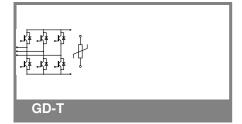


IGBT Module

SK75GD066T

Preliminary Data

Features


- One screw mounting module
 Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

- Inverter up to 16 kVA
- Typ. motor power 7,5 kW

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified					
Symbol IGBT	Conditions			Values	Units
V _{CES}	T _j = 25 °C			600	V
I _C	T _j = 175 °C	T _s = 25 °C		83	Α
		$T_s = 70 ^{\circ}C$		67	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			150	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		6	μs
Inverse D	iode				
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		92	Α
		$T_s = 70 ^{\circ}C$		73	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			150	Α
Module					
I _{t(RMS)}					Α
T_{vj}				-40 + 175	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics $T_s = 25$ °C, unless otherwise specifie						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0038	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,8	1,1	V
		T _j = 150 °C		0,7	1	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		8	10	mΩ
		$T_{j} = 150^{\circ}C$		12,7	14	mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}				4,7		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,145		nF
t _{d(on)}				95		ns
t _r	R_{Gon} = 16 Ω	$V_{CC} = 300V$		50		ns
E _{on}	di/dt = 2250 A/µs	I _C = 75A		3,1		mJ
$t_{d(off)}$	$R_{Goff} = 16 \Omega$	T _j = 150 °C		541		ns
t _f	di/dt = 2250 A/µs	V _{GE} = -7/+15 V		70		ns
E_{off}				2,8		mJ
$R_{th(j-s)}$	per IGBT			0,75		K/W

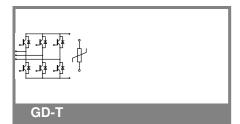
IGBT Module

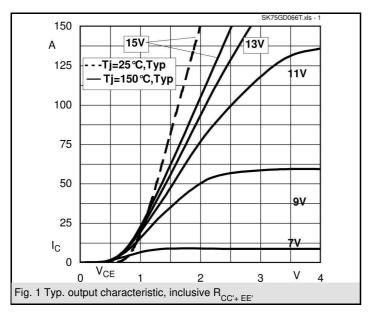
SK75GD066T

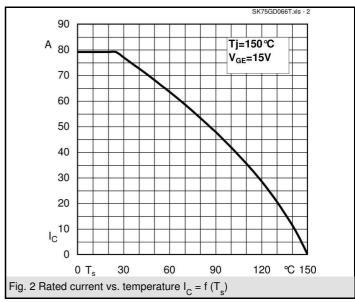
Preliminary Data

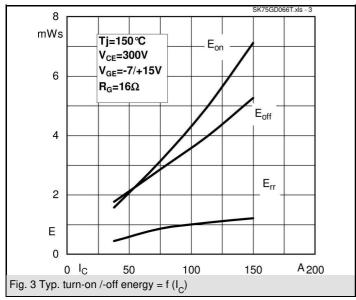
Features

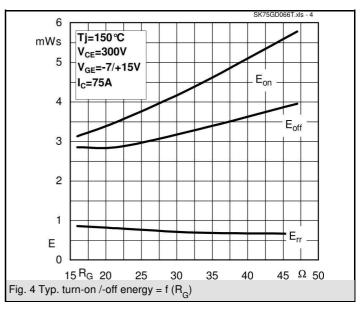
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

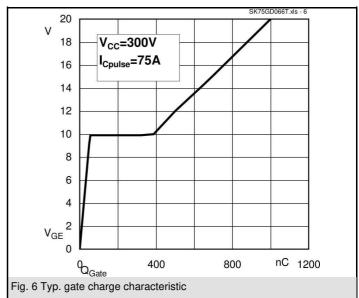

Typical Applications*

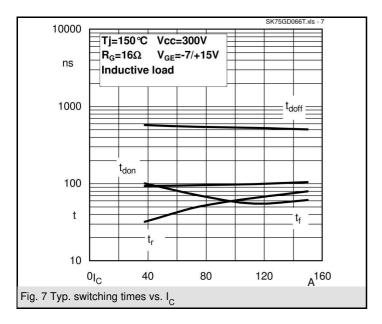

- Inverter up to 16 kVA
- Typ. motor power 7,5 kW

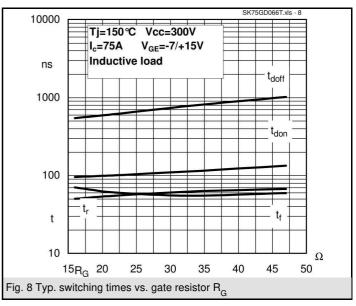

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	ode				•		
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,35		V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,31		V	
V_{F0}		T _j = 25 °C				V	
		T _j = 150 °C		0,85		V	
r _F		T _j = 25 °C				mΩ	
		T _j = 150 °C		7,8		mΩ	
I _{RRM}	I _F = 75 A	T _i = 150 °C		60		Α	
Q_{rr}	di/dt = 2250 A/µs			6		μC	
E _{rr}	V _{CC} = 300V			0,85		mJ	
$R_{th(j-s)D}$	per diode			1,2		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

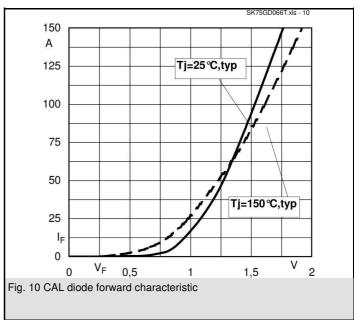

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

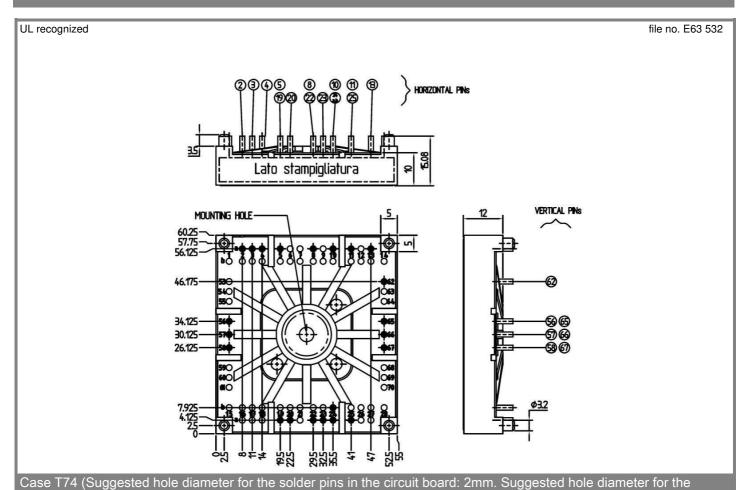

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

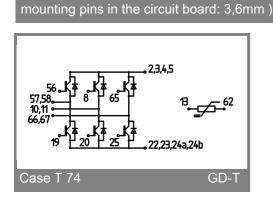












5 26-02-2009 DIL © by <u>SEMIKRON</u>