DATA SHEET 03 NOVEMBER 2003

No. 00022 Rev 1-03

REPLACEMENT OF: UC 3714 UC 3715

MIK371x family COMPLEMENTARY SWITCH FET DRIVERS

CONTENTS			
DESCRIPTION	1		
FEATURES	1		
PIN CONNECTION AND DESCRIPTION	2		
BLOCK DIAGRAM	2		
ABSOLUTE MAXIMUM RATINGS	3		
ELECTRICAL CHARACTERISTICS	3		
TYPICAL CHARACTERISTICS	4		
TIME RELATIONSHIPS	4		
T1 DELAY, T2 DELAY VS. R _T	4		
ICC VS. SWITCHING FREQUENCY	4		
Icc vs. R_T with Opposite $R_T = 50 K$	4		
T1 DEADBAND VS. TEMPERATURE AUX TO PWR	5		
T2 DEADBAND VS. TEMPERATURE PWR TO AUX	5		
TYPICAL APPLICATIONS	5		
TYPICAL APPLICATION WITH TIMED DELAYS	5		

CONTENTS			
USING THE TIMER INPUT FOR ZERO-VOLTAGE SENSING	5		
SELF-ACTUATED SLEEP MODE WITH THE ABSENCE OF AN INPUT PWM SIGNAL. WAKE UP OCCURS WITH THE FIRST PULSE WHILE TURN-OFF IS DETERMINED BY THE (RTO CTO) TIME CONSTANT	5		
Using as a complementary synchronous rectifier switch driver with N-channel FETs	5		
SYNCHRONOUS RECTIFIER APPLICATION WITH A CHARGE PUMP TO DRIVE THE HIGH-SIDE N-CHANNEL BUCK SWITCH	5		
Typical forward converter topology with active reset provided by the MIK3714 driving an N-channel switch $(Q1)$ and a P-channel auxiliary switch $(Q2)$	5		
PHYSICAL DIMENSIONS AND MARKING DIAGRAMS	6		
DIP-8	6		
SOP-8	6		
ORDERING INFORMATION	6		

DESCRIPTION

The MIK3714 and the MIK3715 are two families of high speed drivers. These are designed to provide drive waveforms for complementary switches. Complementary switch configurations are commonly used in synchronous rectification circuits and active clamp/reset circuits, which can provide zero voltage switching. In order to facilitate the soft switching transitions, independently programmable delays between the two output waveforms are provided on these drivers. The delay pins also have true zero voltage sensing capability which allows immediate activation of the corresponding switch when zero voltage is applied. These devices require a PWM-type input to operate and can be interfaced with commonly available PWM controllers.

In the MIK3714 series, the AUX output is inverted to allow driving a P-channel MOSFET. In the MIK3715 series the two outputs are configured in a true complementary fashion.

FEATURES

- Single Input (PWM and TTL Compatible)
- High Current Power FET Driver, 1.0A Source/2A Sink
- Auxiliary Output FET Driver, 0.5A Source/1A Sink
- Time Delays Between Power and Auxiliary Outputs Independently Programmable from 50 ns to 500 ns
- Time Delay or True Zero-Voltage Operation Independently Configurable for Each Output
- Switching Frequency to 1MHz
- Typical 50 ns Propagation Delays
- ENBL Pin Activates 220 µA Sleep Mode
- Power Output is Active Low in Sleep Mode
- Synchronous Rectifier Driver

MIKRON JSC • http://www.mikron.ru • 03 November 2003

PIN CONNECTION AND DESCRIPTION

DIP-8 DIP-8	SOP-8 5 8 1 ies the full peak t be damped or to 20V, allowing witches the AUX PUT falling edge tput. s signal provides ride the delay at
t ce currents. It carri of GND voltage musi e range is from OV dge immediately si t. Similarly, the IN vitching the AUX ou drive capability, thi NPUT and AUX prov	ies the full peak t be damped or to 20V, allowing witches the AUX PUT falling edge tput. is signal provides ride the delay at
ce currents. It carri GND voltage mus range is from OV dge immediately s t. Similarly, the IN vitching the AUX ou drive capability, thi NPUT and AUX prov Tore switching on	ies the full peak t be damped or to 20V, allowing witches the AUX PUT falling edge tput. is signal provides ride the delay at
e range is from 0V dge immediately s t. Similarly, the IN vitching the AUX ou drive capability, thi NPUT and AUX prov	to 20V, allowing witches the AUX PUT falling edge tput. is signal provides ride the delay at
ore switching on	
utput is capable of d circuit which hold	but switches off sourcing 1A and Is this pin active
WR turn-on.	
PWR turn-off and	activation of the
capacitors to prov nternally limited to e programmable tin the two outputs ca lelay vs. RT is show programming. This i e timer output.	ide independent o 1mA. The total ner but since the In be assumed to In the Typical is done by pulling
acitor to GND cons	istent with peak
	capacitors to prov iternally limited to programmable tin he two outputs ca elay vs. RT is show programming. This is timer output. acitor to GND cons

2

MIKRON JSC

http://www.mikron.ru
03 November 2003

T

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		MAXIMUM	UNIT
Vcc	Supply Voltage (low impedance sourc	e)	20	V
	Power Driver	continuous	-200	mA
ЮН		peak	-1	Α
I _{OL}	Power Driver	continuous	400	mA
		peak	2	Α
I _{он}	Auxiliary Driver	continuous	-100	m۸
		peak	-500	IIIA
Iol	Auxiliary Driver	continuous	200	mA
		peak	1	Α
INPUT, ENBL	Input Voltage Range		-0.3 to 20	V
Storage Temperature Range			-65 to 150	
	Operating Junction Temperature (Note 1)		150	°C
	Lead Temperature (Soldering 10 seconds)		300	

Note 1: Unless otherwise indicated, voltages are referenced to ground and currents are positive info, negative out of, the specified terminals.

