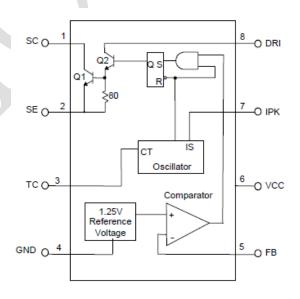


ML34063

DC/DC CONVERTER CONTROL CIRCUIT

GENERAL DESCRIPTION

The ML34063 is a monolithic control circuit containing the primary functions required for DC/DC converters. The device consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This device is specifically designed to be incorporated in step-down, step-up and voltage-inverting applications with a minimum number of external components. The $\pm 2\%$ internal reference and low quiescent current of 1.6mA are among the improvements of the device over the competition


FEATURES

- ◆ 3V to 40V Input Voltage Operation.
- Internal 1.5A Peak Current Switch.
- Internal ±2% Reference.
- Low Quiescent Current .
- Frequency Operation Up to 100KHz.
- Low Dropout Operation: 100% Duty Cycle
- Current Limiting.
- Standard DIP8 and SOP8 Packages

Applications

- DC-DC Converter Module
- ♦ ADSL Modems
- ♦ Hub.
- Battery Chargers

Functional Diagram

Symbol	Pin NO.	Description		
SC	1	1.5A switch collector		
SE	2	Darlington switch emitter		
тс	3	Oscillator timing capacitor		
GND	4	Power GND		
FB	5	Feedback comparator inverting input		
VCC	6	Power supply input		
IPK	7	Highside current sense input, VCC - VIPK=300mV		
DRI	8	Drive collector		

Ordering Information

ORDERI NG NUM BER	PACKAGE
ML34063	SOP8
ML34063A	DIP8

Absolute Maximum Ratings

Supply Voltage	40V
Comparator Input Voltage Range	0.3V~40V
Switch Collector Voltage	. 40V
Switch Emitter Voltage	40V
Switch Collector to Emitter Voltage	40V
Driver Collector Voltage	40V
Switch Current	1.5A
Power Dissipation and Thermal Characteristics	
DIP Package	
Ta= 25°C	1.0W
Thermal Resistance	100°C /W
SO Package	
Ta= 25°C	625mW
Thermal Resistance	160°C /W
Operating Junction Temperature	125°C
Operating Ambient Temperature Range	0°C~70°C
Storage Temperature Range	- 65°C~150°C
Vort 0	

Electrical Characteristics (Vcc= 5V, Ta=25°C (unless otherwise specified.)

Parameter	Test Condictions	Symbol	MIN.	TYP.	MAX.	Unit
Oscillator						
Frequency	$V_{PIN5} = 0V$, $C_T = 1nF$	f _{OSC}	24	35	46	KHz
Charging Current	5.0V~VCC~40V	Існа	24	35	46	μA
Discharge Current	5.0V~VCC~40V	Іліясна	140	220	260	μA
Voltage Swing	PIN 3	Vosc		0.6		V
Discharge to Charge Current Ratio	Vipk(sense) =VCC	Ідіясна/ Існа		6.0		¢
Current Limit Sense Voltage	Існд-Ідіяснд	VIPK(SENSE)	250	320	400	mV
Output Switch						
Saturation Voltage, Darlington Connection	Isw=1.0A; Vc(driver)⁼Vc(switch)	Vce(sat)		1.0	1.3	V
Saturation Voltage	Isw=1.0A; Ic(DRIVER)⁼50mA (Forced ß=20)	VCE (SAT)		0.45	0.7	V
DC Current Gain	Isw=1.0A; Vce=5.0V	hfe	50	75		
Collector Off-State Current	Vce=40V			10		nA
Comparator						
Threshold Voltage	0°C~Ta~70°C	Vfb	1.225	1.25	1.275	V
Threshold Voltage			1.19		1.31	V
Threshold Voltage Line Regulation	3.0V~VCC~40V	REGLINE	0.10.3			mV/V
Input Bias Current	VIN=0V	IIB	0.41			μA
Supply current	VIPK(SENSE)=VCC VPIN 5>VFB	ICC			4	Ма
	5.0V~VCC~40V CT=0.001µF, PIN 2=GND					

