(Preliminary) MG69L951

8-bit I/O type MCU with 12-bit ADC

Features

- Single chip 8-bit micro-controller
- Operating voltage: 1.8V to 3.6V
- Memory:
 - Program ROM : 64K bytes
 - Data RAM : 256 bytes
- 30 (6 + 24) high drive/sink I/O for LED display.
- 8 general input/output pins (P0.0 to P0.7)
- Build in 2 channel 12-bit resolution A/D converter +/- 4 LSB.
- One 10-bit PWM output
- Two AUD output pins with 8-bit resolution for audio output

- Built-in RTC (Real Time Clock).
- Built-in low voltage reset (1.8V)
- Built-in two programmable timers and one 16-bit capture timer
 - Timer0, Timer1, Timer 2
- Oscillator:
 - Main oscillator (Crystal, Ceramic and RC up to 4MHz @ 2.0V) operation at crystal or RC mode is selected by code option
 - Sub-oscillator (Crystal, Ceramic and RC up to 100KHz @ 2.0V) operation at crystal or RC mode is selected by code option

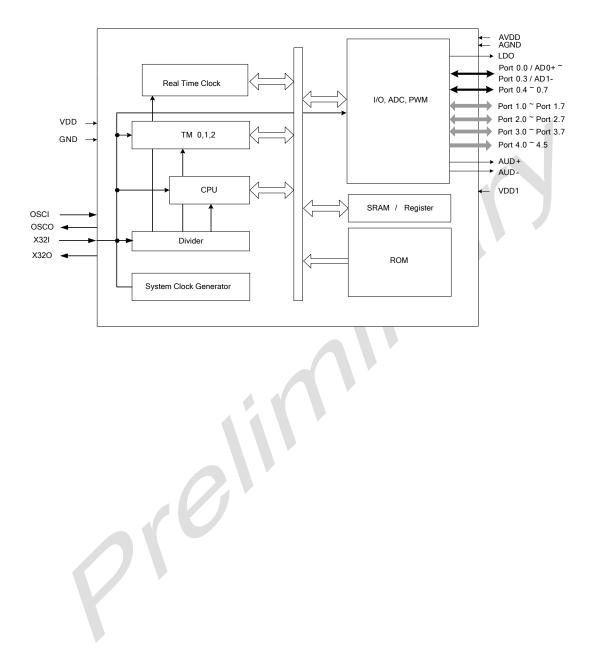
Application Field

LED Calendar, Pressure Meter, Toy Controller

This document contains information on a new product under development by MEGAWIN. MEGAWIN reserves the right to change or discontinue this product without notice.

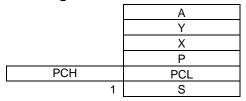
© MEGAWIN Technology Co., Ltd. 2011 All right reserved.

General Description


MG69L951 is a cost effective, high performance 8-bit micro-controller of MEGAWIN. It integrates an 8-bit CPU core, ROM, RAM, timers, RTC, PWM, I/O ports,

A/D converter and system control circuits into a single chip. It is suitable for LED calendar and other products.

Pad Description


Pad No.	Pad Name	I/O	Description
27 ~ 30	P0.0/AD0+ ~ P0.3/AD1-	I/O	General input/output function. The P0.0 ~ P0.3 can be I/O or A/D converter inputs.
31	P0.4/V _{REF+}	I/O	General input port or positive analog reference input.
32	P0.5/V _{CMM}	I/O	General input port or $V_{CMM} = ((V_{REF+})+(V_{REF-}))/2$
33	P0.6/V _{REF-}	I/O	General input port or negative analog reference input.
34	P0.7/PWM	I/O	General input/output function. The P0.7 can be I/O or PWM output pin.
38	LDO	ο	LDO output. In A/D converter application, a 1uF ~47uF capacitor and 0.1uF bypass capacitor are strongly recommended to connect with LDO and AVDD pins.
37	AVDD	Р	Positive power pin for A/D converter.
36	AGND	Р	Ground reference for analog
19 ~ 26, 10 ~ 17, 2 ~ 9	P1.0~P3.7	I/O	High sink current I/O for LED segment display.
49 ~ 54	P4.0~P4.5	0	High drive current output for LED common display.
46, 47	AUD+, AUD-	0	Audio output for direct drive speaker.
1, 45	VDD1	Р	Positive power pin for high drive/sink I/O port
44	/RES		System reset pin (low active)
40, 41	OSCI, OSCO	Ι, Ο	RC or crystal oscillator pins
42, 43	X32I, X32O	I, O	32.768KHz crystal oscillator pins
18, 35, 48	GND	Р	Ground pin
39	VDD	Р	Positive power pin for CPU and RTC

Block Diagram

Function Description

CPU Registers

Accumulator

The accumulator is a general-purpose 8-bit register, which stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of two data words used in these operations.

Index Register (X, Y)

There are two 8-bit index registers (X and Y), which may be used to count program steps or to provide an index value to be used in generating an effective address. When executing an instruction, which specifies indexed addressing, the CPU fetches the OP Code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre- or post-index of index address is possible.

