

Buck type, Switching LED Driver

MG39304 **Data Sheet**

Version: 1.03

Features:

- I Wide input range: 8V to 500V, without external protection devices
- I Enhanced peak current control, typical ±3% current accuracy
- I Fast switching frequency supported: lower ILED ripple and smaller inductor size
- I Combines PWM and linear dimming function into one PIN
- I Soft-start built in
- I Under Voltage Protection
- I On board, continuous thermal compensation of ILED current
- I Output short circuit protection with skip mode
- I CS loop open circuit protection with skip mode
- I Inherent LED open protection
- I Operating temperature, -40 $^{\circ}$ C to +125 $^{\circ}$ C
- l eSOP8 package

Content

Fea	atures:	2
1.	General Description	4
	Order Information	
3.	Applications	4
	Pin Configurations	
5.	Pin Descriptions	5
6.	Block Diagram	6
7.	Typical Application Circuit	7
8.	Application Information	9
9.	Absolute Maximum Rating	11
10.	Electrical Characteristics	11
11.	Typical Performance Characteristics:	14
12.	Package Information:	17
	Revision History	

1. General Description

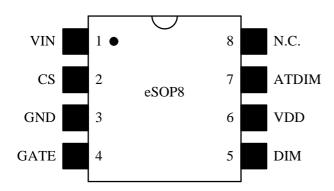
The MG39304 is a current control LED driver IC operating in constant off-time mode. With enhanced circuit structure, the current accuracy is improved to +/-3% for wide input VIN application.

The MG39304 can be powered from a 8V - 500V supply without external protection devices (current limiting resister, zener etc..). The 'wide VIN range application' is easily to be achieved.

The diming control can be either 'digital' or 'analog' type through one input pin 'DIM'. If the DIM pin voltage is greater than 6.0V, the gate driver operates normally; the output current is programmed by an internal 500mV reference. When the pin voltage is in between 6.0V and 1.5V, the analog dimming function is activated. The output current is proportional to the 'DIM*ratio'. The 'ratio' is a pre-set factor and equal to '1/9.23'. When the pin voltage is less than 1.5V, the gate driver is turned off. If the DIM pin is switched ON and OFF at a rate larger than 400HZ, the pin is acting like a digital diming function

MG39304 is pin-to-pin compatible with MG39U301 and it can be used as a drop-in replacement for existing applications to improve the LED current accuracy and regulation. The IC provides various protect schemes: soft start, UVLO, short circuit, open CS-loop and on-board over temperature compensation.

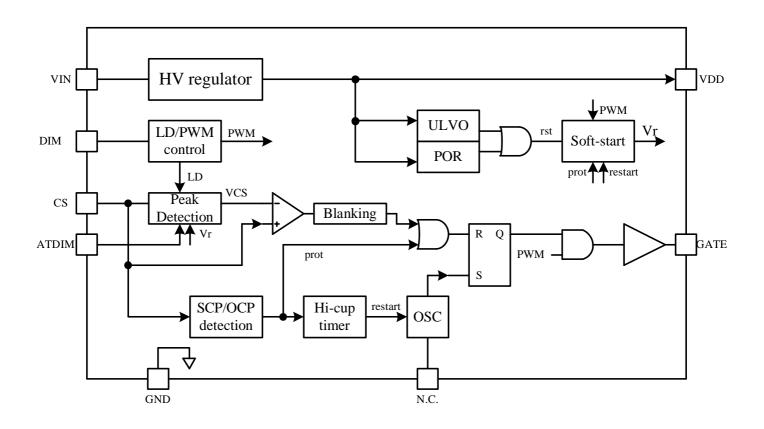
The chip is available in 8 lead eSOP package.

