SPST (NO) Normally Open Analog Switch

The MC74VHC1GT66 is a Single Pole Single Throw (SPST) analog switch. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from $V_{\rm CC}$ to GND).

The MC74VHC1GT66 is compatible in function to a single gate of the High Speed CMOS MC74VHCT4066 and the metal–gate CMOS MC14066. The device has been designed so that the ON resistances ($R_{\rm ON}$) are much lower and more linear over input voltage than $R_{\rm ON}$ of the metal–gate CMOS or High Speed CMOS analog switches.

The ON/OFF Control input is compatible with TTL-type input thresholds allowing the device to be used as a logic-level translator from 3 V CMOS logic to 5 V CMOS logic or from 1.8 V CMOS logic to 3 V CMOS logic while operating at the high-voltage power supply. The input protection circuitry on this device allows overvoltage tolerance on the input, which provides protection when voltages of up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1GT66 to be used to interface 5 V circuits to 3 V circuits.

Features

- High Speed: $t_{PD} = 20 \text{ ns (Typ)}$ at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1.0 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Inputs and Outputs
- Improved Linearity and Lower ON Resistance over Input Voltage
- On/Off Control Input Has OVT
- Chip Complexity: FETs = 11; Equivalent Gates = 3
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SC-88A DF SUFFIX CASE 419A

TSOP-5 DT SUFFIX CASE 483

VE = Device Code

M = Date Code*

W = Work Week

Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT					
1 IN/OUT X _A					
2	OUT/IN Y _A				
3	GND				
4	ON/OFF CONTROL				
5	V _{CC}				

FUNCTION TABLE

State of Analog Switch
Off
On

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

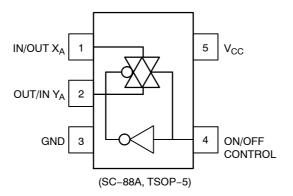


Figure 1. Pinout Diagram

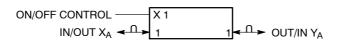


Figure 2. Logic Symbol

MAXIMUM RATINGS

Symbol	Charac	cteristics	Value	Unit
V _{CC}	DC Supply Voltage		−0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{IS}	Analog Output Voltage		-0.5 to 7.0	V
I _{IK}	Input Diode Current	-20	mA	
I _{CC}	DC Supply Current, V _{CC} and GND	+25	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
T _L	Lead Temperature, 1 mm from Case for 10	Seconds	260	°C
T _J	Junction Temperature Under Bias		+ 150	°C
$\theta_{\sf JA}$	Thermal Resistance	SC70-5 (Note 1) SOT23-5	350 230	°C/W
P _D	Power Dissipation in Still Air at 85°C	SC70-5 SOT23-5	150 200	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 200 N/A	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 5)	±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit	
V _{CC}	DC Supply Voltage		2.0	5.5	V
V _{IN}	Digital Input Voltage		GND	5.5	V
V _{IS}	Analog Input Voltage		GND	V _{CC}	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time $ V_{CC} = 3.3 \\ V_{CC} = 5.0 $	V ± 0.3 V V ± 0.5 V	0	100 20	ns/V

Device Junction Temperature versus Time to 0.1% Bond Failures

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

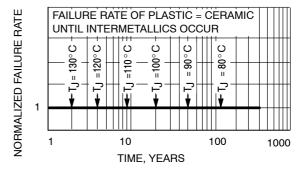


Figure 3. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	T _A = 25°C T _A ≤ 85°C		85°C	-55 °C ≤ T_A ≤ 125°C			
Symbol	Parameter	Test Conditions	(V)	Min	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	3.0 4.5 5.5	1.2 2.0 2.0		1.2 2.0 2.0		1.2 2.0 2.0		V
V _{IL}	Maximum Low-Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	3.0 4.5 5.5		0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
I _{IN}	Maximum Input Leakage Current ON/OFF Control Input	V _{IN} = V _{CC} or GND	0 to 5.5		±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $V_{IO} = 0$ V	5.5		1.0		20		40	μΑ
I _{CCT}	Quiescent Supply Current	ON/OFF Control at 3.4 V	5.5		1.35		1.5		1.65	mA
R _{ON}	Maximum "ON" Resistance	$V_{IN} = V_{IH}$ $V_{IS} = V_{CC}$ or GND $ I_{IS} \le 10$ mA (Figure 4)	3.0 4.5 5.5		60 45 40		70 50 45		100 60 55	Ω
l _{OFF}	Maximum Off-Channel Leakage Current	$V_{IN} = V_{IL}$ $V_{IS} = V_{CC}$ or GND Switch Off (Figure 5)	5.5		0.1		0.5		1.0	μΑ

