MK1160VP LDMOS TRANSISTOR

Document Number: MK1160VP Preliminary Datasheet V1.0

1000-1100MHz, 50V, 600W, RF Power LDMOS Transistor

Description

The MK1160VP is a 600-watt, internally matched LDMOS FETs, designed for civilian pulsed avionics amplifier applications with frequencies from 1000 MHz to 1100 MHz.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

•Typical Performance(On Innogration fixture with device soldered):

 V_{DD} = 50 Volts, I_{DQ} = 100 mA, Pulse CW, Pulse Width=10 us, Duty cycle=10% .

Frequency	Gain(dB)	P _{3dB} (W)	η _D @P _{3dB} (%)
1030 MHz	13.9	700	46.5
1060 MHz	14.3	680	48.6
1090 MHz	14.5	664	50.7

Note: This device is only used as single-ended device.

Applications and Features

- Avionics: Mode-S, TCAS, JTIDS, DME and TACAN
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+110	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{dd}	+54	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T	+225	°C

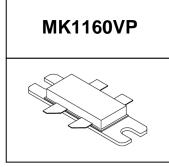

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case RθJC 0.07 °C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class						
Human Body Model (per JESD22A114)	Class 2						
Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)							

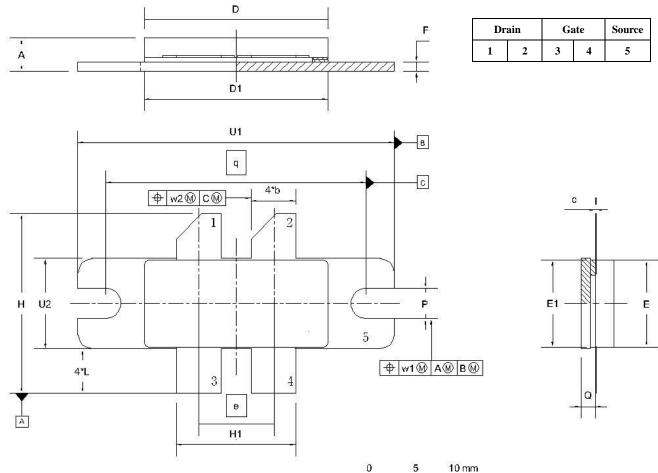
Characteristic	Symbol	Min	Тур	Max	Unit

DC Characteristics

MK1160VP LDMOS TRANSISTOR

Document Number: MK1160VP Preliminary Datasheet V1.0

Zero Gate Voltage Drain Leakage Current $(V_{DS} = 115V, V_{GS} = 0 V)$	I _{DSS}		100	μΑ
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}		10	μΑ
GateSource Leakage Current ($V_{GS} = 6 V, V_{DS} = 0 V$)	I _{GSS}		10	μΑ
Gate Threshold Voltage $(V_{DS} = 50V, I_D = 600 \ \mu A)$	V _{GS} (th)	2.25		V
Gate Quiescent Voltage (V_{DD} = 50 V, I_D = 100 mA, Measured in Functional Test)	V _{GS(Q)}	2.8		V


Functional Tests (On Innogration Test Fixture, 50 ohm system) :V_{DD} = 50 Vdc, I_{DQ} = 100 mA, f = 1090 MHz, Pulsed CW, Pulse

Width=10us, Duty cycle=10% .

Characteristic	Symbol	Min	Тур	Max	Unit		
Max Gain	Gp		14.5		dB		
3dB Compression Point	P _{3dB}		664		W		
Drain Efficiency	η _D		50.7		%		
Input Return Loss	IRL		-7		dB		
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 50 Vdc, I _{DQ} = 100 mA, f = 1090MHz							
VSWR 10:1 at 600W Pulsed CW Output Power	No Device Degradation						

Package Outline

Eared Flanged Ceramic Package; 2 mounting holes; 4 leads

0				5					10	m	m
L	Ē	1	1	ĩ	1	Ĩ	1	ĩ	Ē		
			10000	s	a	le					

UNIT	A	b	c	D	D1	e	E	E1	F	Н	H1	L	р	Q	q	U1	U_2	W1	W ₂
mm	4.72	4.93	0.15	20.02	19.96	7.00	9.50	9.53	1.14	19.94	12.98	5.33	3.38	1.70	27.94	34.16	9.91	0.25	0.51
	3.43	4.67	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	3.12	1.45	27.94	33.91	9.65	0.20 0	0.51
inches	0.186	0.194	0.006	0.788	0.786	0.311	0.374	0.375	0.045	0.785	0.511	0.210	0.133	0.067	1.100	1.345	0.390	0.01	0.02
menes	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.123	0.057	1.100	1.335	0.380	0.01	0.02

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	
PKG-B4E					03/12/2013

MK1160VP LDMOS TRANSISTOR

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/7/27	Rev 1.0	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.