

MC6890

Advance Information

MPU-BUS-COMPATIBLE 8-BIT D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8 bit (\pm 0.19% accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high stability, laser-trimmed, thin-film resistors for both reference input and output span and bipolar offset control.

A reset pin provides for overriding stored data and forcing \mathbf{I}_{out} to zero.

- Direct Data Bus Link with All Popular TTL Level MPU's
- ±1/2 LSB Nonlinearity Over Temperature
- Fast Settling Time: 200 ns Typ
- Internal 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Minimum Enable Pulse Width: 70 ns
- Fast Enable: 10 ns Maximum Data Hold Time
- Reset Pin to Override Data
- Output Voltage Ranges: +5, +10, +20, or ±2.5, ±5, ±10 Volts
- Low Power: 90 mW Typ
- +5 V and -5 V to -15 V Supplies

This document contains information on a new product. Specifications and information herein are subject to change without notice. MPU-BUS-COMPATIBLE DAC

8-BIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

CASE 732-03

Device	Temperature Range	Package		
MC6890L	0° to +70°C	Ceramic DIP		
MC6890AL	-55° to +125°C	Ceramic DIP		

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -18	Vdc	
Digital Input Voltage, Pins 1-8, 12 Pin 9	V _{in}	-3.0 to +7.0 0 to +7.0	Vdc	
Applied Output Voltage	V ₁₄	V _{EE} +2.0 to V _{EE} +24	Vdc	
Reference Amplifier Input	V18	±7.5	Vdc	
Operating Temperature Range MC6890L, MC6890AL	TA	0 to +70 -55 to +125	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	
Junction Temperature	Tj	+150	°C	

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 V$, $V_{EE} = -12 V$, Pin 18 loaded only by Pin 19 through 100Ω . Reset high, T_A = T_{low to Thigh}(1), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Digital Input Logic Levels					Vdc
High Level, Logic 1	Уін	2.0	-		
	VIL			0.8	
Digital Input Current	ł		0.001	1 10	
$(V_{\rm H} = 0.4 \text{ V})$	l In		0.001	-10	μ <u>Α</u>
Enable (VIH = 3.0 V)	Чн	_	0.001	1.0	μA
(V _{IL} = 0.4 V)) jii	—	-6.5	-100	μA
Reset ($V_{H} = V_{CC}$)	<u>Чн</u>		0.001		μΑ
	<u> </u>		-1.0	-15	μΑ
Full Scale Output Current — Unipolar		-1.50	-1.992	-2.50	mA
Unipolar Zero Output — All Bits Off (I _A = 25°C)			0.010	0.20	μΑ
Output Voltage Temperature Coefficient	ICVO			ļ	ppm of FSB/°C
Unipolar Zero	1	_	±1.0	±2.0	Fon/ C
Bipolar Zero		- 1	±5.0	±15	1
Full Scale Range			±20	±50	
Output Voltage, Full Scale Range (See Figure .3) (T _A = 25°C)	Vo				Vdc
(10 V Span)		9.861	9.961	10.061	
(20 V Span)		19.722	19.922	20.122	
(5.0 V Span)		4.930	4.980	5.030	
Output Voltage, Bipolar Zero (MSB on) (See Figure 4) (1A = 25°C)	vo			+20	mv
(10 V Span)		_	ŭ č	+40	
(5.0 V Span)	ĺ	_	ŏ	±10	l
DAC Output Resistance — Exclusive of Span Resistors	Ro	1.0	5.0	<u> </u>	ΜΩ
(T _A = 25°C) (See Figure 5)				1	
Resolution	—	8.0	8.0	8.0	Bits
Nonlinearity — Relative Accuracy	NL	-	_	<u>+0.19</u>	%
(See Terminology)				(±1/2 LSB)	ļ
Differential Nonlinearity		Mono	tonicity Guar	ranteed	····
Differential Nonlinearity (T _A = 25°C)) —	-	· -	±0.29	%
(See Terminology)				(±3/4 LSB)	
Reference Input Resistor	RREF	3800	4900	6800	Ω
Reference Output Voltage (T _A = 25°C)	VREF	2.470	2.500	2.530	Vdc
Reference Output Impedance (T _A = 25°C) I _{load} = 0-3.0 mA		L.:	0.3	1.0	Ω
Reference Short Circuit Current (T _A = 25°C)	IREF	15	30	50	mA
Reference Output Voltage Temperature Coefficient	TCVO(REF)		±20	-	ppm/°C
Power Supply Range	Vcc	4.5	5.0	5.5	Vdc
	VEE	-16.5	-12	-4.5	
Power Supply Current — All Bits Low			10		mA
$(V_{CC} = 5.0 V)$	ICC		-10	_15	
$(V_{EE} = -15 V)$		_	-10	-15	
Power Supply Bejection ($T_A = 25^{\circ}C$)	PSR				ISB
To V_{CC} (V_{CC} = 4.5 to 5.5 V)			0.010	±1/10	
To VEE (VEE = -4.5 V to -16.5 V)	[- 1	0.10	±1/2	(
Power Dissipation — All Bits Low	PD				mW
For V _{CC} = 4.5 V, V _{EE} = -4.5 V) -	-	90	158	
For V _{CC} = 5.5 V, V _{EE} = -16.5 V		- 1	220	358	

