

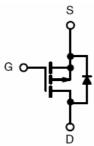
Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

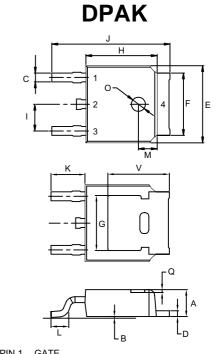
Phone: (818) 701-4933 Fax: (818) 701-4939

MCU50P04

Features• High density cell design for ultra low R_{dson}


- Fully characterized avalanche voltage and current
- Halogen free available upon request by adding suffix "-HF"
- Good stability and uniformity with high E_{AS}
- Epoxy meets UL 94 V-0 flammability rating
- Moisture Sensitivity Level 1

Maximum Ratings @ 25°C Unless Otherwise Specified


Symbol	Parameter	Rating	Unit
V_{DS}	Drain-source Voltage	-40	V
I _D	Drain Current-Continuous	-50	Α
E _{AS}	Single Pulsed Avalanche Energy(note1)	840	mJ
V_{GS}	Gate-source Voltage	±20	V
I _{DM}	Pulsed Drain Current	-115	Α
R _{₀JC}	Thermal Resistance Junction to Case	1.92	°C/W
TJ	Operating Junction Temperature	-55 to +150	°C
T _{STG}	Storage Temperature	-55 to +150	°C
P_{D}	Power Dissipation	65	W

Note1.EAS condition: Tj=25 $^{\circ}$,VDD=-20V,VG=-10V,L=1mH,Rg=25 Ω ,IAS=41A

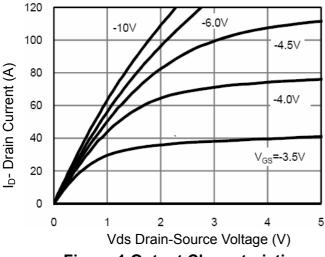
Internal Block Diagram

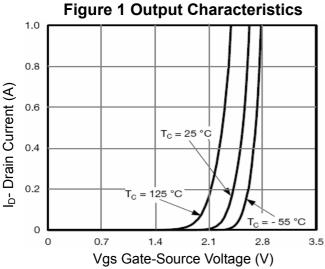
P-Channel Enhancement Mode Field Effect Transistor

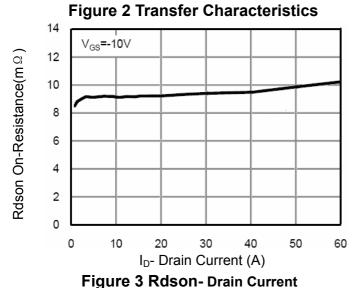
PIN 1 GATE PIN 2.4 DRAIN PIN 3 SOURCE

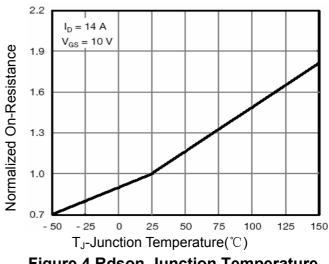
DIMENSIONS					
	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	0.087	0.094	2.20	2.40	
В	0.000	0.005	0.00	0.13	
С	0.026	0.034	0.66	0.86	
D	0.018	0.023	0.46	0.58	
Е	0.256	0.264	6.50	6.70	
F	0.201	0.215	5.10	5.46	
G	0.190		4.83		
Н	0.236	0.244	6.00	6.20	
- 1	0.086	0.094	2.18	2.39	
J	0.386	0.409	9.80	10.40	
K	0.114		2.90		
L	0.055	0.067	1.40	1.70	
M	0.063		1.60		,
0	0.043	0.051	1.10	1.30	,
Q	0.000	0.012	0.00	0.30	
	0.211		5.35		

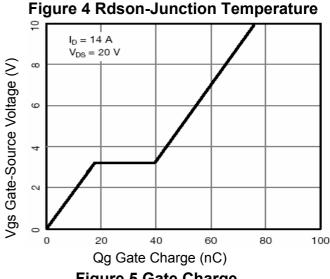
Electrical characteristics (T_a=25°Cunless otherwise noted)