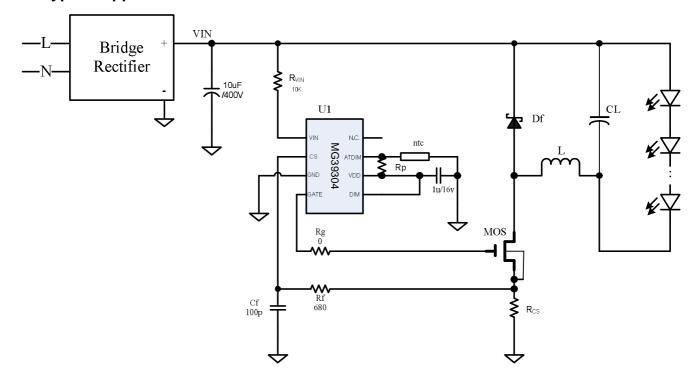

2. Order Information

Part No.	MG39304AS1
Package	eSOP8

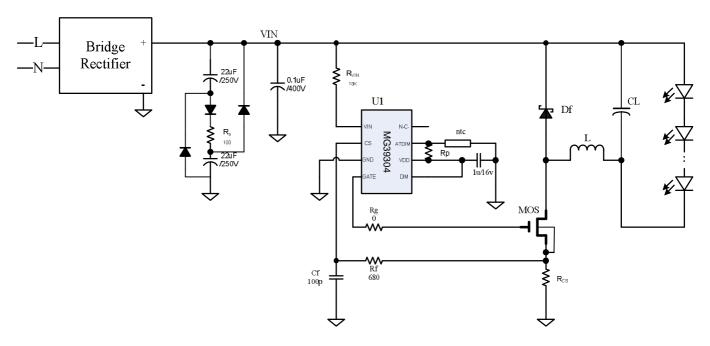
3. Applications

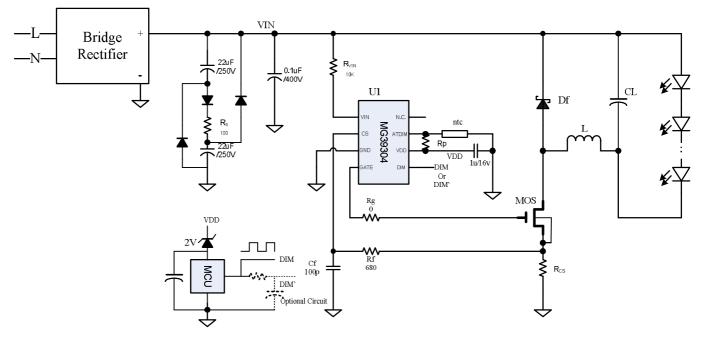
AC lighting
LCD backlighting
Replacement of general DC-DC lighting


4. Pin Configurations


5. Pin Descriptions

Pin No.	Name	I/O	Description			
1	VIN	P_hv	Positive power input: 8V ~ 500V			
2	CS	I	Current sense pin, used to sense the FET current by means of an			
			external sense resistor.			
3	GND	G	IC ground pad			
4	GATE	0	PWM signal's output, for driving the external N-channel power			
			MOSFET.			
5	DIM	I	Diming Control			
			If > 6V, gate driver is normally on			
			< 1.5V, gate driver is forced off			
			f it is between 1.5V and 6V, The CS compared level is VDIM/9.23.			
			If the pin is switching at a frequency >100Hz, it becomes a digital			
			dimming control input.			
6	VDD	P_lv	Internal LDO 7.0V output			
7	ATDIM	I	Temperature compensation of LED output current.			
			If ATDIM >=0.65V, CS compare level is 0.65V.			
			If ATDIM < 0.65V, CS compare level is the voltage level of ATDIM			
			pin			
8	N.C.		No Connection.			


6. Block Diagram


7. Typical Application Circuit

Typical application circuit with external temperature compensation. No PF boost circuit!

Typical application circuit with external temperature compensation. With PF boost circuit!

PWM dimming application circuit when works with MCU

8. Application Information

Input Voltage Regulator

The MG39304 integrates one high voltage regulator to generate the power for internal core logic. The power source is taken from the AC line directly. Extra auxiliary transformer is not needed for the supply. When a voltage (8~500V) is applied at the VIN pin, the regulator maintains a constant 7V at the VDD pin. The VDD pin must be bypassed by a low ESR capacitor to provide a low impedance path for the high frequency current of the output date driver.

