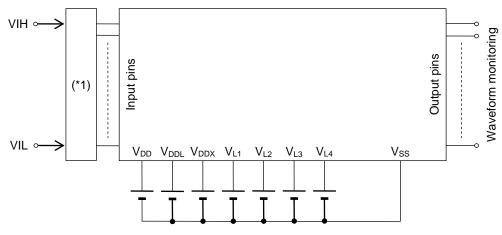
Devenueter	Currents of		,	Rating	•	Linit	Measuring
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
Input voltage 1 (RESET_N) (TEST)		V _{DD} = 1.3 to 3.6V	0.7 ×V _{DD}		V_{DD}		
(NMI) (P00–P03) (P04–P07)	VIH1	V_{DD} = 1.1 to 3.6V	0.7 ×V _{DD}	_	V_{DD}		
(P10–P11) (P31–P35) (P40–P43)	VIL1	V _{DD} = 1.3 to 3.6V	0		0.3 ×V _{DD}	V	5
(P45–P47) (PA0–PA5)		V _{DD} = 1.1 to 3.6V	0		0.2 ×V _{DD}		
Input voltage 2	VIH2	—	0.7 ×V _{DD}		V_{DD}		
(P30, P44)	VIL2	—	0	_	0.3 ×V _{DD}		
Input pin capacitance (NMI) (P00–P03) (P04–P07) (P10–P11) (P30–P35) (P40–P47) (PA0–PA5)	CIN	f = 10kHz V _{rms} = 50mV Ta = 25°C			5	pF	


MEASURING CIRCUITS

MEASURING CIRCUIT 1

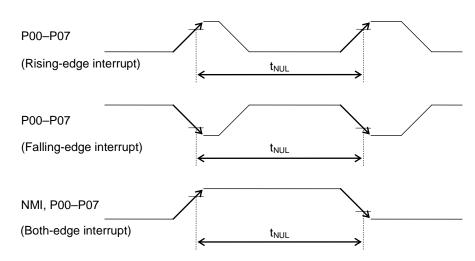


MEASURING CIRCUIT 3


*1: Input logic circuit to determine the specified measuring conditions.*2: Measured at the specified output pins.

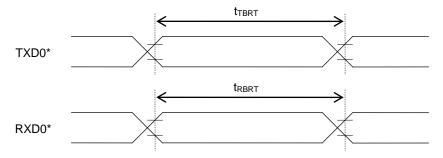
MEASURING CIRCUIT 4

*3: Measured at the specified output pins.


MEASURING CIRCUIT 5

*1: Input logic circuit to determine the specified measuring conditions.

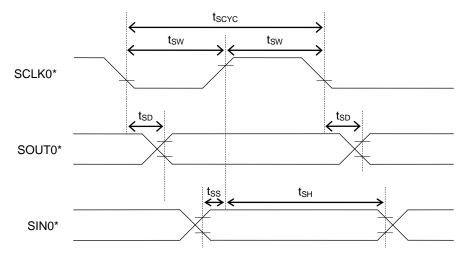
AC CHARACTERISTICS (External Interrupt)


	(`	$V_{DD} = 1.1$ to 3.6V, $V_{SS} = 0V$, Ta = -20 to	+70°C, ui	nless oth	erwise sp	pecified)
Parameter	Ci uma la cal	Condition	Rating			1.1
	Symbol	Condition	Min.	Тур.	Max.	Unit
External interrupt disable period	T _{NUL}	Interrupt: Enabled (MIE = 1), CPU: NOP operation System clock: 32.768kHz	76.8		106.8	μS

AC CHARACTERISTICS (UART)

$(V_{DD} = 1.3 \text{ to } 3.6 \text{V}, \text{V}_{SS} = 0 \text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, unless otherwise speci$								
Dorometer	Symbol	Condition		Rating		Linit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
Transmit baud rate	t _{TBRT}			BRT* ¹		s		
Receive baud rate	t _{RBRT}		BRT* ¹ –3%	BRT* ¹	BRT* ¹ +3%	S		

*1: Baud rate period (including the error of the clock frequency selected) set with the UART baud rate register (UA0BRTL,H) and the UART mode register 0 (UA0MOD0).



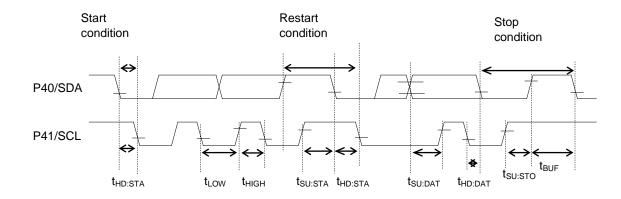
*: Indicates the secondary function of the port.

AC CHARACTERISTICS (Synchronous Serial Port)

Demonstern	Or mark all	Que dition		Rating		1.1
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCLK input cycle		When high-speed oscillation is not active	10			μS
(slave mode)	t _{SCYC}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	1			μS
SCLK output cycle (master mode)	tscyc		_	SCLK*1		s
SCLK input pulse width	tour	When high-speed oscillation is not active	4	—	—	μs
(slave mode)	t _{SW}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	0.4	_		μS
SCLK output pulse width (master mode)	t _{SW}	_	SCLK* ¹ ×0.4	SCLK* ¹ ×0.5	SCLK* ¹ ×0.6	s
SOUT output delay time		When high-speed oscillation is not active			540	ns
(slave mode)	t _{SD}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	_	_	240	ns
SOUT output delay time		When high-speed oscillation is not active	_	_	500	ns
(master mode)	t _{SD}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	_		240	ns
SIN input setup time (slave mode)	t _{SS}	_	80			ns
SIN input	t	When high-speed oscillation is not active	500			ns
setup time (master mode)	t _{SS}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	240			ns
SIN input		When high-speed oscillation is not active	300			ns
hold time	t _{SH}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	80	_	—	ns

