Doc No. TD4-EA-01949 Revision. 2

Panasonic ____

MIP3630MTSCF

Туре	Silicon MOSFET type Integrated Circuit		
Application	For Switching Power Supply Control		
Structure	Bi-CMOS type		
Equivalent Circuit	Figure 6		
Package	DIP7-A1-B	Marking	MIP363

A. ABSOLUTE MAXIMUM RATINGS (Ta=25±3)

No.	Item	Symbol	Ratings	Unit	Note
1	Drain Voltage				
		VD	- 0.3 ~ 700	V	
2	VDD Voltage				
		VDD	- 0.3 ~ 8	V	
3	Feedback Voltage				
		VFB	- 0.3 ~ 8	V	
4	Output Peak Current				*1:
		IDP	4.5 (*1)	Α	It is guaranteed
5	Junction Temperature				within the MIN(PW)
		Tj	150		
6	Storage Temperature				
		Tstg	- 55 ~ + 150		

B. RECOMMENDED OPERATING CONDITIONS

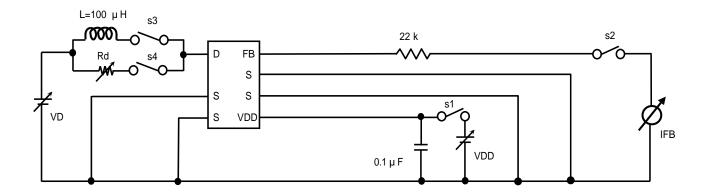
No.	Item	Symbol	Ratings	Unit	Note
1	Junction Temperature				
		Tj	- 40 ~ + 125		

Panasonic ___

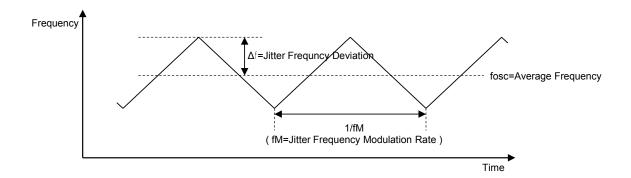
MIP3630MTSCF

C. ELECTRICAL CHARACTERISTICS (Measurement Condition: Ta=25±3)

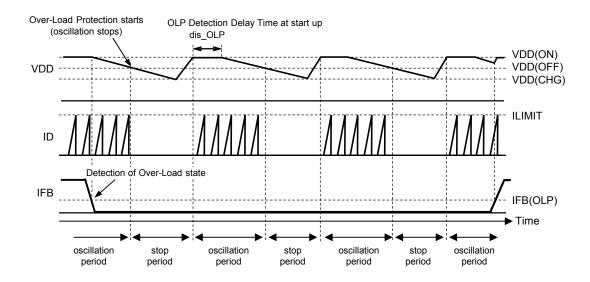
No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit
[CON	TROL FUNCTIONS] **Reference it	ems		I	l	I	
1	Output Frequency	fosc	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=20 μA *Figure 2	66	59.4	72.6	kHz
2	Jitter Frequency Deviation	Δf	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=20 μA *Figure 2	3	1.5	4.5	kHz
* *3	Jitter Frequency Modulation Rate	fM	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=20 μA *Figure 2	250	-	-	Hz
4	Maximum Duty Cycle	MAXDC	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=20 μA	69	64	74	%
5	VDD Start Voltage	VDD(ON)	VD=5 V, IFB=20 μA *Figure 3	6.25	5.75	6.75	V
6	VDD Stop Voltage	VDD(OFF)	VD=5 V, IFB=20 μA *Figure 3	5.60	5.10	6.10	V
7	VDD Charging Start Voltage during Over Load Protection	VDD(CHG)	VD=40 V, IFB=20 μA *Figure 3	4.00	3.50	4.50	٧
8	VDD Hysteresis: Start / Stop	VDDHYS1	VDD(ON) - VDD(OFF)	0.65	0.35	0.95	V
9	VDD Difference Start / Charging Start during OLP	VDDHYS2	VDD(ON) - VDD(CHG)	2.25	1.75	2.75	V
10	VDD Difference Stop / Charging Start during OLP	VDDHYS3	VDD(OFF) - VDD(CHG)	1.60	1.10	2.10	٧
11	VDD Clamp Voltage	VDD(CLP)	IDD=3 mA	6.60	6.00	7.20	٧
12	Feedback Threshold Current	IFB1	OFF→ON, VD=5 V	45	25	65	μA
13	Feedback Pin Voltage	VFB1	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=IFB1	2.5	2.2	2.8	٧
14	VDD current before start up	IDD(SB)	VD=5 V, VDD=VDD(ON) - 0.3 V, FB: OPEN	140	70	210	μA
15	VDD current at operating	IDD(OP)	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=20 μA	320	192	448	μA
16	VDD current at light-load operation	IDD(OFF)	VD=5 V, VDD=VDD(ON) + 0.1 V, IFB=IFB1 + 5 μA	150	70	230	μA
17	VDD Charging Current	Ich1	VDD=0 V, VD=40 V, FB : OPEN	-4.63	-6.95	-2.31	mA
		Ich2	VDD=5 V, VD=40 V, FB : OPEN	-2.63	-3.95	-1.31	mA
* * 18	Soft start duration	Tsoft	$\begin{array}{c} VDD = VDD(OFF) \rightarrow VDD(ON), \\ IFB = 20 \; \mu A \end{array}$	6	-	-	ms