The current driving capability of the regulator is limited to around 1.5mA. When IC is in working state, the power that is needed to support the gate switching is around "Fpwm * Qg". Where Fpwm is the switching frequency of GATE pin, Qg is power MOS's gate charge. If User wants to use the LDO to drive the external component, make sure the limitation is applied:

<u>"Fpwm * Qg + lext < 1.5mA"</u>, where lext is the current consumption of external circuit Please refer to the item `FPWM_MAX` of "MG39304A_design_assistant_file_v1x" for the maximum switching frequency.

For reliability concern, it's recommended to add a series resistor between V_{INDC} and VIN pin to protect the IC. Basically, 10k~30k ohms are recommended.

Heat Dissipating

The LDO can support typical 1.5mA current for external components. At high VIN condition, the IC will carry around `Vin * 2.3m` wattage power. The heat dissipating will becomes an issue. The heat-sink of eSOP8 package should be firmly attached to the PCB with adequate heat dissipating area. A pull-up resistor with the value 300K ~ 1000K may be added between Vin and VDD.

Dimming

The MG39304 supports both digital PWM dimming and analog dimming control. Both functions are integrated into one pin control.

If DIM pin level is below 1.5V, the GATE is forced off state ("0")

If DIM pin level is larger than 6V, the CS pin compare level is as default setting

If DIM pin level is between 1.5V and 6V, The CS compare level is `VDIM/9.23`

The digital PWM is performed as DIM pin is toggle On and Off with level <1.5 and >6. Rule of thumb, it's suggested that the PWM frequency should be >400Hz for flicker-less concern.

For analog dimming, the dim level can be from a DAC, resistor diver or low-pass filtered PWM signal

Design Procedures

The MG39304 automatically calculates the switching frequency based on L value and LED load setting. The design procedures are very simple. Please refer to the "MG39304A_design_asistant_file_v1x" for detail

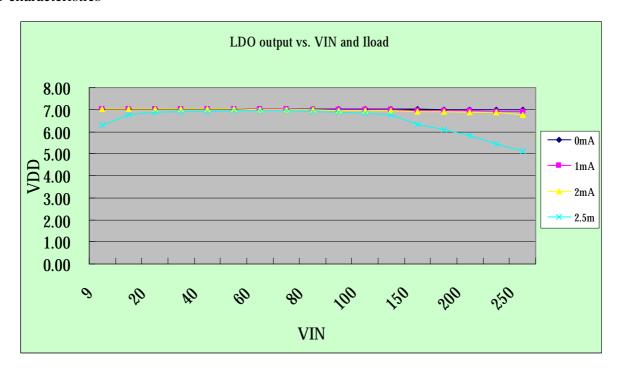
- 1. Based on the wattage requirement, find out the LED string number and the average LED current (ILEDavg).
- 2. Calculate RCS = 0.5/ILEDavg
- 3. Pick up a L value that is larger than `Lmin_app` parameter on the design assistant file. Iff the current variation is acceptable among the wide input range of application, user can pick-up a lower L value to reduce the cost. Basically, larger L has the lower ILED variation.
- 4. The design assistant file will calculate the required parameter for you. Please put the design information into the `blue` blocks

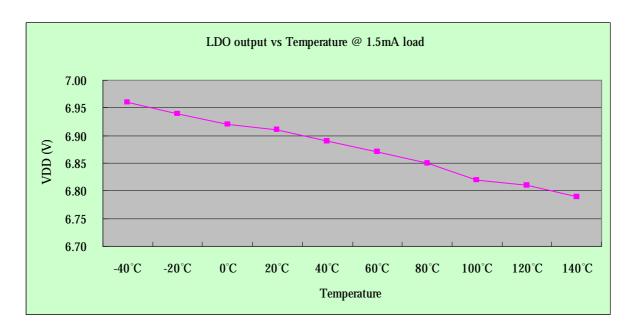
9. Absolute Maximum Rating

Parameter	Value
Vin Supply Voltage	-0.5v ~ 500v
Operating temperature	-40 ~ 125 degree
Storage temperature	-55 ~ 155 degree