Processor Status Register (P)

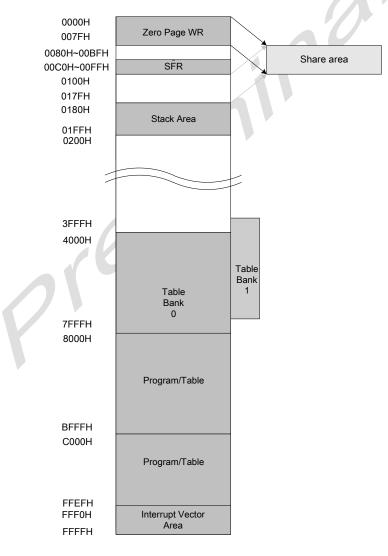
	-		1000				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
N	V	1	В	D	I	Z	С

- N: Signed flag, 1 = negative, 0 = positive
- V: Overflow flag, 1 = true, 0 = false
- B: BRK interrupt command, 1 = BRK, 0 = IRQB
- D: Decimal mode, 1 = true, 0 = false
- I: IRQB disable flag, 1 = disable, 0 = enable
- Z: Zero flag, 1 = true, 0 = false
- C: Carry flag, 1 = true, 0 = false

Program Counter (PC)

The 16-bit program counter register provides the addresses, which step the micro-controller through sequential program instructions. Each time the micro-controller fetches an instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order 8 bits of the address bus, and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time when an instruction or data is fetched from program memory.

Stack Pointer (S)


The stack pointer is an 8-bit register, which is used to control the addressing of the variable-length stack. The stack pointer is automatically incremented and decremented under control of the micro-controller to perform stack manipulations by direction of either the program or interrupts (/IRQ). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer is initialized by the user's software.

Memory Map

There are 256 bytes SRAM, located in address 0000H to 007FH, in the MG69L951. They could be used as either working RAM or stacks according to application programs. For the purpose above, the location 0000H to 007FH and 0100H to 017FH are overlap. In other words, accessing any locations inside the range 0000H to 007FH is equivalent to access the corresponding ones in the range 0100 to 017FH.

All special function registers, SFRs, are located at the region 00C0H to 00FFH. Such an arrangement could benefit from the faster access time of zero-page.

Totally 64K bytes program/data ROM are built in the MG69L951. The ROM, located at 8000H to FFFFH, can store program and data. The address mapping of MG69L951 is shown as below:

MG69L951 Memory Map

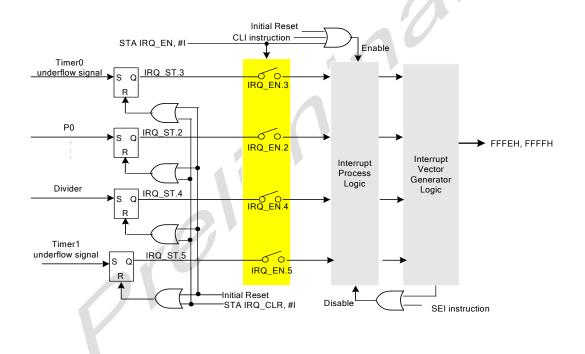
Low Voltage Reset:

The MG69L951 provides low voltage reset circuit in order to monitor the supply voltage of the device. If the supply voltage of the device is within the range 0.9V ~ VLVR, the LVR will automatically reset the device internally.

Special Function Register (SFR)

The address 00C0H to 00FFH is reserved for special function registers (SFR). The SFR is used to control or store the status of I/O, timers, system clock and other peripheral.

00C1 SYS 00C2 IRQ 00C3 IRQ	LKmgr S_STS 2_EN 2_ST / IRQ_CLR 1_EN	0000 x -0000000 00000000 -0000000	00D0 00D1 00D2 00D3 00D4	P0_MFR P0 P0dir	000 00000000 00000000
00C2 IRQ 00C3 IRQ 00C4 RLH	 2_EN 2_ST / IRQ_CLR	-0000000 00000000	00D2 00D3	-	
00C3 IRQ 00C4 RLH		00000000	00D3	-	
00C4 RLH	-			P0dir	00000000
	I_EN	-0000000	0004		000000
00C5			0004	P0plh	00000000
			00D5	P0opd	00000000
00C6			00D6		
00C7			00D7	P1	00000000
00C8 TM0	0	11111111	00D8	P1dir	00000000
00C9 TM0	0_CTL	00000	00D9	P1plh	00000000
00CA TM1	1	11111111	00DA	P1opd	00000000
00CB TM1	1_CTL	00000	00DB		
00CC TM2	2L	11111111	00DC	P2	00000000
00CD TM2	2H	11111111	00DD	P2dir	00000000
00CE TM2	2_CTL	000000	00DE	P2plh	00000000
00CF DIV1	1_STL / DIV1_SEL	00	00DF	P2opd	00000000


SFR (special function register): 00C0H~00FFH

Address	Content	Default	Address	Content	Default
00E0	RTC00	00000000	00F0	PWML	00000000
00E1	RTC01	00000000	00F1	PWMH	10
00E2			00F2	WCP/BANK	0
00E3	RTC_IEN	0-0	00F3		
00E4	RTC_IST/RTC_ICLR	0-0	00F4		
00E5			00F5		
00E6			00F6		
00E7	V		00F7	CH1/ENV1	00000000
00E8	P3	00000000	00F8	CH2/ENV2	00000000
00E9	P3dir	00000000	00F9	AB_TC	0000-000
00EA	P3plh	00000000	00FA		
00EB	P3opd	00000000	00FB		
00EC	P4buf	000000	00FC	ADCR	0-000
00ED			00FD	ADCR_ST	0
00EE			00FE	ADB_L	XXXX
00EF			00FF	ADB_H	XXXXXXXX

Interrupt Vectors

Vector Address	Item	Priority	Properties	Memo
FFFEH, FFFFH	IRQ	2	-	Interrupt vector
FFFCH, FFFDH	RESET	1	Ext.	Initial reset
FFFAH, FFFBH	-	-	-	-

There are seven kinds interrupt source is provided in MG69L951. The flag IRQ_EN and IRQ_ST are used to control the interrupts. When flag IRQ_ST is set to '1' by hardware and the corresponding bits of flag IRQ_EN has been set by software, an interrupt is generated. When an interrupt occurs, all of the interrupts are inhibited until the CLI or STA IRQ_EN, #I instruction is invoked. Executing the SEI instruction can also disable the interrupts.