AC ELECTRICAL CHARACTERISTICS C_{load} = 50 pF, Input t_r/t_f = 3.0 ns

			v _{cc}	T,	T _A = 25°C		T _A ≤	85°C	-55°C ≤ T	_A ≤ 125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input X to Y	Y _A = Open (Figures 7, 14)	2.0 3.0 4.5 5.5		1 0.6 0.6 0.6	5 2 1 1		6 3 1 1		7 4 2 1	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, ON/OFF Control to Analog Output	R_L = 1000 $Ω$ (Figures 8, 15)	2.0 3.0 4.5 5.5		32 28 24 20	40 35 30 25		45 40 35 30		50 45 40 35	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, ON/OFF Control to Analog Output	R_L = 1000 $Ω$ (Figures 8, 15)	2.0 3.0 4.5 5.5		32 28 24 20	40 35 30 25		45 40 35 30		50 45 40 35	ns
C _{IN}	Maximum Input	ON/OFF Control Input	0.0		3	10		10		10	pF
	Capacitance	Control Input = GND Analog I/O Feedthrough	5.0		4 4	10 10		10 10		10 10	

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Note 6)	18	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	V _{CC}	Limit 25°C	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 10)	f_{in} = 1 MHz Sine Wave Adjust f_{in} voltage to obtain 0 dBm at V_{OS} Increase f_{in} = frequency until dB meter reads -3 dB R_L = $50~\Omega$		150 175 180	MHz
ISO _{off}	Off-Channel Feedthrough Isolation (Figure 11)	f_{in} = Sine Wave Adjust f_{in} voltage to obtain 0 dBm at V_{IS} f_{in} = 10 kHz, R_L = 600 Ω	3.0 4.5 5.5	-80 -80 -80	dB
NOISE _{feed}	Feedthrough Noise Control to Switch (Figure 12)	V_{in} ≤ 1 MHz Square Wave (t_r = t_f = 2ns) R_L = 600 $Ω$		45 60 130	mV_{PP}
THD	Total Harmonic Distortion (Figure 13)	$\begin{split} f_{in} &= 1 \text{ kHz, R}_L = 10 \text{ k}\Omega \\ \text{THD} &= \text{THD}_{Measured} - \text{THD}_{Source} \\ V_{IS} &= 3.0 \text{ V}_{PP} \text{ sine wave} \\ V_{IS} &= 5.0 \text{ V}_{PP} \text{ sine wave} \end{split}$	3.3 5.5	0.30 0.15	%

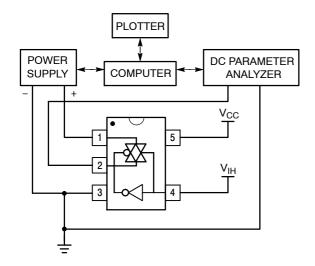


Figure 4. On Resistance Test Set-Up

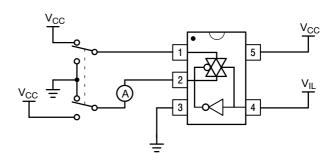


Figure 5. Maximum Off-Channel Leakage Current Test Set-Up

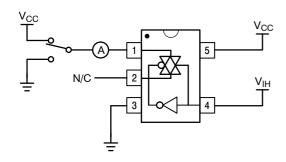


Figure 6. Maximum On-Channel Leakage Current Test Set-Up

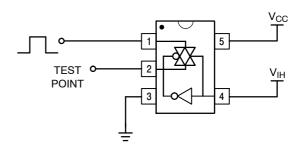


Figure 7. Propagation Delay Test Set-Up

Switch to Position 2 when testing t_{PLZ} and t_{PZL} Switch to Position 1 when testing t_{PHZ} and t_{PZH}

