mikron

Description

MIK3842A, MIK3843A, MIK3844A and MIK3845A are high performance with fixed frequency current mode PWM controllers. They are specially designed for off-Line and DC-to-DC converter applications with minimum external components. These devices feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem pole output which is suitable for driving MOSFETs.

The under voltage lock-out (U.V.L.O.) is designed to operated with 0.17mA typ. start-up current, allowing an efficient bootstrap supply voltage design. The U.V.L.O. thresholds for the MIK3842A/44A are 16V (on) and 10V (off) which are ideal for off-line applications. The corresponding typical threshold for the MIK3843A/45A is 8.4V (on) and 7.6V (off). The MIK3842A/43A can operated within 100% duty cycle and the MIK3844A/45A can operated within 50% duty cycle.

Available Options

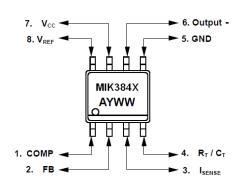
Device	Start-UP	Hysteresis	Max.			
	Voltage		Duty			
			Cycle			
MIK3842A	16V	6V	< 100%			
MIK3843A	8.4V	0.8V	< 100%			
MIK3844A	16V	6V	< 50%			
MIK3845A	8.4V	0.8V	< 50%			

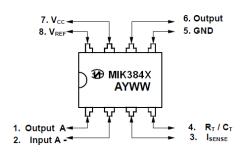
Features

- Low Start-Up and Operating Current
- Automatic Feed Forward Compensation
- Current Mode Operating Frequency up to 500KHz
- Trimmed Oscillator Discharge Current for Precise Duty Cycle Control
- Latching PWM for Cycle-By-Cycle Current Limiting
- Under Voltage Lockout with Hysteresis
- High Current totem Pole Output Stage

Application

- Off-line flyback or forward converters
- DC to DC buck/boost converter
- Monitor Power Supply


1



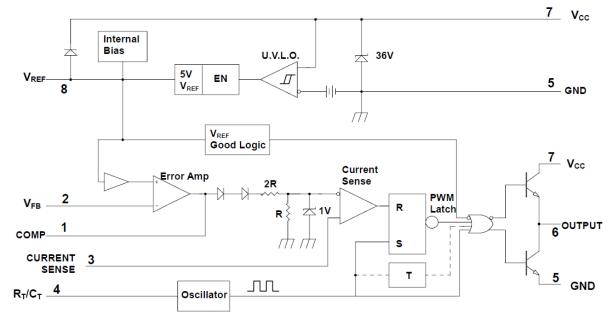
Marking Information and Pin Configurations (Top View)

SO8

A: Assembly / Test site code Y: Year WW: Week

Ordering Information

Ordering Number	Package	Shipping
MIK3842AD8T	DIP-8	60 Units / Tube
MIK3842AS8T	SOP-8	100 Units / Tube
MIK3842AS8R	SOP-8	2,500 Units / Tape & Reel
MIK3843AD8T	DIP-8	60 Units / Tube
MIK3843AS8T	SOP-8	100 Units / Tube
MIK3843AS8R	SOP-8	2,500 Units / Tape & Reel
MIK3844AD8T	DIP-8	60 Units / Tube
MIK3844AS8T	SOP-8	100 Units / Tube
MIK3844AS8R	SOP-8	2,500 Units / Tape & Reel
MIK3845AD8T	DIP-8	60 Units / Tube
MIK3845AS8T	SOP-8	100 Units / Tube
MIK3845AS8R	SOP-8	2,500 Units / Tape & Reel



Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Supply Voltage (low impedance source)	Vcc	30	V
Output Current, Source or Sink *	lo	±1	А
Input Voltage (analog inputs pins 2, and 3)	Vi	- 0.3 to + 5.5	V
Maximum Power Dissipation (T_A = 25°C)	PD	1.0	W
Error Amp Output Sink Current	SINK(E.A.)	10	mA
Operating Ambient Temperature Range	TA	- 40 to 125	°C
Storage Temperature		- 65 to 150	°C
Lead Temperature (soldering 10 sec.)		260	°C

* Maximum Package Power Dissipation Limits must be observed.

