

3 Amp & 5 Amp MHL8601 / I (Formerly SAT8 (Consult Table 4 for I	<u>Levels Available</u> COTS MILITARY SPACE				
DES					
The MHL Series are space qualified, ultr military and space flight applications. As series provides an ultra low drop out vol- are optimized for operation at a +5V inpur rated per internal requirements.	MO-078 PACKAGE				
Important: For the latest information, visit our website	http://www.mic	rosemi.com.			
FF	ATURES				
 Rad-Tolerant to 300K rad TID (Note 9) Ultra Low Dropout Voltage – 400mV @ Space-Level screening available Shutdown pin for output control Thermal Shutdown @ 150°C Optimized for operation at an input volta Available in fixed or adjustable output version 					
APPLICATI	ONS / BEN	EFITS			
 Ultra low dropout voltages lead to lower Some models run from a 3.3V input. 					
Table 1 – ABSOLUTE MAXIMUM RA (Exceeding maximum ra				te)	
Parameters / Test Conditions	Symbol	Va	lue	Unit	
		(3A Version)	(5A Version)		
DC input Voltage Vin-Vground	V _{in}	10.0	10.0	V	
Output Current	I _o	3.3	5.5	A	
Power Dissipation Tcase = 25°C	P _d	25	25	W	
Thermal Resistance, Junction to Case	°C/W				
Storage Temperature					
Operating Temperature Range	MSC – Lawrence				
Maximum Soldering Temperature, 10 sec.	°C	6 Lake Street,			
MECHANICA • See Figure 5 for packaging information	Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803 Website: www.microsemi.com				

Table 2 – ELECTRICAL CHARACTERISTICS ($T_A = -55^{\circ}$ C to +125°C unless otherwise noted) (Nominal reference voltage is 1.265V @ 25°C)

Parameters / Test Conditions Symbol		(3A Version)			(5A Version)			Unit
Parameters / Test Conditions	Зупрог	Min.	Тур	Max.	Min.	Тур	Max.	Unit
Output Voltage Accuracy, Adjustable Units Vin = 3.3V or 5V as appropriate (Note 4) Vo = Vref, Io = 1A	Vout	1.24	1.265	1.29	1.24	1.265	1.29	V
Output Voltage Accuracy, Fixed Voltage Units (Note 4) Io = 1A	Vout	-3		+3	-3		+3	%
Input Voltage Range: +3.3V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+3.3)	2.9		3.6	3.0		3.6	V
Input Voltage Range: +5.0V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+5.0)	4.5		5.5	4.5		5.5	V
Dropout Voltage (Note 2) lout = $3.0A$, Vout $\geq +2.5V$	Vdrop			0.40		N/A		V
Dropout Voltage (Note 2) lout = 5.0A, Vout \geq +2.5V	Vdrop		N/A				0.5	V
Current Limit $T_c = 25^{\circ}C$ Vout = 2.5V or Vfixed as appropriateVin = 3.3V or 5V as appropriate	llatch	3.3			5.5			A
Ripple Rejection Vin = 3.3V or 5V as appropriate (Note 6) Vr = 500mVpp; 1KHz < f < 10kHz, lout = 100mA	PSRR			-20			-20	dB
Shutdown Input threshold (Note 1) Vout < 0.5V, Vin = 3.3 or 5V as appropriate	Vshdn	1.0		1.6	1.0		1.6	V

Table 3 – POST-RADIATION (Notes 3, 9) $T_A = 25^{\circ}C$

Parameters / Test Conditions		(3A Version)		(5A Version)			Unit	
Parameters / Test Conditions	Symbol	Min.	Тур	Max.	Min.	Тур	Max.	Unit
Output Voltage Accuracy (Note 4, 5) Vin = 3.3V or 5V as appropriate Vo = Vref, Io = 1A	Vout	-100	±25	+100	-100	±25	+100	mV
Output Voltage Accuracy, Fixed Voltage Versions lo = 1A (Note 4, 5)	Vout	-8.0	±6.6	+8.0	-8.0	±6.6	+8.0	%
Input Voltage Range: +3.3V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+3.3)	2.9		3.6	3.0		3.6	V
Input Voltage Range: +5.0V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+5.0)	4.5		5.5	4.5		5.5	V
Dropout Voltage (Note 2) lout = $3.0A$, Vout $\geq +2.5V$	Vdrop			0.40		N/A		V
Dropout Voltage (Note 2) lout = 5.0A, Vout \ge +2.5V	Vdrop		N/A				0.50	V
Current Limit $T_c = 25^{\circ}C$ Vout = 2.5V or Vfixed as appropriateVin = 3.3V or 5V as appropriate	llatch	3.3			5.5			A
Shutdown Input threshold (Note 1) Vout < 0.5V, Vin = 3.3V or 5V as appropriate	Vshdn	1.0		1.6	1.0		1.6	V