Interrupt Registers

IRQ enable flag

	•										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C2H	IRQ_EN	-	TM2	TM1	DIV	TM0	P0	VD1	RTC		

Program can enable or disable the ability of triggering IRQ through this register.

0: Disable (default "0" at initialization)

1: Enable

P0: Falling edge occurs at port 0 input mode

TM0, TM1, TM2: Timer 0, 1, 2 underflow occurs

DIV: Divider selected interrupt frequency occurred

VD1: Rising or falling edge occurs at VDD1 (both edge could generate interrupt)

RTC: RTC 0.5S interrupt

IRQ status flag (same address with IRQ_CLR)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C3H	IRQ_ST	WDT	TM2	TM1	DIV	TM0	P0	VD1	RTC		-

When IRQ occurs, program can read this register to know which source triggering IRQ. If the interrupt triggering is enabled and the interrupt event is accepted, the correspond IRQ status flag should be cleared by program after the interrupt vector is loaded into program counter. All the interrupt behavior is same as above description

IRQ clear flag

	-										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C3H	IRQ_CLR	WDT	TM2	TM1	DIV	TM0	P0	VD1	RTC	•	\checkmark

Program can clear the interrupt event by writing '1' into the corresponding bit.

Release halt mode enable flag

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C4H	RLH_EN	-	TM2	TM1	DIV	TM0	P0	VD1	RTC	-	\checkmark

Set IRQ_CLR register to clear the halt release event.

Release halt status flag is the IRQ_ST register.

System Status

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C1H	SYS_STS	VD1S	-	-	-	-	-	-	-		-

VD1S: VDD1 high/low status flag (external pull low should be added between VDD1 pin and GND pin if the VD1 interrupt is used in your application)

System Control Registers

1

1

Main Clock	Manager										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C0H	MCLKmgr	CKS7	-	CKC0	HALT	-					
CKS7: FCPU C											
CKC1	CKC0		S	System clo	ock contro	ol		_			
0	0	Fc	osc enable								
0	1	Fc	osc enable	e, Fx32 dis	e)						

Fosc disable, Fx32 enable (Slow mode)

Fosc disable, Fx32 disable (Stop mode)

Note: MCLKmgr.CKC0 is inhibited when the code option NMO F_{X32} is enabled.

HALT: FCPU off-line control bit. 1: FCPU off-line, 0: FCPU on-line

0

1

Program can switch the normal operation mode to the power-saving mode for saving power consumption through this register. There are three power saving modes in this system.

Slow mode: (MCLKmgr.CKC1 =1, MCLKmgr.CKC0 = 0)

The main uC clock (Fosc) stops oscillating. Only very low power is needed for uC to keep running.

Stop mode: (MCLKmgr.CKC1 = 1, MCLKmgr.CKC0 = 1)

All system clocks stop oscillating. The uC can be awakened from stop mode by 4-ways: port 0 interrupt, hardware reset, low voltage reset, or power-on reset. This mode is inhibited when the code option NMO F_{x32} is enabled.

Halt mode: (MCLKmgr.HALT = 1)

The F_{CPU} clock in off-line status. The oscillator(s) still oscillating if the MCLKmgr.ckc1, MCLKmgr.ckc0 keep low. The uC can be awakened from halt mode by 4-ways: all interrupt events (DIV, TM0, TM1, TM2, port 0, VDD1, RTC), hardware reset, low voltage reset, or power-on reset. Before enter halt mode, the F_{CPU} must be set to slow mode firstly and the current will less than 10uA.

			10.01.0)					,,			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00CFH	DIV1_STL	128	256	512	1024	2048	4096	8192	16384		-
		Hz	Hz	Hz	Hz	Hz	Hz	Hz	Hz		
00CFH	DIV1_SEL	-	-	-	-	-	-	CKO1	CKO0	-	

DIV1 interrupt selector (If the frequency of divider 1 clock source is 32.768KHz)

The clock source of divider 1 is fixed to X32. The divider 1 contents can be reset to 00H by POR, LVR only.

CKO1	CKO0	Selected DIV1 frequency
 0	0	FDIV1 / 4 (8192 Hz)
0	1	FDIV1 / 32 (1024 Hz)
1	0	FDIV1 / 64 (512 Hz)
1	1	FDIV1 / 128 (256 Hz)

RTC (Real Time Clock) register (clock source is F_{X32}/256)

•											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00E0H	RTC00	S7	S6	S5	S4	S3	S2	S1	S0	\checkmark	
00E1H	RTC01	S15	S14	S13	S12	S11	S10	S9	S8	\checkmark	\checkmark
00E3H	RTC_IEN	-	-	IEN5	-	-	-	-	-	-	\checkmark
00E4H	RTC_IST	-	-	IST5	-	-	-	-	-	\checkmark	-
00E4H	RTC_ICLR	-	-	CLI5	-	-	-	-	-	-	\checkmark

The RTC part contains two 8-bit registers with an auto-incrementing address register, an on-chip 32.768kHz oscillator with an integrated capacitor, a frequency divider which provides the source clock for the Real-Time Clock (RTC). The RTC contents can be reset to 00H by POR, LVR only. Program can enable or disable the ability of triggering RTC interrupt through RTC_IEN register, and read the RTC_IST to know which source trigging the RTC interrupt. Programmer can clear the RTC_ISR by writing '1' into the corresponding bit. The RTC00~02 and RTC_IST can be reset to 00H by POR and reset. Program can clear the RTC interrupt event by writing '1' into the corresponding bit of RTC_ICLR.