Block Diagram

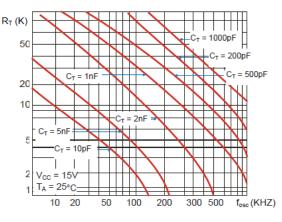
Electrical Characteristics (T_A = 0°C to 70°C, $*V_{CC}$ =15V, CT=3.3nF, RT=10k Ω , unless

otherwise specified)	Symbol	Condition	Min	Turn	Mox	Linit
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reference Section		T 05%0 L 4 A	1.0	5.0		
Reference output	Vref	TJ= 25°C, IREF= 1mA	4.9	5.0	5.1	V
Voltage Line Regulation	ΔV_{REF-V}	12V < Vcc < 25V		6.0	20	mV
Load Regulation	$\Delta V REF-V$ $\Delta V REF-I$	1mA < IREF < 20mA		6.0	20	mV
Short Circuit output		TA=25°C				mA
Current	150	TA=25°C -100 -180		IIIA		
Oscillator Section	•		•			
Oscillation Frequency	f	T _J = 25°C 47 52		52	57	KHz
Frequency Change with Voltage	Δ f/ Δ Vcc	12V < Vcc < 25V			1	%
Oscillator Amplitude	V(osc)	(Peak to Peak) 1.6		V		
Error Amplifier Section	on					
Input Bias Current	BIAS	$V_{FB} = 3V$		-0.1	-2	μA
Input Voltage	VI(EA)	VPIN1 = 2.5V	2.42	2.5	2.58	V
Open Loop Voltage Gain	AVOL(EA)	$2V \leq V_0 \leq 4V$	65	90		dB
Power Supply Rejection Ratio	PSRR(EA)	12V < Vcc < 25V 60 70			dB	
Output Sink Current	SINK(EA)	VPIN2 = 2.7V, VPIN1 = 1.1V	2	7		mA
Output Source Current	Isource(EA)	VPIN2 = 2.3V, VPIN1 = 5V	-0.5	-1.0		mA
High Output Voltage	VOH(EA)	VPIN2 = 2.3V, RL = 15K to GND 5.0 6.0		6.0		V
Low Output Voltage	Vol(A)	VPIN2 = 2.7V, RL = 15K to GND 5.0 6.0 VPIN2 = 2.7V, RL = 15K to GND 0.8 1.1		V		
Current Sense Sectio	n					
Current Sense Input Voltage Gain	Gv	(Note 1 and 2)	2.85	3.0	3.15	V/V
Maximum Input Signal	VI(MAX)	VPIN1 = 5V (Note 1)		1.0	1.1	V
Supply Voltage Rejection	SVR	12V < Vcc < 25V (Note 1) 70			dB	
Input Bias Current	BIAS	Vpin3 = 3V		-3.0	-10	μA
Output Section						
Low Output Voltage	Vol	Isink = 20mA		0.8	0.4	V
		Isink = 200mA		1.4	2.2	
High Output Voltage	Output Voltage Voн Isource= -20mA 13 13.5		13.5		V	
		Isource = -200mA	12	13		
Rise Time	tr	T _J = 25°C, C _L = 1nF (Note 3)		45	150	ns
Fall Time	tr	T」= 25°C, C∟= 1nF (Note 3)		35	150	ns

Electrical Characteristics (T_A = 0°C to 70°C, V_{CC}=15V, C_T=3.3nF, R_T=10k , unless otherwise specified)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Undervoltage Lockout Section						
Start Threshold	VTH(ST)	MIK3842A, MIK3844A	14.5	16.0	17.5	V
		MIK3843A, MIK3845A	7.8	8.4	9.0	
Minimum Operating	Vopr(MIN)	MIK3842A, MIK3844A	8.5	10	11.5	V
Voltage (after turn on)		MIK3843A, MIK3845A	7.0	7.6	8.2	
PWM Section						
Maximum Duty Cycle	D(MAX)	MIK3842A, MIK3843A	95	97	100	%
		MIK3844A, MIK3845A	47	45	50	
Minimum Duty Cycle	D(MIN)				0	%
Total Standby Current						
Start-Up Current	lsт			0.17	0.3	mA
Operating Supply	ICC(OPR)	$V_{PIN3} = V_{PIN2} = 0V$		13	17	mA
Current						
Zero Voltage	Vz	Icc = 25mA	30	35		V

 * Adjust V_{cc} above the Startup threshold before setting to 15 V.