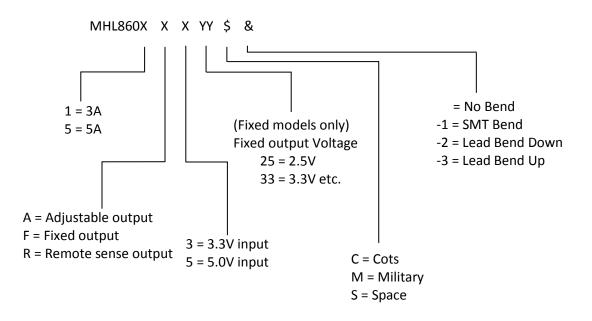


Table 4 – PART NUMBER FUNCTIONAL CHART

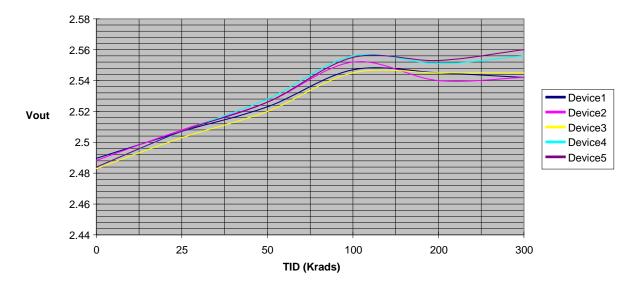
ADJUSTABLE OUTPUT VOLTAGE PART NUMBERS	Input Voltage	lout Range	Vout Range
MHL8601A3\$&	3.3V	0 – 3A	1.265 – 2.5V
MHL8605A3\$&	3.3V	0 – 5A	1.265 – 2.5V
MHL8601A5\$&	5V	0 – 3A	1.265 – 4.0V
MHL8605A5\$&	5V	0 – 5A	1.265 – 4.0V

Examples of Part Numbers with Fixed Output Voltages *	Input Voltage	lout Range	Vout
MHL8601F325\$&	3.3 V	0 – 3 A	2.5 V
MHL8605F320\$&	3.3 V	0 – 5 A	2.0 V
MHL8601F530\$&	5.0 V	0 – 3 A	3.0 V
MHL8605F533\$&	5.0 V	0 – 5 A	3.3 V

* Replace the "F" with an "R" for remote sense versions.

Table 5 – SCREENING OPTIONS

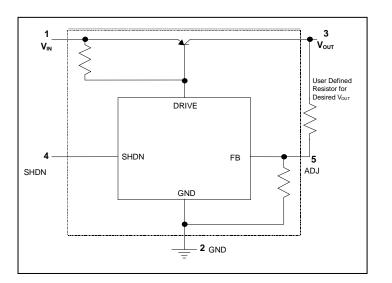
	SCR				
TESTS	Commercial	MILITARY	SPACE	MIL-STD-883	
	COTS	MIL-PR Cerit	METHOD		
Element Evaluation	N/A			Note 7	
Non-Destruct Wirebond Pull	N/A	Sample	100%	2023	
Pre-Cap Visual	N/A	100%	100%	2017	
Temperature Cycle	N/A	100%	100%	1010	
Constant Acceleration	N/A	100%	100%	2001	
PIND	N/A	N/A	100%	2020	
Pre-Burn-In Electrical	N/A	100%	100%		
Burn-In	N/A	100% (160 hours)	100% (320 hours)	1015	
Final Electrical Tests	100% (25°C)	100%	100%	Note 7	
Hermeticity (Fine & Gross Leak)	100%	100%	100%	1014	
X-Ray (Note 8)	N/A	N/A	YES	2012	
External Visual	Sample	100%	100%	2009	
Certified	N/A	YES	YES		


NOTES:

- 1. Shutdown pin voltage must be > 2.0V to initiate output inhibit. Pin should be grounded if not used. Pin input voltage can exceed supply voltage, but not greater than 10V above GND pin.
- Actual voltage dropout is affected by device operating point. Minimum operating input voltage is 2.9V. As a
 result, the dropout specification applies to output voltage of 2.5V and higher, and the model numbers
 specifically designed to operate at these output voltage levels, 3.3V input voltage product only.
- 3. Radiation testing is per MIL-STD-883, Method 1019.
- 4. These regulators are optimized for specific Input Voltage ranges. The 860xx3 will have peak performance at +3.0V to +3.6V. The 860xx5 will have peak performance at +4.5V to +5.5V. Input voltages outside of this range can affect short-circuit current, load current capability and create electrical overstress to internal components.
- 5. Typical post 100K Rad ELDRS radiation performance in the powered mode is < +/-5%. Typical unpowered performance is ±6.6%.
- 6. Guaranteed by design.
- 7. Per MIL-PRF-38534.
- 8. Performed at a DLA approved facility.
- Certified to Appendix G of MIL-PRF-38534 for Radiation Hardness Assurance (RHA) requirements for Hybrid Microcircuits and Multichip Modules effective June 27, 2013. (See <u>RHA Test Laboratory Suitability</u>)