NOTE 1: T_{low} = -55°C for MC6890A, 0° for MC6890 Thigh = +125°C for MC6890A, +70°C for MC6890

MC6890

AC SPECIFICATIONS (V_{CC} = 5.0 V, V_{EE} = -12 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
Cu <u>rrent S</u> ettling Time (Enable Positive Edge to $\pm 1/2$ LSB Output)	ts	-	200	300*	ns	
Data Setup Time	tsu(D)	70	40		ns	
Data Hold Time	th(D)	10	0	-	ns	
Pulse Widths					ns	
Enable	tW(Ê)	70	20	-		
Reset	tW(R)	100*	-	-		
Propagation Delays					ns	
Enable, Low to High	^t PLH(E)	_	100	-		
Reset, High to Low	tPHL(R)	-	250	—		
(I _O < 1.0 μA)					····	

*Not 100% tested , guaranteed by design

3

to -15 V

MC6890

3-698

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to non-monotonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases. The MC6890 is guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the Enable positive transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are latched "on," which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the current output to settle to within $\pm 1/2$ LSB for 8 bit accuracy. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{255}{256} \times 10$ V = 9.961 V.

Gain error is laser trimmed to less than $\pm 1.0\%$ with R1 = 100 Ω (Figure 3) and can be user trimmed to zero error with R1 = 200 Ω pot.

Bipolar Zero — Using the configuration shown in Figure 6 with R1 = 100Ω , R2 = 50Ω , with the MSB on and all other bits off, the output voltage reading compared to analog ground is expressed as a percentage of the fullscale range. Offset voltage of the output op amp must be nulled. Bipolar Zero error is laser trimmed to less than 0.20% and can be user trimmed to zero with R2 = 100Ω pot.

Temperature Coefficients — (Unipolar zero, Bipolar zero, Gain and Reference Output). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Power Supply Rejection — The change in full scale current caused by the specified change in V_{EE} or V_{CC} is expressed in LSB's.

Reset Function — The MC6890 has a Reset pin (9) that will force the DAC's registers, and therefore the DAC output current, to zero. This input is active low and should not occur simultaneously with an active Enable signal although no harm would result to the converter. The power dissipation increases slightly during Reset low. Reset should not be allowed to become more negative than ground.

D7	DR	DS	D4	D2	D2	D2	51	_ D1	DO	DO	V _O (Volts)		
<u> </u>		53		03	02			R2 ≃ 60 Ω	R2 ≃ 50 Ω				
1	1	1	1	1	1	1	1	+ 2.490	+ 2.480				
1	1	1	1	1	1	1	0	+ 2.470	+ 2.460				
1 1	0	0	0	0	0	0	0	+ 0.010	+ 0.000				
0	1	1	1	1	1	1	1	- 0.010	- 0.020				
0	0	0	0	0	0	0	1	- 2.470	- 2.480				
0	0	0	0	0	0	0	0	- 2.490	- 2.500				

TYPICAL PERFORMANCE CURVES

FIGURE 7 — REFERENCE VOLTAGE versus EXTERNAL LOAD CURRENT*

^{*}External load current is in addition to Reference Input Current (Pin 18) of D/A converter.

FIGURE 8 - DIGITAL INPUT CHARACTERISTICS

FIGURE 9 - TYPICAL APPLICATION OF THE MC6890 IN A MC6800 SERIES MPU SYSTEM