(The example frequency is 32.768KHz)

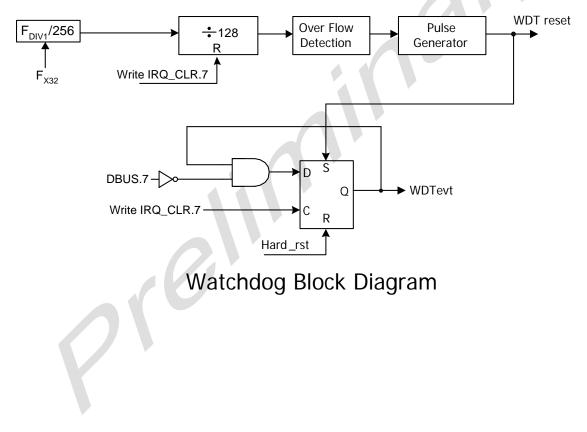
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00E0H	RTC00	2S	1S	2Hz	4Hz	8Hz	16Hz	32Hz	64Hz		
00E1H	RTC01	512S	256S	128S	64S	32S	16S	8S	4S		

WDT clear protector / bank selector

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00F2H	WCP/BANK	PT7	PT6	PT5	PT4	-	-	-	BK0		\checkmark

This register is combined with two functions. The bit 7 to bit 4 is used to be the WDT clear protector and the bit 0 is used to switch the memory bank. To unlock the clear WDT function, the programmer can set the high nibble of this register to 7. Program can switch the memory bank through bit 0 of this register. After power on reset, this register in initialized as 00H.

Note:


- 1. When WCP is written by firmware, it would be cleared by hardware automatically after the "next write action" of firmware.
- 2. Use "ORA #70H" to avoid affect the content of WCP/BANK.0. (Bank selector)

Example:				
clear_WDT	.macro			
	sei			
	lda	BANK		;;(F2h)
	ora	#70h		
	sta	BANK		;;(F2h)
	LDA	#80H	4	A'
	STA	СЗН		;IRQ_CLR
	cli			
.endm	P	K C		

J	- (,	1			()	- //			
Name		/128	/64	/32	/16	/8	/4	/2	R	W
WDT		1Hz	2Hz	4Hz	8Hz	16Hz	32Hz	64Hz	-	-

Watchdog Timer (WDT, The example is base on 32.768KHz/ (256x128))

The watchdog timer time-out period is obtained by the equation: $F_{X32}/(256x128)$. Before watchdog timer time-out occurs, the program must clear the 7-bit WDT timer by writing 1 to IRQ_CLR.7. WDT overflow will cause system reset and set IRQ_CLR.7 to high. Before watchdog timer time-out occurs, the program must write 7xH into WCP then clear the 7-bit WDT timer by writing 1 to IRQ_CLR.7 at next write OP code. WDT overflow will cause system reset and set IRQ_ST.7 to high. The WDT register contents will be reset by hardware reset, low voltage reset and power-on reset.

Timers/Counters

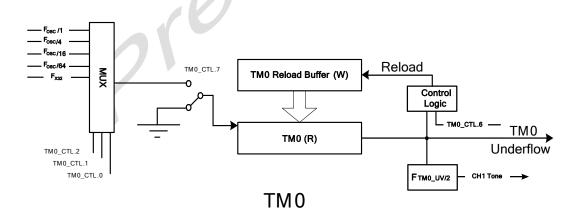
Timer0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00C8H	TM0	T7	T6	T5	T4	Т3	T2	T1	Т0		
00C9H	TM0_CTL	STC	RL/S	-	-	-	TKI2	TKI1	TKI0		

STC: Start/Stop counting. 1: start and pre-load the value to counter, 0: stop timer clock

RL/S: Auto-reload disable/enable. 1: disable auto-reload, 0: enable auto-reload

 TKI2	TKI1	TKI0	Selected TM1 input frequency	
 0	0	0	Fosc / 1	
0	0	1	Fosc / 4	
0	1	0	Fosc / 16	
0	1	1	Fosc / 64	
1	Х	Х	Fx32	


X: Don't care.

Timer 0 is an 8-bit down-count counter. The counter underflow frequency of timer 0, FTM0_UV, can be calculated with the equation:

 $FTM0_UV = FTM0 / (TM0+1)$, where the FTM0 is the timer input frequency set by TKI1 and TKI0.