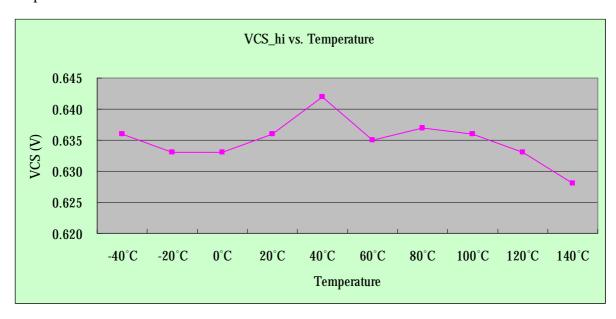
PS: Operating temperature is strong related to the power consumption of IC.

10. Electrical Characteristics

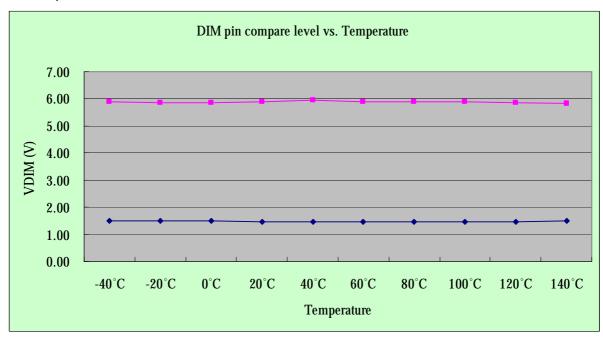

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input DC supply voltage	VINDC	DC input voltage	8		500	V
range						
Input supply current	IINSD	Pin CS=VDD7, PWM control is not		0.8	1.0	mA
		switching				
Internal Regulator						
Internally regulated	VDD	VIN = 9V, IDD(ext)= 0.5mA	6.75	7.0	7.25	V
voltage		(typical case)				
Line regulation of VDD	ΔVDD1	VIN = 9V ~ 250V, IDD(ext) = 0.5mA,	0	0.1	0.3	V
Load regulation of VDD	ΔVDD2	$IDD(ext) = 0 \sim 1.7mA,$	0		100	mV
		VIN= 9V ~ 250V				
LDO output current	ILDO	VIN = 9V, TA = 25°C		1.5	1.7	mA
VDD under-voltage	UVLO	VDD rising	5	5.25	5.5	V
lockout threshold						
VDD under-voltage	ΔUVLO	VDD falling		500		mV
lockout hysteresis						

