MITSUBISHI LSIs

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

DESCRIPTION

The MH6408AND is 65536 word x 8 bit dynamic RAM and consists of eight industry standard $64K \times 1$ dynamic RAMs in leadless chip carrier.

The mounting of leadless chip carriers on a ceramic single in-line package provides any application where high densities and large quantities of memory are required.

FEATURES

Performance ranges

Type name	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
MH6408AND-15	150	260	1200

- Utilizes industry standard 64K RAMs in leadless chip carriers
- 30 pins Single In-line Package
- Single +5V (±10%) supply operation
- Low standby power dissipation 176mW(max)
- Low operating power dissipation:
 - MH6408AND-15 1.9W (max)
- All inputs are directly TTL compatible
- All outputs are three-state and directly
- All outputs are three-state and directly TTL compatible
- Includes (0.22µF x 6) decoupling capacitors
- 128 refresh cycles (every 2ms) A₇ Pin is not need for refresh

APPLICATION

- Main memory unit for computers
- Refresh memory

PIN CONFIGUR	ΑΤΙΟ	ON	(TOP	VIEW)					
(0V) ROW ADDRESS STROBE INPUT COLUMN ADDRESS STROBE INPUT WRITE CONTROL INPUT ADDRESS INPUTS	V_{SS} \overline{RAS} \overline{CAS} \overline{W} A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7	† † † † † † † † † † †	1 2 3 4 5 6 7 8 9 10 11 12 12	M5K4164AND/AD C M5K4164AND						
DATA INPUT DATA INPUT DATA INPUT	D_0 D_1 D_2	\rightarrow \rightarrow \rightarrow								
DATA INPUT DATA INPUT DATA INPUT DATA INPUT DATA INPUT	D ₃ D ₄ D ₅ D ₆	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow		M5K4164AND/AI						
DATA OUTPUT DATA OUTPUT DATA OUTPUT	Q ₀ Q ₁ Q ₂	← ← ←	22 22 23 24							
DATA OUTPUT DATA OUTPUT DATA OUTPUT DATA OUTPUT DATA OUTPUT (5V)	Q 3 Q 4 Q 5 Q 6 Q 7 VCC	$\begin{array}{c} \bullet \\ \bullet $	25 26 27 28 29 30	M5K4164AND/AD						
Out	Outline 30\$5									

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

FUNCTION

The MH6408AND provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

		Inputs							
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	refresh is NO
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

SUMMARY OF OPERATIONS Addressing

To select 8 of the 524288 memory cells in the MH6408-AND the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (RAS) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (CAS) latches the 8 column-address bits. Timing of the RAS and CAS clocks can be selected by either of the following two methods.

- The delay time from RAS to CAS t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In This case, the internal CAS control signals are inhibited almost until t_d (RAS-CAS) max ('gated CAS' operation). The external CAS signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d \text{ (RAS-CAS)}}$ is set larger than the maximum value of the limits. In this case the internal inhibition of $\overline{\text{CAS}}$ has already been released, so that the internal $\overline{\text{CAS}}$ control signals are controlled by the externally applied $\overline{\text{CAS}}$, which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the W negative transition is set as the reference point for setup and hold times.

Data Output Control

The outputs of the MH6408AND are in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The outputs will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the MH6408AND, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, inputs and outputs can be connected directly to give a common I/O data bus.

2. Data OUtput Hold

The data outputs can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for RAS and CAS.

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the MH6408AND must be refreshed every 2 ms to maintain data. The methods of refreshing for the MH6408AND are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A RAS-only refresh cycle is the recommended technique for most applications to provide for data retention. A RAS-only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the MH6408AND is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the \overline{CAS} asserted. In many paalications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the MH6408AND is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the MH6408AND as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The MH6408AND operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	v
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
ľo	Output current		50	mA
Pd	Power dissipation	Ta=25°C	8000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		55 ~- 150	°C
Tsld	Soldering temperature time		260 · 10	℃·sec

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted) (Note 1)

	Parameter		Limits			
Symbol			Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	v	
Vss	Supply voltage	0	0	0	v	
VIH .	High level input voltage, all inputs	2.4		6.5	v	
VIL	Low-level input voltage, all inputs	- 2		0.8	V	