For example: (if FTM0 = 2.000MHz, TKI1=TKI0=0)

TM0	Frequency
00H	Reserved
01H	1.000MHz
02H	667kHz
FFH	7.84kHz

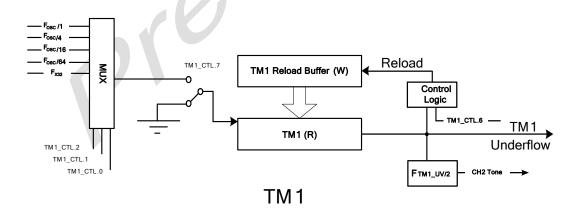
Timer1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00CAH	TM1	T7	T6	T5	T4	Т3	T2	T1	Т0	\checkmark	
00CBH	TM1_CTL	STC	RL/S	-	-	-	TKI2	TKI1	TKI0		

STC: Start/Stop counting. 1: start and pre-load the value to counter, 0: stop timer clock

RL/S: Auto-reload disable/enable. 1: disable auto-reload, 0: enable auto-reload

_	TKI2	TKI1	TKI0	Selected TM1 input frequency	
-	0	0	0	Fosc / 1	
	0	0	1	Fosc / 4	
	0	1	0	Fosc / 16	
	0	1	1	Fosc / 64	
	1	Х	Х	Fx32	


X: Don't care.

Timer 1 is an 8-bit down-count counter. The counter underflow frequency of timer 1, FTM1_UV, can be calculated with the equation:

FTM1_UV = FTM1 / (TM1+1), where the FTM1 is the timer input frequency set by TKI1 and TKI0.

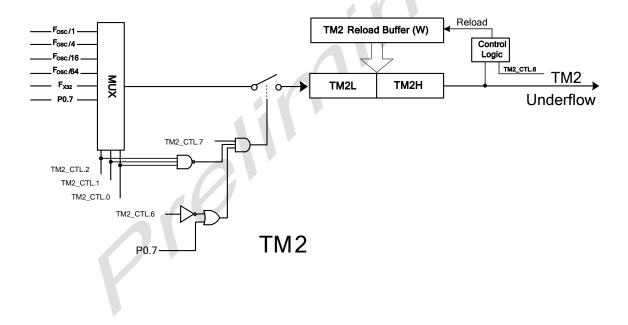
For example: (if FTM1 = 2.000MHz, TKI1=TKI0=0)

TM1	Frequency	
00H	Reserved	
01H	1.000MHz	
02H	667kHz	
FFH	7.84kHz	

Timer2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00CCH	TM2L	T7	T6	T5	T4	T3	T2	T1	Т0	\checkmark	\checkmark
00CDH	TM2H	T7	T6	T5	T4	T3	T2	T1	Т0		
00CEH	TM2_CTL	STC	RL/S	GATE	-	-	TKI2	TKI1	TKI0		

STC: Start/Stop counting. 1: start value to counter, 0: stop timer clock


RL/S: Auto-reload disable/enable. 1: disable auto-reload, 0: enable auto-reload

Gate: Gating control. 1: Timer2 is enabled only while P0.7 is high and STC control bit is set.

0: Timer2 is enabled whenever STC control bit is set.

TKI2, TKI1, TKI0:

TKI1	TKI0	Selected TM2 input frequency
0	0	Fosc / 1
0	1	Fosc / 4
1	0	Fosc / 16
1	1	Fosc / 64
0	0	Fx32
1	1	P0.7 (capture disable)
	TKI1 0 1 1 0 1	TKI1 TKI0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1

I/O Ports

Port 0 multi-function selector

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D0H	P0_MFR	PS7	-	-	-	-	-	PS1	PS0	-	

The port 0 can be programmed to special function via P0_MFR register.

PS0 = "0": P0.0 and P0.1 is a normal I/O (Default); "1": P0.0, P0.1 is setting as AD0+, AD0-

PS1 = "0": P0.2 and P0.3 is a normal I/O (Default); "1": P0.2, P0.3 is setting as AD1+, AD1-

When PS0 or PS1 is setting to high, the P0.4~P0.6 (VREF+, VCMM, VREF-) will be switch to ADC reference input

automatically. Any P0 input pin, which is setting as ADC function, the interrupt, halt and stop mode release function will be disabled.

PS7 = "0": P0.7 is a normal I/O (Default), "1": P0.7 is PWM output when P0.7 configured as an output pin

PWM data buffer

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00F0H	PWML	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
00F1H	PWMH	-	-	-	-	-	-	PD9	PD8	\checkmark	

The clock source frequency of PWM is F_{OSC}; The PWM output duty is proportional to the code value of data

buffer. When P0_MFR.7 is set to "1", 10-bit resolution PWM signal will output from P0.7/PWM pin. The PWM default contents is 10 0000 0000B

A/D converter control register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00FCH	ADCR	ADEN	LDOPD	AZ	-	-	-	CS0	SOC	-	\checkmark
00FDH	ADCR_ST	-		-	-	-	-	-	RDY		-

SOC: Start the A/D conversion. Set this flag to "1" ($0 \rightarrow 1 = \text{start}$) will start A/D converting and it will be cleared

to "0" after RDY go high. A 200 μ S delay must be added after ADEN set to "1" (enable ADC).

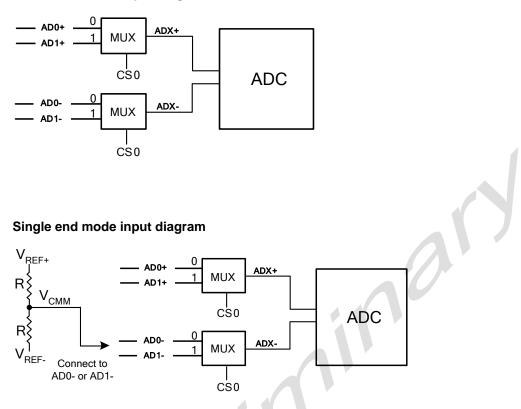
CS0: defines the analog channel select.