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-40	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-40V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 2)	·					
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =-250μA	-1.2	-1.9	-2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-14A	_	9	13	mΩ
Forward Transconductance	g FS	V _{DS} =-10V,I _D =-20A	-	50	-	S
Dynamic Characteristics (Note3)	·					
Input Capacitance	C _{lss}	V _{DS} =-20V,V _{GS} =0V,	-	5020	-	PF
Output Capacitance	C _{oss}		-	551	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVID2	-	374	-	PF
Switching Characteristics (Note 3)			•			
Turn-on Delay Time	t _{d(on)}		-	9.4	-	nS
Turn-on Rise Time	t _r	V_{DD} =-20V, R_L =1 Ω , V_{GS} =-10V, R_G =3 Ω	-	20	-	nS
Turn-Off Delay Time	t _{d(off)}		-	55	-	nS
Turn-Off Fall Time	t _f		-	30	-	nS
Total Gate Charge	Qg	V _{DS} =-20,I _D =-14A, V _{GS} =-10V	-	77		nC
Gate-Source Charge	Q _{gs}		-	19		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	21		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =-10A	-		-1.2	V
Diode Forward Current (Note 1)	Is		-	-	-50	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 10A	-	49		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs(Note2)	-	47		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				


Notes:


- **1.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **2.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 3. Guaranteed by design, not subject to production




Typical Electrical and Thermal Characteristics (Curves)

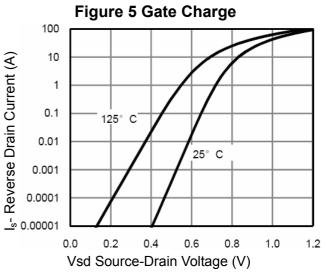


Figure 6 Source- Drain Diode Forward

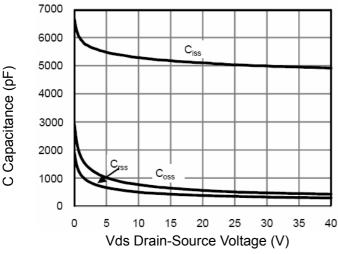
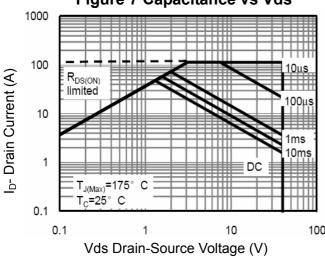



Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

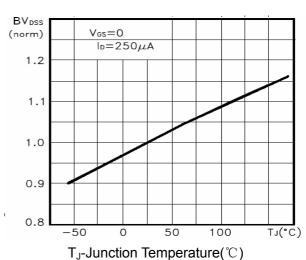


Figure 9 BV_{DSS} vs Junction Temperature

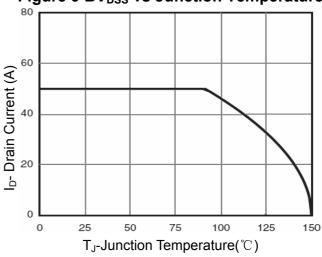
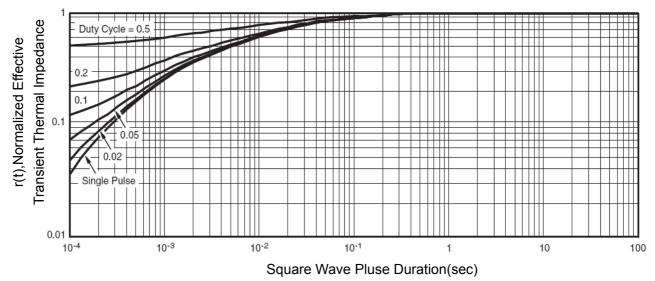



Figure 10 ID Current Derating vs Junction **Temperature**

Figure 11 Normalized Maximum Transient Thermal Impedance

Ordering Information:

Device	Packing
Part Number-TP	Tape&Reel:2.5Kpcs/Reel

Note: Adding "-HF" suffix for halogen free, eg. Part Number-TP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.