Typical Performance Characteristics

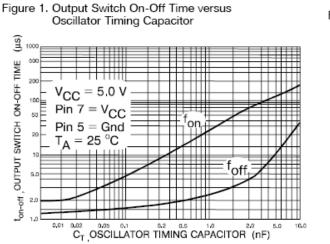
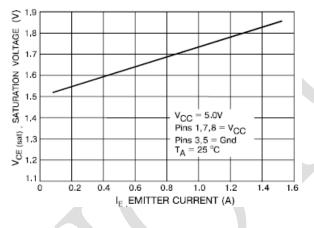



Figure 3. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

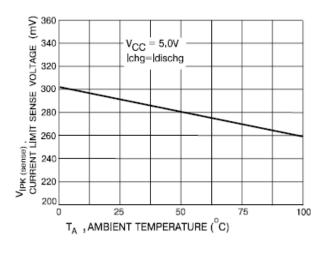
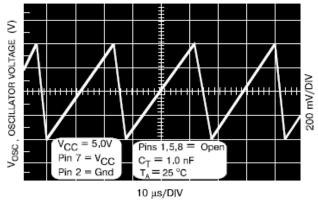



Figure 2. Timing Capacitor Waveform

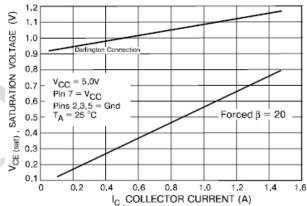
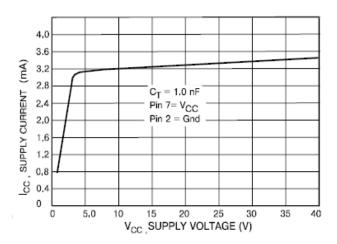



Figure 6. Standby Supply Current versus Supply Voltage

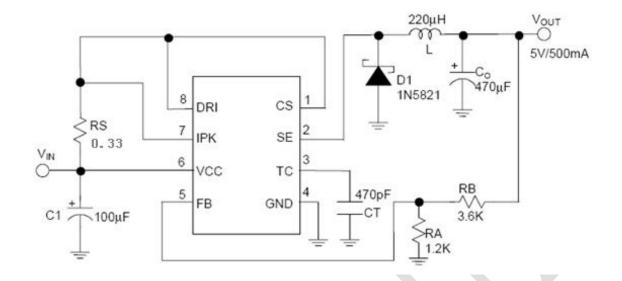
Design Formula Table

CALCULATION STEP-DOWN		STEP-UP	VOLTAGE-INVERTING	
ton t	Vout + VF	Vout + VF - VIN(MIN)	Vout + VF	
toff (t _{on} + t _{off}) _{max}	Vin(min) - Vsat - Vout <u>1</u> FMIN	<u>Vin(min)</u> - Vsat <u>1</u> FMIN	Vin - Vsat 1 FMIN	
С _т – Ним Ст – 4х10 ⁻⁵ t _{ом}		4 x 10 ⁻⁵ t _{on}	4 x 10 ⁻⁵ t _{on}	
I _{C (SWITCH)}	2I _{OUT(MAX)}	$2I_{OUT(MAX)}(\frac{t_{ON}+t_{OFF}}{t_{OFF}})$	$2I_{OUT(MAX)}(\frac{t_{ON}+t_{OFF}}{t_{OFF}})$	
RS	0.33/I _{C(SWITCH)}	0.33/ I _{C (SWITCH)}	0.33/ I _{C (SWITCH)}	
L(MIN)	(VIN(MIN) - VSAT - VOUT) IC(SWITCH)	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{C(SWITCH)}}})t_{\text{ON(MAX)}}$	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{C(SWITCH)}}})t_{\text{ON(MAX)}}$	
Co	$\frac{I_{C(SWITCH)} (t_{ON} + t_{OFF})}{8 V_{RIPPLE(P - P)}}$	IOUT TON VRIPPLE(P - P)	IOUT TON VRIPPLE(P - P)	

VSAT = Saturation voltage of the output switch.