CS0	Analog Channel
0	AD0+, AD0-
1	AD1+, AD1-

AZ: ADC differential input short control.

1= ADC differential input short.

0= ADC differential input not short.


Set AZ flag to make the ADC positive and negative input port be internally short. Read the ADB_H and ADB_L to get ADC offset (The ADO should be zero if the offset is zero).

LDOPD: "1": LDO power-down, "0": LDO active (The LDO is used to be the ADC reference voltage (2.4V)).

ADEN: "0": Disable ADC and LDO function (default), "1": Enable ADC and LDO function.

RDY: Set by hardware and clear by ADCR.0 start signal. ADCR_ST.0 set to "1" means that A/D convert is completed.

Differential mode input diagram

A/D converter result register

		-		1000.							
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00FEH	ADB_L	ADB3	ADB2	ADB1	ADB0	-	-	-	-	\checkmark	-
00FFH	ADB_H	ADB11	ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4		-

After the conversion is completed, the ADB_H and ADB_L could be read to get the conversion result data.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D2H	P0	P07	P06	P05	P04	P03	P02	P00	P00	\checkmark	\checkmark

Port 0 is an 8-bit I/O port; each pin can be programmed as input or output individually. However, reading P0.n would always read the logic value from pad. When port0.n is configured as an output pin, the port0.n pin would output the logic content of P0.n.

* Bit-manipulation instructions not available on this register.

Port 0 Direction Register

	•										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D3H	P0dir	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	-	

P0dir (Port 0 Direction)

P0dir.n = 0: P0.n is configured as an input pin. (Default)

1: P0.n is configured as an output pin.

* Bit-manipulation instructions not available on this register.

Port 0 Pull-high Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D4H	P0plh	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	-	\checkmark

PH0 ~ PH7: Control bit is used to enable the pull-high of P0.0 ~ P0.7 pin.

0: Disable internal pull-high (default); 1: Enable internal pull-high, the pull-high will be disable automatically when P0.n is set to output mode low state;

※ Bit-manipulation instructions not available on this register.

Port 0 Open-Drain Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D5H	P0opd	OD7	OD6	OD5	OD4	OD3	OD2	OD1	OD0	-	\checkmark

OD0 ~ OD7: Control bit is used to enable the open-drain of P0.0 ~ P0.7 pin.

0: Disable open-drain output (CMOS output), 1: Enable open-drain output

* Bit-manipulation instructions not available on this register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D7H	P1	P17	P16	P15	P14	P13	P12	P10	P10	\checkmark	

Port 1 is an 8-bit I/O port; each pin can be programmed as input or output individually. However, reading P1.n would always read the logic value from pad. When port1.n is configured as an output pin, the port1.n pin would output the logic content of P1.n. To reduce the power consumption, the port 1 must be set to high in STOP mode and halt mode. When VDD1 small than VDD, the pull-high of P1 must be disabled and the current will less than 10uA.

※ Bit-manipulation instructions not available on this register.

Port 1 Direction Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D8H	P1dir	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	-	\checkmark

P1dir (Port 1 Direction)

P1dir.n = 0: P1.n is configured as an input pin. (Default)

1: P1.n is configured as an output pin.

※ Bit-manipulation instructions not available on this register.

Port 1 Pull-high Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00D9H	P1plh	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	-	

PH0 ~ PH7: Control bit is used to enable the pull-high of P1.0 ~ P1.7pin.

0: Disable internal pull-high (default); 1: Enable internal pull-high, the pull-high will be disable automatically

when P1.n is set to output mode low state;

* Bit-manipulation instructions not available on this register.

Port 1 Open-Drain Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00DAH	P1opd	OD7	OD6	OD5	OD4	OD3	OD2	OD1	OD0	-	\checkmark

OD0 ~ OD7: Control bit is used to enable the open-drain of P1.0 ~ P1.7 pin.

0: Disable open-drain output (CMOS output); 1: Enable open-drain output

※ Bit-manipulation instructions not available on this register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00DCH	P2	P27	P26	P25	P24	P23	P22	P21	P20		

Port 2 is an 8-bit I/O port; each pin can be programmed as input or output individually. However, reading P2.n would always read the logic value from pad. When port2.n is configured as an output pin, the port2.n pin would output the logic content of P2.n. To reduce the power consumption, the port 2 must be set to high in STOP mode and halt mode. When VDD1 small than VDD, the pull-high of P2 must be disabled and the current will less than 10uA.

* Bit-manipulation instructions not available on this register.

Port 2 Direction Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00DDH	P2dir	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	-	\checkmark

P2dir (Port 2 Direction)

P2dir.n = 0: P2.n is configured as an input pin. (Default)

1: P2.n is configured as an output pin.

※ Bit-manipulation instructions not available on this register.

Port 2 Pull-high Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00DEH	P2plh	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	-	

PH0 ~ PH7: Control bit is used to enable the pull-high of P2.0 ~ P2.7 pin.

0: Disable internal pull-high (default); 1: Enable internal pull-high, the pull-high will be disable automatically

when P2.n is set to output mode low state;

* Bit-manipulation instructions not available on this register.

Port 2 Open-Drain Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00DFH	P2opd	OD7	OD6	OD5	OD4	OD3	OD2	OD1	OD0	-	\checkmark

OD0 ~ OD7: Control bit is used to enable the open-drain of P2.0 ~ P2.7 pin.