Note 1. All voltage values are with respect to VSS

$\label{eq:construction} \textbf{ELECTRICAL CHARACTERISTICS} (\ensuremath{\mathsf{Ta}}=0\ensuremath{\sim}70\ensuremath{^\circ}\ensuremath{\mathsf{C}}, \ensuremath{\mathsf{v}}_{\text{SS}}=0\ensuremath{\mathsf{V}}, \ensuremath{\mathsf{unless}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{C}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{cmath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath}}\xspace{\ensuremath}}\xspace{\ensuremath}}\xspace{\ensuremath}}\xspace{\ensuremath{\mathsf{smath}}\xspace{\ensuremath}}\xspace{\ensuremath}}\xspace{\ensuremath}}\xspace{\ensu$

Sumbal		Test conditions		Limits		11-11	
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		$I_{OH} = -5 \text{mA}$	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =2.1mA	0		0.45	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-80		80	μA
-I ₁	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 80		80	μA
1	Average supply current from V _{CC} ,		RAS, CAS cycling		-	320	m۸
CC1(AV)	operating (Note 3, 4)	MH6408AND-15	t cn = t cw = min, output open			320	IIIA
1 CC 2	Supply current from V _{CC} , standby		RAS = VIH output open			32	mA
	Average supply current from V_{CC} ,		RAS cycling CAS = VIH			290	m۸
CC3(AV)	refreshing (Note 3)	MH0408AND-15	t c(REF) = min, output open			200	
Langer	Average supply current from V _{CC} ,		RAS = VIL, CAS cycling			280	mÅ
CC4(AV)	page mode (Note 3, 4)	MH0408AND-15	t CPG = min, output open			200	
Ci (A)	Input capacitance, address inputs					70	pF
C _{1 (D)}	Input capacitance, data input		VI=VSS			30	pF
C1(w)	Input capacitance, write control input		f=1MHz			80	pF
CI (RAS)	Input capacitance, RAS input		V ₁ =25mVrms			100	pF
CI (CAS)	Input capacitance, CAS input					100	pF
Co	Output capacitance	and a second	$V_0 = V_{SS}$, f = 1MHz, $V_1 = 25$ mVrms			30	pF

Note 2. Current flowing into an IC is positive, out is negative.

3. ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4. ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

MITSUBISHI LSIs MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted, See notes 5, 6 and 7)

	Parameter			MH640		
Symbol			Alternative	L	mits	Unit
			Symbol	Min -	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	100		ns
tw(RASL)	RAS low pulse width		tRAS	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	75	∞	ns
t w (CASH)	CAS high pulse width	(Note 8)	t _{CPN}	35		ns
t _{h(RAS-CAS)}	CAS hold time after RAS		t _{CSH}	150		ns
t _{h (CAS-RAS)}	RAS hold time after CAS		t _{RSH}	75		ns
td (CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	- 20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		ns
t _{su(CA-CAS)}	Column address setup time before \overline{CAS}		t _{ASC}	0		ns
t _{h (RAS-RA)}	Row address hold time after RAS		t _{RAH}	20		ns
t _{h (CAS-CA})	Column address hold time after CAS		t _{CAH}	25		ns
t _{h (RAS-CA)}	Column address hold time after RAS		t _{AR}	95		ns
t _{THL}	Transition time		t+	3	35	0.6
t _{TLH}			•1	5	55	115

Note 5. An initial pause of 500µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

The switching characteristics are defined as t_{THL}=t_{TLH}=5ns.

Reference levels of input signals are V_{IH} min, and V_{IL} max. Reference levels for transition time are also between V_{IH} and V_{IL} . 7

8. Except for page-mode,

9. td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.) 10. Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta(CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL(t TLH) + t SU(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless 0 therwise noted) **Read Cycle**

Symbol	Parameter			MH640	8AND-15		
			Symbol	Li	mits	Unit	
			Min	Max			
t _o R	Read cycle time		t _{RC}	260		ns	
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns	
th (CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns	
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	20		ns	
tdis (CAS)	Output disable time	(Note 12)	tOFF	0	40	ns	
ta _(CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns	
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns	

Note 11. Either th (BAS-B) or th (CAS-B) must be satisfied for a read cycle.

Note 12. tdts (CAS)max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13.