 $\label{eq:cc} \frac{\text{ELECTRICAL CHARACTERISTICS}}{(V_{CC}=15V, \ \text{ENBL} \geq 2V, \ R_T 1=100 \mathrm{k}\Omega \ \text{from T1 to GND}, \ R_T 2=100 \mathrm{k}\Omega \ \text{from T2 to GND}, \ \text{and} \ \ T_A=0^0 C \ \text{to } +70^0 C, \ T_A=T_J \ \text{unless otherwise stated})}$

SYMBOL	CHARACTERISTICS	TEST CONDITION	MIN	TYP	MAX	UNIT
OVERALL						
V _{cc}	V _{cc}		7		20	۷
Icc	I _{cc} , nominal	ENBL = 2.0V		18	24	mA
I _{CC sleep}	Icc, sleep mode	ENBL = 0.8V		200	300	μA
POWER DRIVER (PWR)						
V _{oL} Pre Turn-on	Pre Turn-on PWR Output, Low	$V_{CC} = 0V$, $I_{OUT} = 10mA$, ENBL= 0.8V		0.3	1.6	
Vol	PWR Output Low, Sat.	INPUT= 0.8V, I _{OUT} = 40 mA		0.3	0.8	V
	(V _{PWR})	INPUT= 0.8V, I _{OUT} = 400 mA		2.1	2.8	
V _{OH}	PWR Output High,	INPUT= 2.0V, I _{OUT} = -20 mA		2.1	3	
	Sat. ($V_{CC} - V_{PWR}$)	INPUT= 2.0V, I _{OUT} = -200 mA		2.3	3	
Tr	Rise Time	C _L = 2200pF		30	60	
Tf	Fall Time	C _L = 2200pF		25	60	
T1 delay	T1 Delay, AUX to PWR	INPUT= rising edge, $R_T 1= 10k\Omega$ (Note 3)	20	35	80	ns
T1 delay	T1 Delay, AUX to PWR	INPUT= rising edge, R_T 1=100k Ω (Note 3)	350	500	700	
Tpd	PWR Prop Delay	INPUT falling edge, 50% (Note 2)		35	100	
AUXIL	IARY DRIVER (AUX)					
Vol	AUX Output Low, Sat	$V_{IN} = 2.0V, I_{OUT} = 20mA$		0.3	0.8	
	(V _{AUX})	$V_{IN} = 2.0V, I_{OUT} = 200mA$		1.8	2.6	
V _{OH}	AUX Output High, Sat (V _{CC} -V _{AUX})	$V_{IN} = 0.8V, I_{OUT} = -10mA$		2.1	3.0	V
		$V_{IN} = 0.8V, I_{OUT} = -100mA$		2.3	3.0	
Tr	Rise Time	C _L = 1000pF		45	60	
Tf	Fall Time	C _L = 1000pF		30	60	
T2 delay	T2 Delay, AUX to PWR	INPUT= rising edge, R_T2 = 10k Ω (Note 3)	20	50	80	ns
T2 delay	T2 Delay, AUX to PWR	INPUT= rising edge, $R_T2=100k\Omega$ (Note 3)	250	350	550	
Tpd	AUX Prop Delay	INPUT falling edge, 50% (Note 2)		35	80	

Continuation of the table on the next page ...

03 November 2003 • http://www.mikron.ru MIKRON JSC

Ð

ELECTRICAL CHARACTERISTICS (CONTINUED)

 $(V_{CC}=15V, ENBL \ge 2V, R_T 1=100k\Omega$ from T1 to GND, $R_T 2=100k\Omega$ from T2 to GND, and $T_A=0^{\circ}C$ to $+70^{\circ}C$, $T_A = T_J$ unless otherwise stated)

ENABLE (ENBL)						
Vth	Input Threshold		0.8	1.2	2.0	V
l _{IH}	Input Current, I _{IH}	ENBL = 15V		1	10	μA
IIL	Input Current, I_{IL}	ENBL = OV		-1	-10	μA
T1						
I _{LIM}	Current Limit	T1 = 0V		-1.6	-2	mA
V _{T1}	Nominal Voltage at T1		2.7	3	3.3	V
TdZVS	Minimum T1 Delay	T1 = 2.5V (Note 3)		40	70	ns
Τ2						
I _{LIM}	Current Limit	T2 = 0V		-1.2	-2	mA
V _{T2}	Nominal Voltage at T2		2.7	3	3.3	V
TdZVS	Minimum T2 Delay	T2 = 2.5V (Note 3)		50	100	ns
INPUT (INPUT)						
Vth	Input Threshold		0.8	1.4	2.0	V
I _{IH}	Input Current, I _{IH}	INPUT = 15V		1	10	μA
II.	Input Current, IIL	INPUT = 0V		-5	-20	μA

Note 2: Propagation delay times are measured from the 50% point of the input signal to the 10% point of the output signal's transition with no load on outputs. Note 3: T1 delay is defined from the 50% point of the transition edge of AUX to the 10% of the rising edge of PWR. T2 delay is

defined from the 90% of the falling edge of PWR to the 50% point of the transition edge of AUX.

TYPICAL CHARACTERISTICS

4

03 November 2003 • http://www.mikron.ru • MIKRON JSC

T

WAKE UP OCCURS WITH THE FIRST PULSE WHILE TURN-OFF IS DETERMINED BY THE (RTO CTO) TIME CONSTANT

MIK3715

-