0: Disable open-drain output (CMOS output); 1: Enable open-drain output

※ Bit-manipulation instructions not available on this register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00E8H	P3	P37	P36	P35	P34	P33	P32	P31	P30		\checkmark

Port 3 is an 8-bit I/O port; each pin can be programmed as input or output individually. However, reading P3.n would always read the logic value from pad. When port3.n is configured as an output pin, the port3.n pin would output the logic content of P3.n. To reduce the power consumption, the port 3 must be set to high in STOP mode and halt mode. When VDD1 small than VDD, the pull-high of P1 must be disabled and the current will less than 10uA.

※ Bit-manipulation instructions not available on this register.

Port 3 Direction Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00E9H	P3dir	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	-	\checkmark

P3dir (Port 3 Direction)

P3dir.n = 0: P3.n is configured as an input pin. (Default)

1: P3.n is configured as an output pin.

※ Bit-manipulation instructions not available on this register.

Port 3 Pull-high Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00EAH	P3plh	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	-	

PH0 ~ PH7: Control bit is used to enable the pull-high of P3.0 ~ P3.7pin.

0: Disable internal pull-high (default); 1: Enable internal pull-high, the pull-high will be disable automatically

when P3.n is set to output mode low state;

* Bit-manipulation instructions not available on this register.

Port 3 Open-Drain Control Register

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00EBH	P3opd	OD7	OD6	OD5	OD4	OD3	OD2	OD1	OD0	-	\checkmark

OD0 ~ OD7: Control bit is used to enable the open-drain of P3.0 ~ P3.7pin.

0: Disable open-drain output (CMOS output); 1: Enable open-drain output

※ Bit-manipulation instructions not available on this register.

Port 4 Buffer

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00ECH	P4buf	-	-	P45	P44	P43	P42	P41	P40	-	\checkmark

Port4 is dedicated CMOS output pins and highly drive current up to 100mA for turn on LED array. To reduce the power consumption, the port 4 must be set to high in STOP mode and halt mode. (The current will less than 10uA).

<< To avoid over current operation, please do not set over one bit to high and keep enough time delay for LED turn off. >>

10

CH1, CH2 Buffer

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00F7H	CH1/ENV1	EN7	EN 6	EN 5	EN 4	EN 3	EN 2	EN 1	EN 0	-	\checkmark
00F8H	CH2/ENV2	EN7	EN 6	EN 5	EN 4	EN 3	EN 2	EN 1	EN 0	-	

LDA	Voice	; Load 8-bit voice data to accumulator
STA	F7H	;

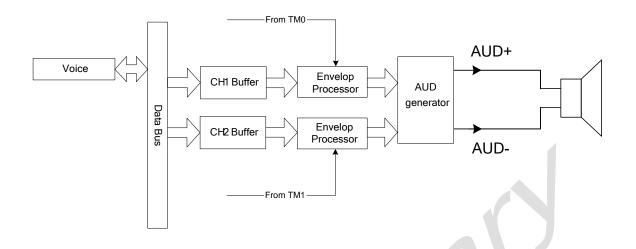
AUD buffer transfer control

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	W
00F9H	AB_TC	AEN	VTS6	TC5	TC4	-	VTS2	TC1	TC0		\checkmark

AB_TC is a voice or tone control register. When AEN is set as disable, the AUD+ and AUD- will be set to open drain high impendence. VTS6 and VTS2 are used to control the path of voice or tone. TC5~ TC3, TC2~TC0 are used to control the AUD buffer transfer method. Before disable all the AUD output, user must progress the fade out subroutine to avoid the noise burst.

AEN: AUD enable control. 0: disable, 1:enable

VTS6: Ch 2 voice/tone control. 0: voice, 1:tone

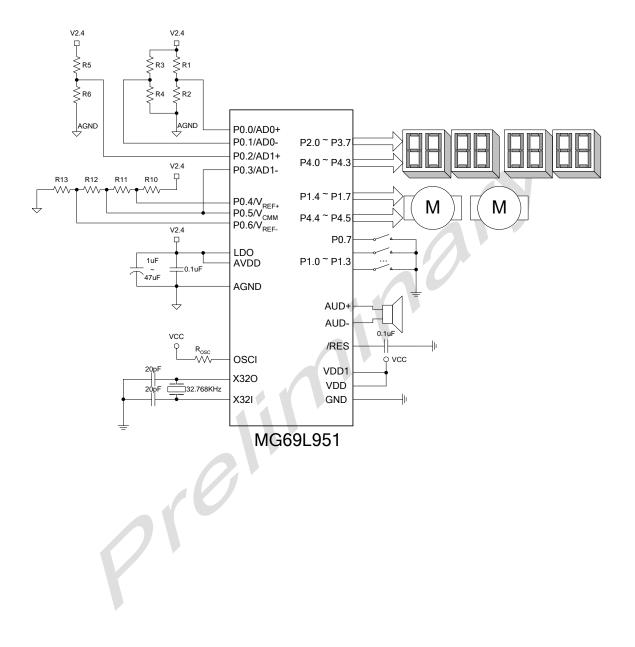

TC5	TC4	AUD buffer transfer control
0	0	Ch 2 buffer data transfer to AUD after TM0 underflow
0	1	Ch 2 buffer data transfer to AUD after TM1 underflow
1	0	Ch 2 buffer data transfer to AUD after TM2 underflow
1	1	Ch 2 buffer data transfer to AUD directly

VTS2: Ch 1 voice/tone control. 0: voice, 1:tone

TC1 TC0	AUD buffer transfer control
0 0	Ch 1 buffer data transfer to AUD after TM0 underflow
0 1	Ch 1 buffer data transfer to AUD after TM1 underflow
1 0	Ch 1 buffer data transfer to AUD after TM2 underflow
1 1	Ch 1 buffer data transfer to AUD directly

AUD output current

The drive current of AUD buffer is typically 150mA at VDD=3volt. It is suit to direct drive a speaker or buzzer. To reduce the power consumption, the port 4 must be set to high in STOP mode and halt mode. (The current will less than 10uA).