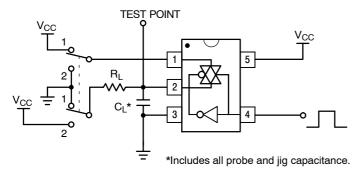


Figure 8. Propagation Delay Output Enable/Disable
Test Set-Up

Figure 9. Power Dissipation Capacitance
Test Set-Up

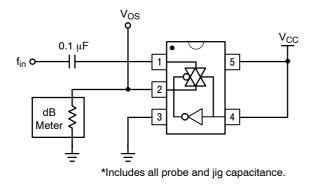


Figure 10. Maximum On-Channel Bandwidth
Test Set-Up

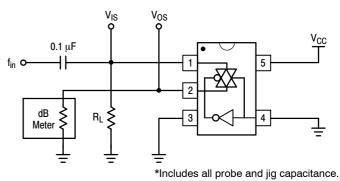


Figure 11. Off-Channel Feedthrough Isolation
Test Set-Up

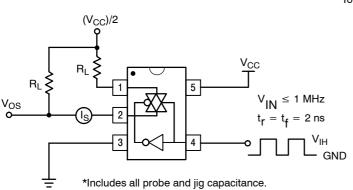


Figure 12. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

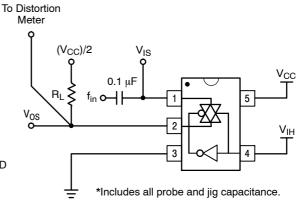


Figure 13. Total Harmonic Distortion Test Set-Up

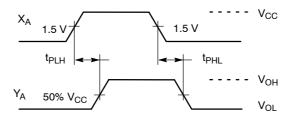


Figure 14. Propagation Delay, Analog In to Analog Out Waveforms

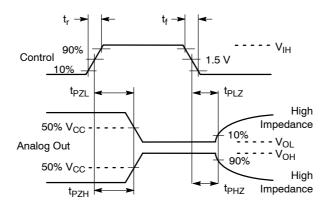


Figure 15. Propagation Delay, ON/OFF Control

ORDERING INFORMATION

Device	Package	Shipping [†]
M74VHC1GT66DFT1G	SC-88A (Pb-Free)	
MC74VHC1GT66DFT2	SC-88A	
M74VHC1GT66DFT2G	SC-88A (Pb-Free)	3000 / Tape & Reel
MC74VHC1GT66DTT1	TSOP-5	
M74VHC1GT66DTT1G	TSOP-5 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

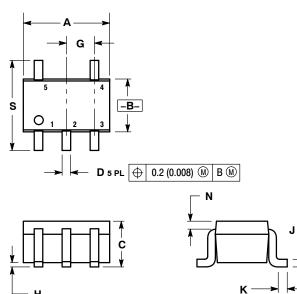
SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

DATE 17 JAN 2013

- TES:
 DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

GENERIC MARKING DIAGRAM*


XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

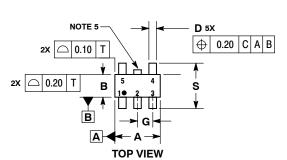
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 mm 0.0748 SCALE 20:1

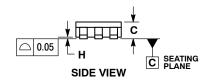
SOLDER FOOTPRINT

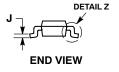
STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4

5. COLLECTOR	5. CATHODE	5. CATHODE I	5. GATE 2	5. CATHODE 4
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

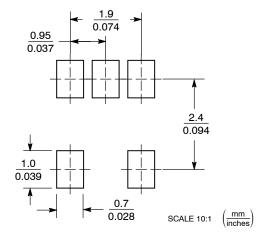

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
C	0.90	1.10	
D	0.25	0.50	
G	0.95 BSC		
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
М	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-5		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative