Panasonic _____

MIP3J20MS

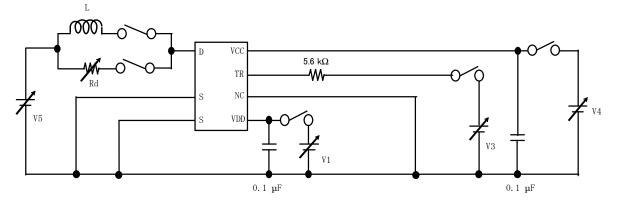
Туре	Silicon MOSFET type Integrated Circuit			
Application	Switching Power Supply Control			
Structure	CMOSType			
Equivalent Circuit	Refer Figure 9			
Package	DIP7-A1	Marking	MIP3J2	

A. ABSOLUTE MAXIMUM RATINGS (Ta= 25°C±3°C)

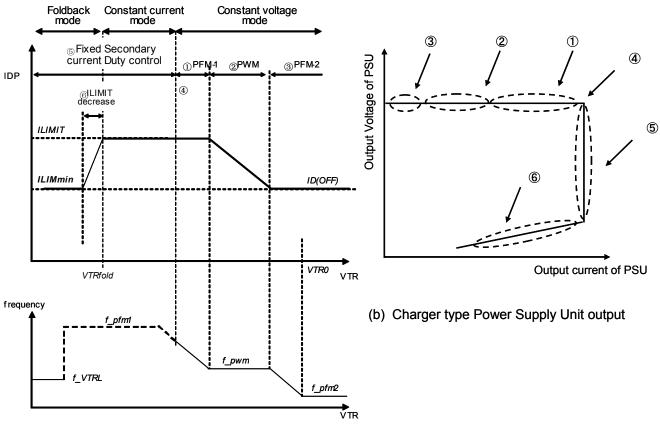
NO.	Item	Symbol	Ratings	Unit	Note
1	DRAIN Voltage				
		VD	–0.3 to 700	V	*1:
2	VCC Voltage				It is guaranteed within the pulse as below.
		VCC	–0.3 to 45	V	Leading Edge
3	VDD Voltage				Blanking Pulse + Over current
		VDD	–0.3 to 8	V	protection delay
4	TR Voltage				
		VTR	-0.7 to VDD + 0.5	V	ton(BLK)+td(OCL)
5	TR Current				
		ITRrev	–5 to 0.6	mA	
6	Output Peak Current				
		IDP	0.6(*1)	А	
7	RecommendedOperating Temperature				
		Тj	-30 to +125	°C	
8	Channel Temperature				
		Tch	–30 to +150	°C	
9	Storage Temperature				
		Tstg	55 to +150	°C	

B. ELECTRICAL CHARACTERISTICS (continued) Measure condition (Tc= 25°C±3°C)

	ECTRICAL CHARACTERISTICS				<u>, ()</u>		
No.	ltem	Symbol Measure Condition		Тур.	Min.	Max.	Unit
1	Highest PFM output frequency		V1=VDD(ON)+0.1 V, V3=2 V, V4=0 V,				
	at heavy load	f_pfm1	V5=VDOCL	135	108	162	kHz
*2	Jitter Frequency Deviation at		V1=VDD(ON)+0.1 V, V3=2 V, V4=0 V,				
	heavy load	d_fosc	V5=VDOCL, fosc=fpm1	6.0	-	-	kHz
*3	Jitter Frequency Modulation Rate		V1=VDD(ON)+0.1V, V3=2 V, V4=0 V,				
		fm	V5=VDOCL, fosc=f_pfm1	1	-	-	kHz
*4	PWM output frequency						
		f pwm		30	-	-	kHz
5	Lowest PFM output frequency		V1=VDD(ON)+0.1V, V3=4.8 V, V4=0 V,				
	at light load	f pfm2	V5=VDOCL	300	135	465	Hz
6	Lowest output frequency		V1=VDD(ON)+0.1V, V3=0 V, V4=0 V,				
	at overload protection	f_VTRL	V5=VDOCL	10	6	14	kHz
7	Secondary current duty ratio		V1=VDD(ON)+0.1V, V3=2 V/9.0 µSpulse				
	at contant current control	D2max	V4=0 V, V5=VDOCL	51.5	45.1	57.95	%
*8	Secondary current duty jitter		V1=VDD(ON)+0.1V, V3=2 V/ 9.0 µSpulse				
	at contant current control	d_D2max	V4=0 V, V5=VDOCL	2.0	-	-	%
9	Voltage reference		V1=VDD(ON)+0.1V, V4=0 V,				
	for constant voltage control	VCV		2.95	2.89	3.01	V
10	TR feedback voltage threshold		V1=VDD(ON)+0.1V, V3=2 V/ 9.0 µSpulse				
		VTR0	V4=0 V, V5=VDOCL	3.0	2.9	3.1	V
11	TR lowest voltage detection		V1=VDD(ON)+0.1V, V3=9.0µSpulse				
	The lowest vehicige detection	VTRLow	V4=0 V, V5=VDOCL	0.45	0.20	0.70	V
12	VCC start voltage	VIILOW	V3=2 V, V4=0 V, V5=0.2 V	0.40	0.20	0.70	v
12	VCC start voltage	VCC(ON)	V3-2 V, V4-0 V, V5-0.2 V	6.8	5.8	7.8	V
12	VCC atop voltage			0.0	5.0	7.0	v
13	VCC stop voltage		V3=2 V, V4=0 V, V5=0.2 V	5.8	4.9	6.7	V
14		VCC(OFF)		5.0	4.9	0.7	v
14	VDD start voltage		V3=2 V, V4=0 V, V5=0.2 V	F7	50	<u> </u>	Ň
45		VDD(ON)		5.7	5.2	6.2	V
15	VDD stop voltage		V3=2 V, V4=0 V, V5=0.2 V	1.0			
4.0		VDD(OFF)		4.9	4.4	5.4	V
16	Start-up current consumption		V4=6.5 V				
		ICC(SB)		0.75	0.55	0.93	mA
17	Operating current consumption		V4=7.5 V				
		ICC		0.80	0.55	1.10	mA
18	Drain-VDD charging current 1		V1=0 V, V5=40 V				
		lch1		-3.8	-5.7	-1.9	mA
19	Drain-VDD charging current 2		V1=5.5 V, V5=40 V				
		lch2		-1.1	-1.7	-0.5	mA
20	TR Open voltage		V1=VDD(ON)+0.1 V				
		VTRopen		4.5	3.2	6.2	V
21	TR short current		V1= VDD(ON)+0.1 V, V3=0 V				
		ITR_0V		-8.5	-14.0	-3.5	μA


MIP3J20MS

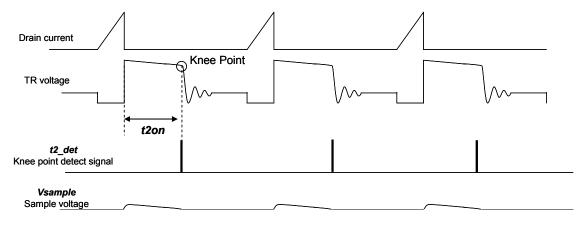
B. EL	ECTRICAL CHARACTERISTICS	(continued	 Measure condition (Tc= 2) 	5°C±3	°C)		
No.	Item	Symbol	Measure Condition	Тур.	Min.	Max.	Unit
[CIRC	JIT PROTECTIONS]						
22	Self Protection Current Limit	ILIMIT	V1=VDD(ON)+0.1 V, V4=0 V, V5=VDOCL V3=2 V/ 9.0 µSpulse *Figure 7	210	195	225	mA
23	Constant current control coefficient	ILIMD2MX	ILIMITxD2max	108	102.6	113.4	-
24	ILIMIT Compensation slope	R_slope	*Figure 7	12	-	-	mA/µs
*25	Drain current at light load	ID(OFF)	V1=VDD(ON)+0.1V, V4=0 V, V5=VDOCL V3=5 V/ 9.0 μSpulse	162	147	176	mA
26	TR foldback protection activation voltage	VTRfold	V1=VDD(ON)+0.1V, V4=0 V, V5=VDOCL V3=2 V/ 9.0 μSpulse	1.3	1.0	1.5	V
27	Drain current at foldback protection	ILIMmin	V1=VDD(ON)+0.1V, V4=0 V, V5=VDOCL V3=0.5 V/ 9.0 µSpulse	162	152	172	mA
28	Over voltage protection Voltage		V1=VDD(ON)+0.1V, V4=0 V, V5=0.2 V	26.5	23.5	29.5	V
29	Open detection width threshold	VCC(OV)	V1=VDD(ON)+0.1V, V4=0 V, V5=VDOCL V3=2 V pulse	3.0	1.6	4.8	μs
*30	Leading Edge Blanking Delay	ton(BLK)		350	-	-	ns
*31	Over current protection delay	td(OCL)		100	_	_	ns
*32	Thermal shutdown temperature	тотр		140	130	150	°C
33	Latch reset voltage	VDDreset		2.7	1.8	3.5	v
[Outpu	lt]	VDDiesei		2.1	1.0	5.5	V
34	Drain ON-State Resistance	RDS(ON)	V4=15 V, V3=2 V, I5=100 mA,	20	_	27	Ω
35	Drain OFF-State Current	IDSS	V4=35 V, V5=650 V	10	-	20	μA
36	Drain Breakdown Voltage	VDSS	V4=35 V, I5=100 μA,	-	700	-	V
[Start-u	up Supply]		1				
37	Minimum Drain pin supply	VD(MIN)		-	50	-	V


B. ELECTRICAL CHARACTERISTICS (continued) Measure condition (Tc= 25°C±3°C)

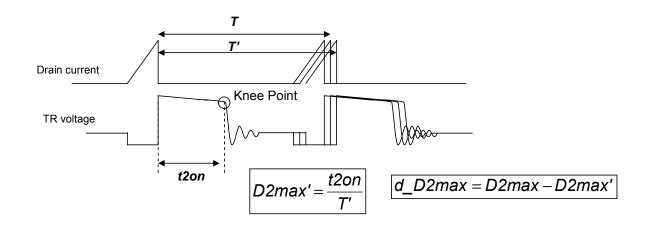
MIP3J20MS

[Figure 1: Evaluation circuit]

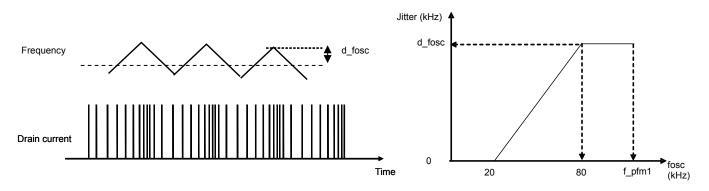
[Figure 2: TR pin control and application characteristic]


(a) IPD circuit operation with TR voltage

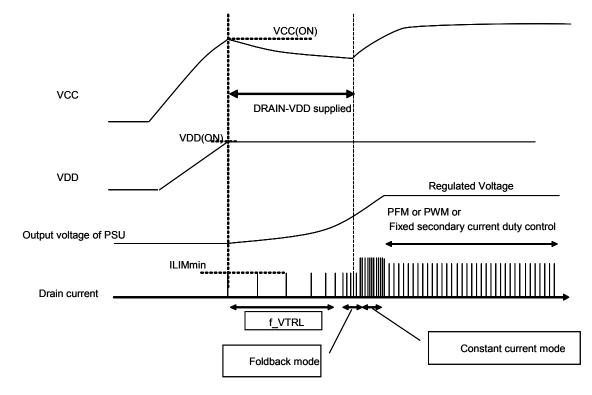
Panasonic _____


MIP3J20MS

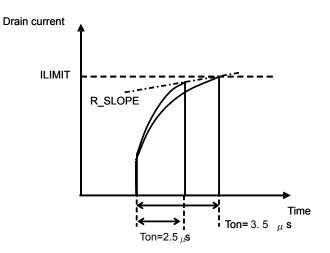
1	Heavy load PFM control	ILIMIT peak current, PFM control Maximum operating frequency - f_pfm1
2	PWM control	Peak current vary from ID(OFF)~ILIMIT, fix frequency control * Mixture of PFM and PWM control could happen
3	Light load PFM control	ID(OFF) peak current, PFM control Minimum operating frequency - f_pfm2
4	Constant voltage- Contant current switching point	Output frequency & power at this point will be the maximum Frequency of switched point is determined by the design of transformer.
5	Constant current control	Frequency control such that secondary current duty ratio is constant. (Fixed duty for secondary current.)
6	Foldback protection	Drain peak current is reduces according to TR voltage. Fixed duty ratio for secondary current control is maintained, frequency will vary with load condition. At maximum load, operating frequency will be f_VTRL.

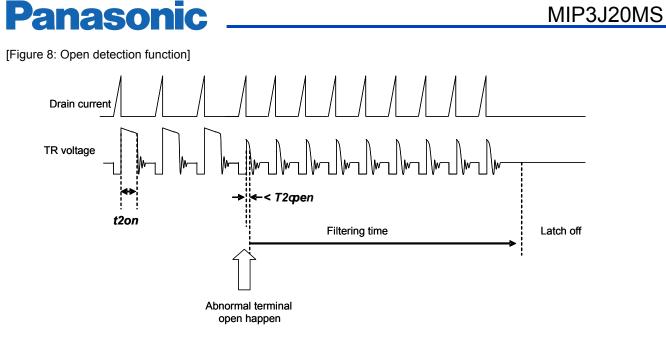

[Figure 3: TR sampling action]