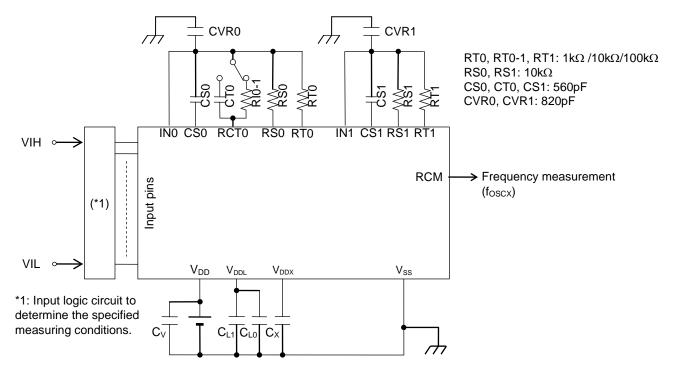
*1: Clock period selected with S0CK3–0 of the serial port 0 mode register (SIO0MOD1)

*: Indicates the secondary function of the port.


AC CHARACTERISTICS (I²C Bus Interface: Standard Mode 100kHz) ($V_{DD} = 1.8$ to 3.6V, $V_{SS} = 0V$, Ta = -20 to +70°C, unless otherwise specified)

Devenueter	O make at				1.1 14	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}		0		100	kHz
SCL hold time (start/restart condition)	t _{HD:STA}	_	4.0			μS
SCL "L" level time	t _{LOW}		4.7			μS
SCL "H" level time	t _{HIGH}		4.0			μS
SCL setup time (restart condition)	t _{SU:STA}	_	4.7			μS
SDA hold time	t _{HD:DAT}		0			μS
SDA setup time	t _{SU:DAT}		0.25			μS
SDA setup time (stop condition)	t _{SU:STO}	_	4.0			μs
Bus-free time	t _{BUF}		4.7			μS

AC CHARACTERISTICS (I²C Bus Interface: Fast Mode 400kHz)


 $(V_{DD} = 1.8 \text{ to } 3.6\text{V}, V_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specified})$

				Rating		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}		0		400	kHz
SCL hold time (start/restart condition)	t _{HD:STA}		0.6			μs
SCL "L" level time	t _{LOW}		1.3			μS
SCL "H" level time	t _{HIGH}		0.6			μS
SCL setup time (restart condition)	t _{SU:STA}		0.6			μs
SDA hold time	t _{HD:DAT}		0			μS
SDA setup time	t _{SU:DAT}		0.1			μS
SDA setup time (stop condition)	t _{SU:STO}		0.6			μs
Bus-free time	t _{BUF}		1.3			μS

AC CHARACTERISTICS (RC Oscillation A/D Converter) ΛI 1 2 to 2 61/ 1/

	`	(V _{DD} = 1.3 to 3.6V, V _{SS} = 0V, Ta =	-20 to +70°	C, unless c	otherwise s	pecified)
Parameter	Querrale al		Rating			1.1
	Symbol	Condition	Min.	Тур.	Max.	Unit
Resistors for oscillation	RS0, RS1,					
	RT0, RT0-1,RT1	CS0, CT0, CS1 ≥ 740pF	1			kΩ
Oscillation frequency VDD = 1.5V	f _{OSC1}	Resistor for oscillation = $1k\Omega$	209.4	330.6	435.1	kHz
	f _{OSC2}	Resistor for oscillation = $10k\Omega$	41.29	55.27	64.16	kHz
	f _{OSC3}	Resistor for oscillation = $100k\Omega$	4.71	5.97	7.06	kHz
Oscillation frequency VDD = 3.0V	f _{OSC1}	Resistor for oscillation = $1k\Omega$	407.3	486.7	594.6	kHz
	fosc2	Resistor for oscillation = $10k\Omega$	49.76	59.28	72.76	kHz
	f _{OSC3}	Resistor for oscillation = $100k\Omega$	5.04	5.993	7.04	kHz

Note:

- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise around the node.

- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to the signal.

- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved components may affect to the A/D conversion operation by noise the components itself may have.

Revision History

		Page					
Document No.	Date	Previous Edition	Current Edition	Description			
FEDL610428-01	Sep.9.2011	-	_	Formally edition 1.0			
FEDL610428-02	Dec.22.2011	30	30	Change the AC Characteristics (RC Oscillation A/D Converter)			
FEDL610428-03	Jul.3.2012	30	30	Change the AC Characteristics (RC Oscillation A/D Converter)			
FEDL610428-04	Jul.25.2014	All	All	Change header and footer			
		3	3	Delete the metal option of only ML610429's LCD driver			
		3	4	Change from "Shipment" to " Product name – Supported Function "			
		-	21	Add CLOCK GENERATION CIRCUIT OPERATING CONDITIONS			
		20	22	Change "RESET" to "Reset pulse width (P _{RST})" and " Power-on reset activation power rise time (T _{POR})".			
		22	24	Correct the C _{GL} 's value and the C _{DL} 's value of DC CHARACTERISTICS (3/5)'s note No.3			
		31	33	Update Package Dimensions			
FEDL610428-05	Apr.24.2015	All	All	Change header and footer			
		1~5 7~9 11~15 17~19	1~3 6~10 12~13	Delete ML610428			
		33	-	Delete ML610429 Package			
		2	2	Corrected a typo. "100kbps@1MHz HSCLK" is corrected to 100kbps@4MHz HSCLK.			

<u>Notes</u>

- 1) The information contained herein is subject to change without notice.
- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2011 – 2015 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/