VF = voltage drop of the ringback rectifier

The following power supply characteristics must be chosen:


- VIN -Nominal input voltage.
- VOUT -Desired output voltage,

IOUT |VOUT| =1.25 (1 + RB/RA) - Desired output current.

- FMIN Minimum desired output switching frequency at the selected values for VIN and IOUT
- VRIPPLE (P-P) Desired peak-to-peak output ripple voltage.In practice, the calculated value will need to be increased due to the capacitor equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

Line Regulation	V _{IN} = 10V ~20V @ Io=500mA	40mV
Load Regulation	V _{IN} = 15V, @ I₀=10mA ~ 500mA	5mV
Short Circuit Current	V _{IN} =15V, @ R _L = 0.1 Ω	1.3A

Fig.1 Step-Down converter

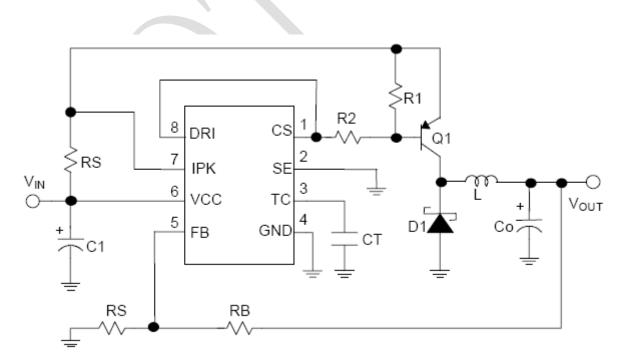
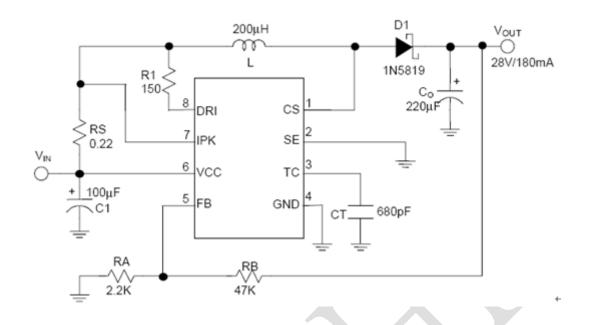



Fig.2 Step-Down converter with External PNP Saturation Switch

Line Regulation	V _{IN} = 8V ~16V @ I₀=180mA	50mV
Load Regulation	V⊪ = 12V, @ I₀=80mA ~ 180mA	10mV

Fig.3 Step-Up converter

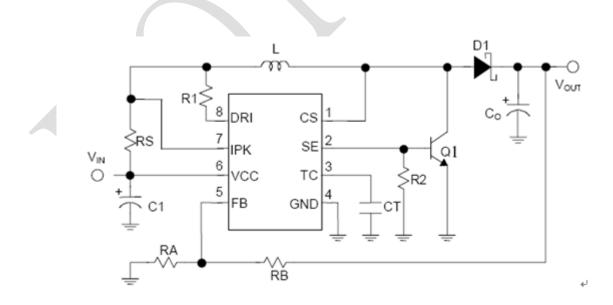
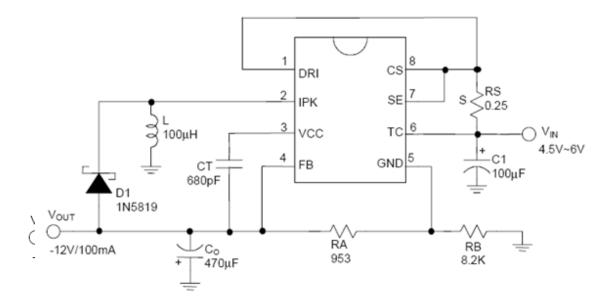
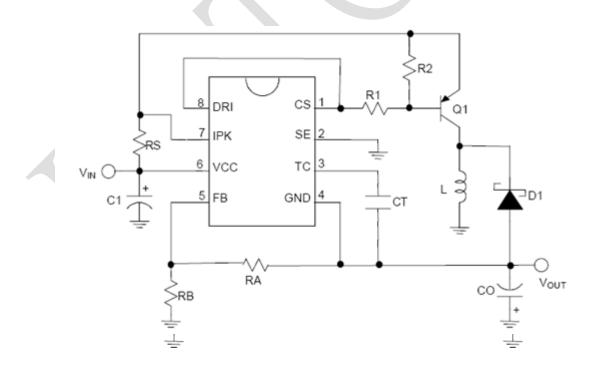