Note 1: Parameter measured at trip point of latch with V_{PIN2} = 0V Note 2: Gain defined as A = V_{PIN1} / V_{PIN3} ; 0V< $V_{\text{PIN3}} <$ 0.5V

Note 3: These parameters, although guaranteed, are not 1005 tested in production

MIK3842A, MIK3843A MIK3844A, MIK3845A CURRENT MODE PWM CONTROLLER

Typical Performance Characteristics

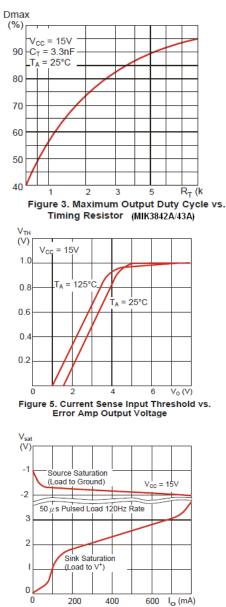


Figure 7. Output Saturation Voltage vs. Load Current T_A= 25°C

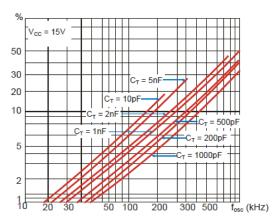
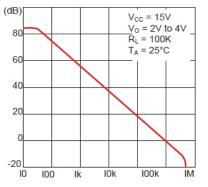
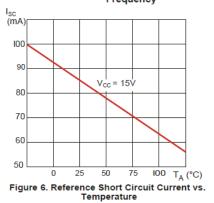
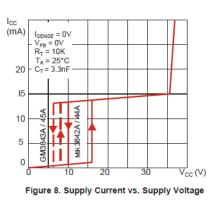
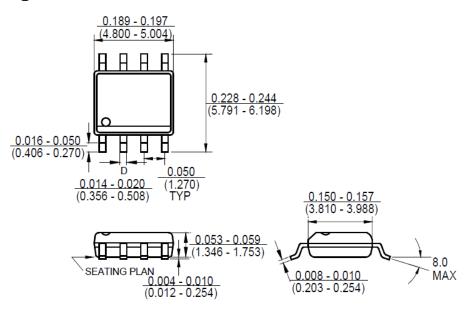
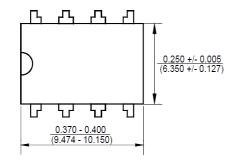


Figure 2. Output Dead-Time vs. Oscillator Frequency


Figure 4. Error Amp Open-Loop Gain vs. Frequency





Package Outline Dimensions – SO-8

Package Outline Dimensions – DIP-8

Ordering Number

<u>3842</u>

Circuit Type

20

Package Type

Shipping Type

Brand: Mikron

Revision

S8: SO 8 D8: DIP 8 R: Taping & Reel T: Tube

Remark

Pb-free products:

• RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Green products:

Lead-free (RoHS compliant)

• Halogen free (Br or CI does not exceed 900ppm by weight in homogeneous material and total of Br and CI does not exceed 1500ppm by weight).

Note:

• Mikron reserves the right to alter the data without notice in order to improve reliability, function or design.

• Mikron is not liable for equipment failures as a result of using products at values that exceed, even momentarily, rated values (operating conditions, maximum ratings, or other parameters) listed in specifications of Mikron products.

Contact information

For more details please contact Mikron Head Office:

- ◆ Address: 12/1 1-y Zapadny Proezd, Zelenograd, Moscow, 124460, Russia
- Tel: +7 495 2297286
- E-mail: globalsales@mikron.ru
- Website: <u>www.mikron-semi.com</u>