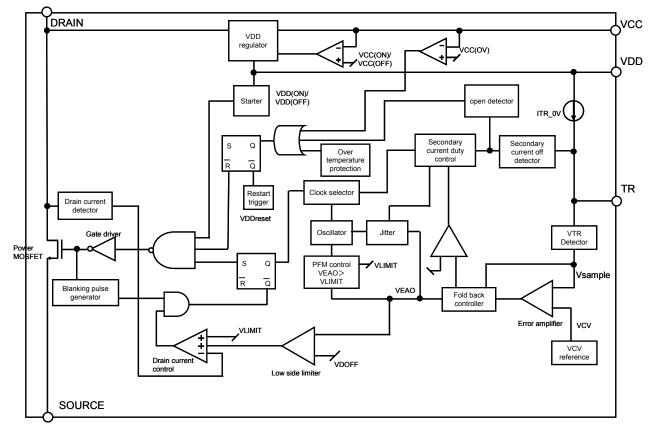
[Figure 4: Secondary current duty ratio & deviation in constant current control]



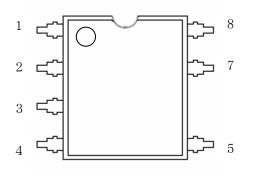
[Figure 5: PFM, PWM jitter control]




[Figure 6: Output waveform when start-up]


[Figure 7: ILIMIT, R_Slope Measurement waveform]

R_slope ; {(ILIMIT at Ton=3.5 $\mu s)$ – (ILIMIT at Ton=2.5 $\mu s)} / {3.5 } \mu s$ – 2.5 μs }



Page 8 of 9

MIP3J20MS

Panasonic

[Figure 10: Pin Layout]

Pin No.	Terminal Name
1	VDD
2	NC
3	TR
4	VCC
5	DRAIN
6	_
7	Source
8	Source

[Precautions for Use 1]

Connect a Ceramic Capacitor (over $0.1 \mu F)$ between VDD Pin and SOURCE.

[Precautions for Use 2]

The IPD has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between control pin and SOURCE, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- 1. DRAIN Pin and VDD Pin invert insertion in power supply board.
- 2. DRAIN Pin and VDD Pin short circuit.
- 3. DRAIN Pin and TR Pin short circuit.
- 4. DRAIN Pin and VCC Pin short circuit.
- 5. VCC Pin and VDD Pin short circuit.
- 6. VCC Pin and TR Pin short circuit.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

Precautions on the Sales of IPDs

- The sale and/or the export of IPD products to customers located in certain countries is restricted by the Agreement made and executed by and between Power Integrations, Inc. and Panasonic Corporation. For details, refer to the following Attached table "IPD availability by customer."
- 2) IPD products purchased from our company, or its authorized agents, hereinafter referred to as our company, shall be used only for production purposes by those parties who have duly purchased IPD products. Those who have purchased IPD products shall not use such IPD products in unmodified form for re-sale, loan, or sample shipment for evaluation purposes to any other parties.
- 3) If a party who has duly purchased IPD products subcontracts its production to any other parties, including its subsidiaries or any other third parties inside and/or out of Japan, and the IPD products are consigned to such subcontracting parties thereat, such party is obligated to monitor and control the quantity of IPD products to prevent any of the aforementioned re-sale, loan or sample shipments from taking place.
- 4) In the event that any actual or threatened breach or violation of any of the above mentioned 2) or 3) has occurred or is about to occur, our company will hold all shipments of IPD products and may request the customer to disclose necessary documentation describing the status of our end-users and/or distribution channels.

Note) The products of MIP50**, MIP51**, and MIP7** are excluded from above-mentioned precautions, 1) to 3).

Attached table "IPD availability by customer"

Parts No.			Companies/areas to which products can be sold	Companies/areas to which products cannot be sold	Application	
MIP01** MIP2** MIP9A**	MIP02** MIP3** MIP9L**	MIP1** MIP4**	 Japanese companies in Japan Japanese companies in Asia (50% or more owned) 	 Companies in European and American countries Asian companies in Asia Other local companies 	 For power supply For DC-DC converter 	
MIP00** MIP55** MIP816/826	MIP52** MIP56** MIP9E**	MIP53** MIP803/804	 Japanese companies in Japan Japanese companies in Asia (50% or more owned) Asian companies in Asia 	 Companies in European and American countries Other local companies 	 For power supply For EL driver For LED lighting driver 	
MIP50**	MIP51**	MIP7**	• No restrictions in terms of contract	• No restrictions in terms of contract	For lamp driver/ car electronics accessories	

Note) For details, contact our sales division.