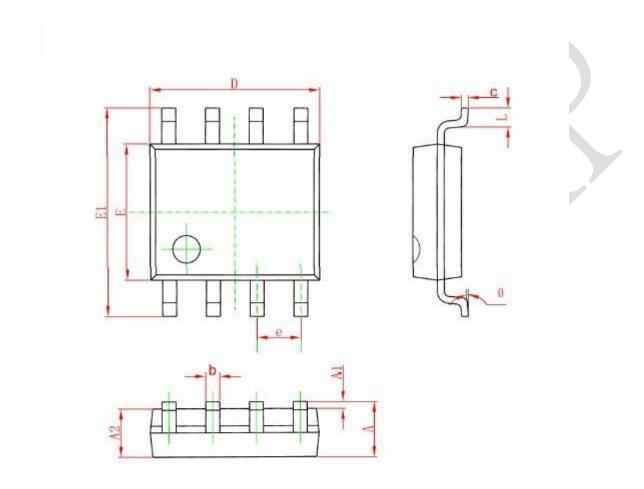
Fig.4 Step-up Converter with External NPN Switch



Application Examples (Continued)

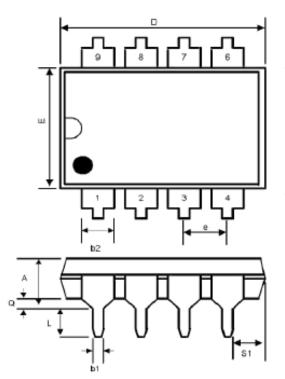
Line Regulation	V _{IN} =4.5V~6V @I _O =100mA	20mV
Load Regulation	V _{IN} =4.5V~6V @I _O =100mA	100mV

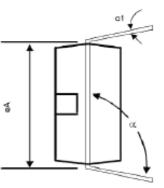
Fig.5 Inverting Converter


Fig 6. Voltage Inverting Converter With PNP Saturated Switch

PACKAGE DESCRIPTION

SOP8 PACKAGE OUTLINE DIMENSIONS




0	Dimensions In Millimeters		Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0. 330	0.510	0.013	0, 020
C	0.170	0. 250	0.006	0.010
D	4. 700	5.100	0, 185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6. 200	0, 228	0.244
e	1.27	0 (BSC)	0.050) (BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

DIP8 PACKAGE OUTLINE DIMENSIONS

	SYMBOL	INCHES		MILLIMETERS		NOTES	
	SIMBOL	MIN	MAX	MIN	MAX	NOTES	
	Α	-	0.200	-	5.08		
1	b1	0.014	0.023	0.36	0.58	-	
	b2	0.045	0.065	1.14	1.65	-	
	¢1	0.008	0.015	0.20	0.38	-	
	D	0.355	0.400	9.02	10.16	-	
	E	0.220	0.310	5.59	7.87	-	
	e	0.100	BSC	2.54	BSC	-	
	eA	0.300	BSC	7.62	BSC		
	L	0.125	0.200	3.18	5.08	-	
	Q	0.015	0.060	0.38	1.52	-	
	s1	0.005	-	0.13	-	-	
	α	90 ⁰	1050	90 ⁰	1050	-	

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.