Programming Notice


The status after different reset condition is listed below:

	Power on reset	CPU /RES pin reset
SRAM Data	Unknown	Unchanged
CPU Register	Unknown	Unknown
Special Function Register	Default value	Default value

Application circuit

Pad Assignment

Absolute Maximum Rating

PARAMETER	RATING	UNIT
Supply Voltage to Ground Potential	-0.3 to +4.0	V
Applied Input / Output Voltage	-0.3 to +4.0	V
Power Dissipation	800	mW
Ambient Operating Temperature	0 to +70	O°
Storage Temperature	-55 to +150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and

reliability of the device.

DC Characteristics

(VDD-VSS = 3.0 V, FOSC = 4MHz, Ta = 25° C; unless otherwise specified)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Voltage	V _{DD}	-	1.8	-	3.6	V
Op. Current	I _{OP}	No load (ExtV)		2	5	mA
		In normal operation				
Standby Current	I _{HALT}	No load (ExtV)	-	3	5	μA
AUD+ buffer driving current	I _{AUD+}	R load = 8 Ω	150	-	-	mA
AUD- buffer driving current	I _{AUD-}	R load = 8 Ω	150	-	-	mA
Input High Voltage	V _{IH}		0.7 Vdd	-	Vdd	V
Input Low Voltage	VIL		0	-	0.3Vdd	V
Port 0 drive current	I _{OH0}	Voh = 2.4V, Vdd = 3.0V	3	-	-	mA
Port 0 sink current	I _{OL0}	VOL = 0.4V, VDD = 3.0V	3	-	-	mA
Port 1, 2, 3 drive current	I _{OH1}	Voh = 2.4V, Vdd = 3.0V	10	-	-	mA
Port 1, 2, 3 sink current	IOL1	VOL = 0.4V, VDD = 3.0V	20	-	-	mA
P4.0 ~ P4.5 drive current	I _{OH4}	VOH = 2.4V, VDD = 3.0V	100	-	-	mA
Port 4 sink current	I _{OL4}	VOH = 0.4V, VDD = 3.0V	3	-	-	mA
Internal Pull-high Resistor	R _{PH}	VIL = 0V	25K	50K	100K	Ω
/RES Pull-high Resistor	R _{RES}	VIL = 0V	-	30K	-	Ω
Low Voltage Reset	V_{LVR}	-	1.60	-	2.10	V

AC Characteristics

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CPU OP. Frequency	FCPU	VDD = 3.0V	0.4	4	8	MHz
System Start-Up Time	T _{SST1}	Power-up, reset or wake-up from STOP mode (F _{CPU} = F _{OSC})	-	16384	-	1/ F _{СРU}
	T _{SST2}	Wake-up from STOP mode (F _{CPU} = F _{X32})	-	2048	-	1/ F _{CPU}

Mask Option <<<

Item	1/0
Fosc	RC / Crystal
F _{X32}	RC / Crystal
WDT	Enable / Disable
NMO F _{X32}	Enable / Disable

NMO F_{X32}: Non-Maskable Oscillator X32. The X32 cannot stop oscillating by MCLKmgr.CKC0 when it is enabled.

Application (with RTC and with WDT)

Fosc	RC	
F _{X32}	Crystal	
WDT	Enable	
NMO F _{X32}	Enable	
		•

Application (without R_{X32} and with WDT)

Fosc	RC or Crystal
F _{X32}	RC
WDT	Enable
NMO F _{X32}	Enable

Application (without both RTC and WDT)

F _{osc}	RC or Crystal
F _{X32}	RC
WDT	Disable
NMO F _{X32}	Disable

Not Recommended Selection

F _{osc}	RC or Crystal
F _{X32}	RC or Crystal
WDT	Enable
NMO F _{X32}	Disable

History:

- V0.10: Original
- V0.20: Modified operating voltage 2.4-3.6V to 1.8V-3.6V, modified LVR to 1.8V
- V0.30: Added divider and divider interrupt.
- V0.40: Added 0.5S interrupt, Timer2 and second tone path.
- V0.50: Added ADC and PWM function
- V0.60: Modified ADC function to 12-bit and reduce the drive current of Port 4
- V0.70: Modify the PLL frequency option, add external RC oscillator (around 32KHz), modify the P0 drive/sink to 3mA, Add ADC block diagram and add over heat flag.
- V0.80: Modify the RC/crystal option by pin, 10-bit PWM, VD1 detected.
- V0.91: Delete the PLL block, add OSCI, OSCO clock source, add NMO F_{X32} code option, modify WDT clock source from RTC, modify Timer2, add application circuit and pad assignment.
- V0.92: Modify the application circuit and rename some pad and pad description.
- V0.93: Delete over heat flag, modify the port 4 driving current, and modify the typing mistakes about DIV1_SEL, RTC_IST address and System Start-Up Time
- V0.94: Modify the DIV1_SEL interrupt frequency and pad assignment.
- V0.95: Modify the DC characteristics; add LDO disable control bit and WDT clear protector.
- V0.96: Modify the setting value of mask option

Pro

All change will be marked with "<<<"