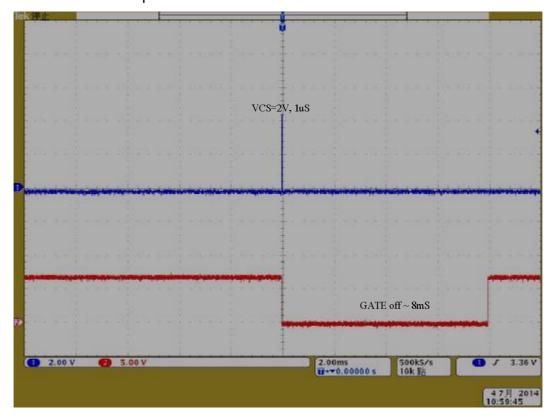

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
DIM dimming				•	1	
DIM input voltage High	VDIM_H			6.0		V
DIM input voltage Low	VDIM_L			1.5		V
Linear dimming ratio	DIM_RATIO			1/9.2		
				3		
ATDIM control						
ATDIM input voltage	VATDIM	$@TA = -40^{\circ}C \text{ to } +85^{\circ}C$	0		0.65	V
range						
Current Sense Input						
Current sense pull-in	VCS_L	@TA = -40°C to +85°C	330	350	370	mV
Low threshold voltage						
Current sense pull-in	VCS_H	@TA = -40°C to +85°C	630	650	670	mV
High threshold voltage						
Current sense blanking	TBLANK		150	215	320	ns
interval						
Minimum on-time	TON_MIN	@the voltage of CS is 0.68V			1000	ns
Maximum steady-state	DMAX	Reduction in output LED current			75	%
duty cycle		may occur beyond this duty cycle				
Short Circuit Protection						
Hiccup threshold voltage	VHIC	Define Vcs=2V, Hiccup		2		V
		protection occurs				
Propagation Delay Time	TDELAY	@the voltage of CS is 0.68V		150		ns
of CS-to-GATE						
Short circuit hiccup time	TSCP	The sustained time when Hiccup		8		ms
		protection occurs (Vcs>=2V)				
Short circuit detection	TSHORT	The detected time for Hiccup		215		ns
time		protection event when Vcs >=2V				
Soft-start time	TSS	Roughly value, it depends on the		200		ms
		free run frequency of internal				
		OSC.				
Open Circuit Protection						
Open circuit detection	TOPEN	@LED Load open		2		ms
time						
Open circuit hiccup time	TOCP	@LED Load open		8		ms

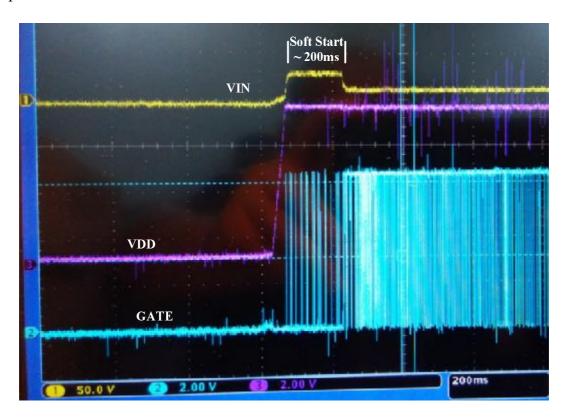
Gate Driver				
GATE output rise time	TRISE	CGATE = 500pF, VDD = 7.0V	150	ns
GATE output fall time	TFALL	CGATE = 500pF, VDD = 7.0V	150	ns
GATE sourcing current	ISOURCE	VGATE = VDD – 0.4V, VDD =	10	mA
		7.0V		
GATE sinking current	ISINK	VGATE = 0.4V, VDD = 7.0V	10	mA
GATE pull-low resistor	RPULL_LO		200	ΚΩ
	W			


11. Typical Performance Characteristics:

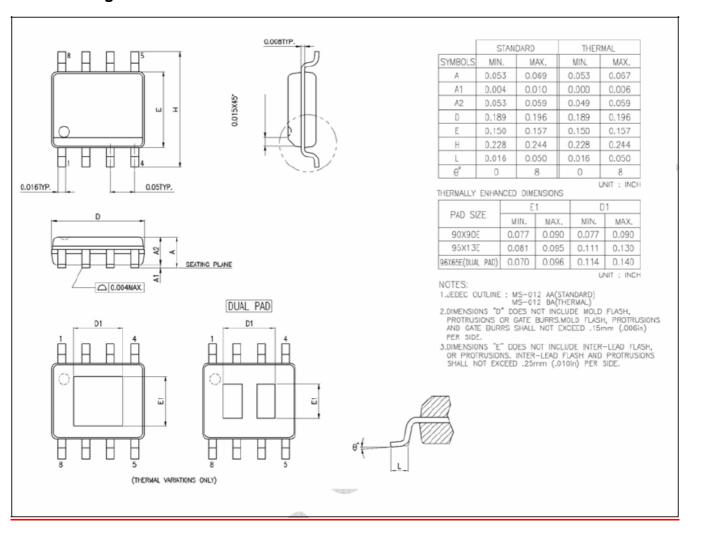
LDO characteristics




VCS compare level


Dim Pin compare level

Short Circuit Protection Hi-cup time



Soft-Start period

12. Package Information:

SOP8 Package Dimension

13. Revision History

Rev	Descriptions	Date
V1.00	Initial release	2013/12/23
V1.01	Rename model name	2014/02/11
V1.02	Modify input current spec.	2014/5/26
V1.03	Adding Test data	2014/7/21