RADIATION CHANGES

Figure 1 – Typical Radiation Characteristics – Vout


TID Characteristics

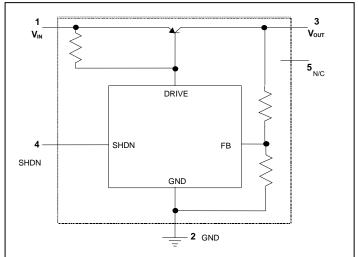
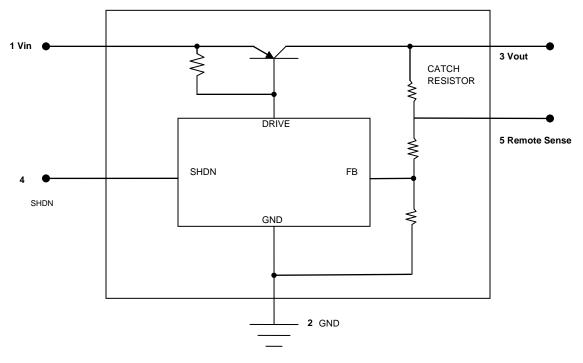
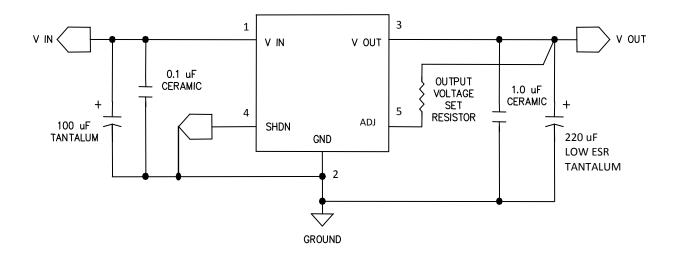

BLOCK DIAGRAMS

Figure 2 - External connections for the various versions.


Adjustable Version

Fixed Output Version


Remote Sense Version

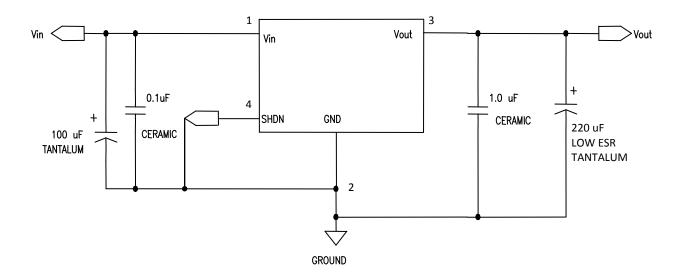

APPLICATIONS

Figure 3 – Application Circuit, Adjustable Output Circuit

 $V_{out} = V_{ref} x (1+R_{adj}/1000)$, with Vref~1.265 Volts

Figure 4 – Fixed Output 3/5 Amp Regulator

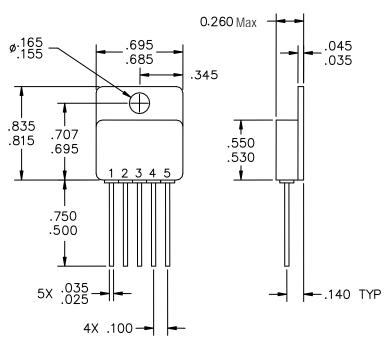
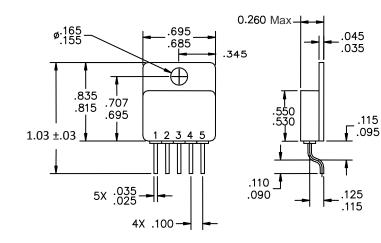
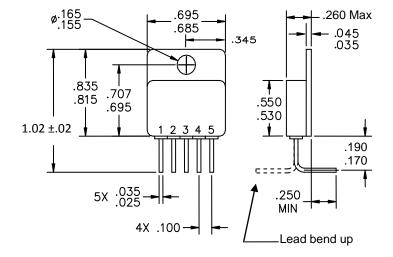

PACKAGING AND PIN CONNECTIONS

Figure 5 – Available Package Outlines


Pin Assignments Table


Straight Lead

Pin #	Pin Name	Pin Description
1	Vin	Input Voltage
2	Gnd	Ground
3	Vout	Output Voltage
4	Shdn	Shutdown Pin. Output reset occurs when Vshdn > 1.6V
5	Adjust / N/C / Sense	Adjust pin for Adjustable Output, Not connected for fixed version. Load sense for remote sense versions.

Surface Mount Outline – 1

<u>Right Angle Down Outline – 2 = Down -3 = Up</u>

Dimensions are in inches Tolerances $.xxx = \pm.005"$ $.xx = \pm.01"$