This is the value when td (RAS-CAS) \geq td (RAS-CAS)max. Test conditions : Load = 2T TL, CL = 100pF This is the value when td (RAS-CAS) <td (RAS-CAS)max. When td (RAS-CAS) at (RAS-CAS)max, ta (RAS) will increase by the amount that Note 14. td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

Symbol			MH640	Unit	
	Parameter	Alternative	Li		
		- Symbol	Min	Max]
t _{cw}	Write cycle time	t _{RC}	260		ns
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	5		ns
th (CAS-W)	Write hold time after CAS	twch	45		ns .
th _(RAS-w)	Write hold time after RAS	twcR	95		ns
th _(W-RAS)	RAS hold time after write	t _{RWL}	45		ns
th (w-CAS)	CAS hold time after write	t _{CWL}	45		ns
tw(w)	Write pulse width	twp	45		ns
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		ns
th _(CAS-D)	Data-in hold time after CAS	t _{DH}	45		ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	95		ns

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

	Parameter		Alternative		8AND-15	
Symbol				L	imits	Ünit
				Min	Max	
t _{CRW}	Read-write cycle time	(Note 15)	tRWC	280		ns
t _{CRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	310		ns
th (w-RAS)	RAS hold time after write		tRWL	45		ns
th (w-cas)	CAS hold time after write		t _{CWL}	45		ns
tw(w)	Write pulse width		twp	45		· n,s
tsu (R-CAS)	Read setup time before CAS		tRCS	0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	60		ns
tsu _(D-W)	Data-in setup time before write		t _{DS}	0		ns
th _(w-D)	Data-in hold time after write		t _{DH}	45		ns
tdis (CAS)	Output disable time		toff	0	40	ns
ta _(CAS)	CAS access time	(Note 13)	t CAC		75	ns
ta _(RAS)	RAS access time	(Note 14)	t _{RAC}	······································	150	ns

Note 15. t_{CRW} min is defined as t_{CRW} min = $t_{d}(RAS-W) + t_{h}(W-RAS) + t_{w}(RASH) + 3t_{TLH}(t_{THL})$

16. t_{CRMW} min is defined as t_{CRMW} min = t_{a} (RAS)max + t_{h} (w-RAS) + t_{w} (RAS H) + $3t_{TLH}$ (t_{THL})

17. tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas) ≥ tsu (w-cas)min, an early-write cycle is performed, and the data outputs keep the high-impedance state.

When td (RAS-w) ≥ td (RAS-w)min, and td (CAS-w) ≥ tsu (w-CAS)min, a read-write cycle is performed, and the data of the selected address will be read out on the data outputs.

For all conditions other than those described above, the condition of data output (at access time and until \overline{CAS} goes back to V_{1H}) is not defined.

Page-Mode Cycle

Symbol	Parameter	Alternetive	MH6408		
		Symbol	Lir	nits	Unit
			Min	Max .	
t _{c PGR}	Page-Mode read cycle time	t _{PC}	145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	145		ns
t _{C PGRW}	Page-Mode read-write cycle time		180		ns
t _{c pgrmw}	Page-Mode read-modify-write cycle time	-	195		ns
tw(CASH)	CAS high pulse width	t _{CP}	60		ns

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

MITSUBISHI LSIs

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

tcRw/tcRMw

-tw(RASL) th (RAS-CAS)th(RAS-CA) V_{IH} -RAS VIL -1 th (CAS-RAS) tw(RASH) td (CAS-RAS) _tw(CASL) td(RAS-CAS) v_{1H} CAS VIL tw(CASH) tsu(RA-RAS) th(RAS-RA) tsu(CA-CAS) th(CAS-CA) V_{IH} -COLUMN ROW A0~ A7 ADDRESS ADDRESS td(RAS-W) th(w-CAS) tsu(R-CAS) td(CAS-W) th(w-RAS) VIH w XXX VIL tw(w) ta(CAS) tdis(cas) Von -Q HIGH IMPEDANCE STATE DATA VALID Vol -

t_{a (RAS})

Read-Write and Read-Modify-Write Cycles

RAS-Only Refresh Cycle (Note 19)

MITSUBISHI LSIS MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Page-Mode Read Cycle

Page-Mode Write Cycle

MITSUBISHI LSIs

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Hidden Refresh Cycle