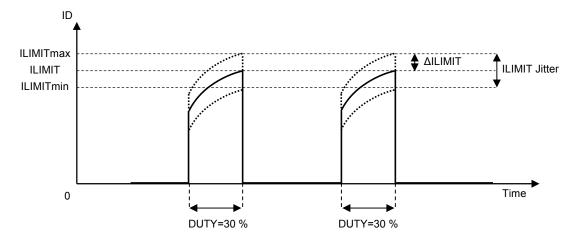

Panasonic ____

MIP3630MTSCF

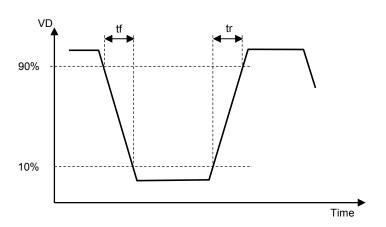

No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit
[CIRC	UIT PROTECTIONS] *Design guarar	nteed items,	* * Reference items				
19	Self Protection Current Limit	ILIMIT	VDD=VDD(ON) + 0.1 V, IFB = 20 μA, DUTY=30 % * Figure 4	1.100	0.990	1.210	А
20	Jitter Maximum of Self Protection Current Limit	ILIMITmax	VDD=VDD(ON) + 0.1 V, IFB = 20 μA, DUTY=30 % * Figure 4	1.130	-	1.280	А
21	Jitter Minimum of Self Protection Current Limit	ILIMITmin	VDD=VDD(ON) + 0.1 V, IFB = 20 μA, DUTY=30 % *Figure 4	1.070	0.920	-	Α
* * 22	Jitter Deviation of Self Protection Current Limit	ΔΙLΙΜΙΤ	ΔILIMIT=(ILIMITmax - ILIMITmin)/2 *Figure 4	0.030	-	-	Α
*23	OLP Detection Delay Time at start up	dis_OLP	VD=40 V, VDD : OPEN, FB : OPEN	40	25	55	ms
24	VDD Current at latch stop	IDD(OV)	VD=5 V, IFB=20 μA	12	7	18	mA
25	Feedback Current at detecting OLP	IFB(OLP)	VD=20 V, VDD : OPEN	12	6	18	μA
26	Power-up Reset Threshold Voltage	VDDreset		2.6	1.8	3.5	V
*27	Thermal Shutdown Temperature	ОТР		140	130	150	
* * 28	Thermal Shutdown Temperature Hysteresis	ΔΟΤΡ		70	-	-	
OUTF	PUT】 **Reference items						
* * 29	Leading Edge Blanking Delay	ton(BLK)		300	-	-	ns
* * 30	Over Current Protection Delay	td(OCL)		240	-	-	ns
31	Minimum On-Pulse Width	MIN(PW)	VD=35 V	340	-	460	ns
32	Drain ON-State Resistance	RDS(ON)	ID=300 mA	3.6	-	4.5	Ω
33	Drain Breakdown Voltage	VDSS	VDD=VDD(ON)+0.1 V, ID=100 μA, FB : OPEN	-	700	-	V
34	Drain OFF-State Leakage Current of Drain pin	IDSS	VDD=VDD(ON)+0.1 V, VDS=630 V, FB: OPEN	5	-	20	μA
* * 35	Rise Time	tr	VD=5 V, VDD=VDD(ON)+0.1 V, IFB=20 μA *Figure 5	140	-	-	ns
* * 36	Fall Time	tf	VD=5 V, VDD=VDD(ON)+0.1 V, IFB=20 μA *Figure 5	30	-	-	ns
[SUPPLY]							
37	Minimum Drain Supply Voltage	VD(MIN)	IFB=20 μA, VDD : OPEN *Drain Voltage for Starting Oscillation	10	-	18	V

Page 3 of 7

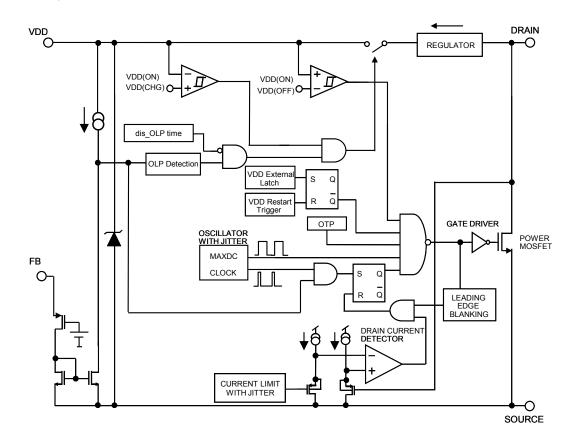

[Figure 1: Measuring Circuit]


[Figure 2: fosc, f, fM measurement]

[Figure 3: Terminal waveforms during the over-load protection]

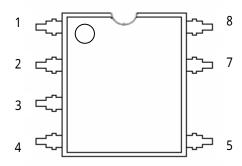


[Figure 4: ILIMIT measurement]



 $\star\,$ Load condition of ILIMIT measurement: L=100 µH, Rd=51 Ω

[Figure 5: tr, tf measurement]



[Figure 6: Block Diagram]

MIP3630MTSCF

[Figure 7: Pin layout]

Pin No.	Pin Name
1	VDD
2	Source
3	Source
4	FB
5	Drain
6	-
7	Source
8	Source

[Precautions for Use 1]

Connect a ceramic capacitor with value >0.1 µF between VDD pin and Source pin.

[Precautions for Use 2]

The IPD has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect Zener diode between control pins and Source pin, etc. as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- (1) Reverse the DRAIN pin and VDD pin connection to the power supply board
- (2) DRAIN pin short to VDD pin.
- (3) DRAIN pin short to FB pin.

Established: 2015-02-04 : 2015-09-28 Revised

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.