ABOV SEMICONDUCTOR 16 SEGMENT X 12 GRID VFD DRIVER WITH KEYSCAN

MC3401

Data Sheet (Ver. 1.4)

Version 1.4 Published by FAE Team ©2008 ABOV Semiconductor Co., Ltd. All right reserved

Additional information of this data sheet may be served by ABOV Semiconductor offices in Korea or Distributors. ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice. The information, diagrams and other data in this manual are correct and reliable, however, ABOV Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

REVISION HISTORY

VERSION 1.4 (2009. 07. 08) This Book

Modified the Command Data on page 19.

VERSION 1.31 (2009. 01. 06)

Modified the Format of Dout at Transmission (Data Read) on page 21.

VERSION 1.10 (2008. 09. 03)

Updated description for LED Setting Diagram on page 22. Updated Serial communication timing diagram for initialization setting on page 22. Updated Block Diagram on page 6.

VERSION 1.00 (2008. 08. 14)

The first Edition

DESCRIPTION

MC3401 is a Vacuum Fluorescent Display (VFD) Controller driven on a 1/4 to 1/12 duty factor. Sixteen segment output lines, 4 grid output lines, 8 segment/grid output drive lines, one display memory, control circuit, key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip micro computer. Serial data is fed to MC3401 via a three-line serial interface. It is housed in a 44-pin LQFP, MQFP

FEATURES

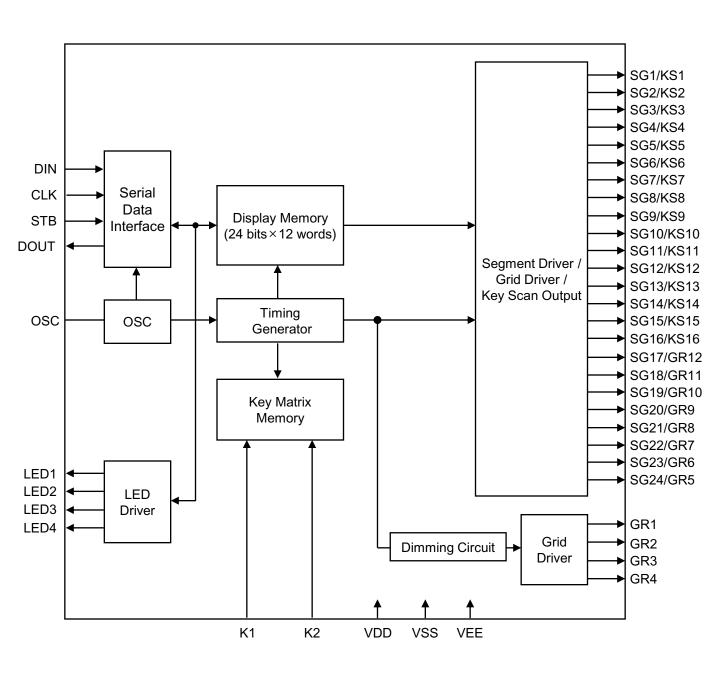
- CMOS Technology
- Low Power Consumption
- Key Scanning (16 x 2 matrix)
- Multiple Display Modes: (16 segments, 12 digits to 24 segments, 4 digits)
- 8-Step Dimming Circuitry
- LED Ports Provide (4 channels, 20mA max.)
- · Serial Interface for Clock, Data Input, Data Output, Strobe Pins
- No External Resistors Needed for Driver Outputs
- Available in 44-pin LQFP, MQFP

APPLICATION

· Microcomputer Peripheral Devices

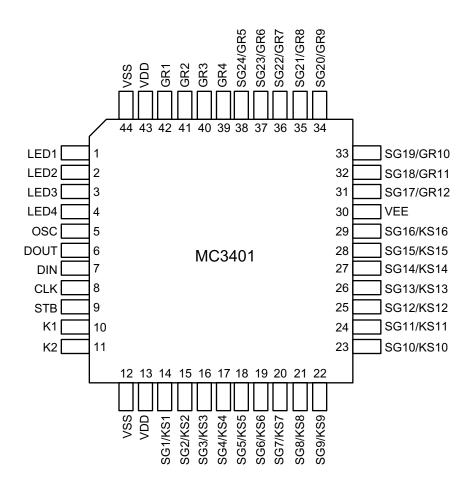
ORDERING INFORMATION

Device name	Segment	Grid	Key Scanning	PKG TYPE
MC3401L	24 Segments	12 Grid	16 x 2 matrix	44LQFP
MC3401M	24 Segments	12 Grid	16 x 2 matrix	44MQFP

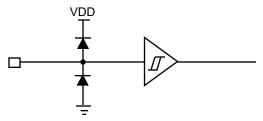


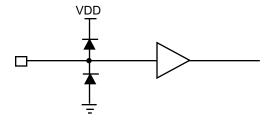
PIN DESCRIPTION

PIN NAME	I/O	DESCRIPTION	PIN No.
LED1 to LED4	0	LED Output Pin	1 to 4
osc	I	Oscillator Input Pin A resistor is connected to this pin to determine the oscillation Frequency.	5
DOUT	0	Data Output Pin (N-Channel, Open-Drain) This pin outputs serial data at the falling edge of the shift clock (starting from the lower bit)	6
DIN (Schmitt Trigger)	I	Data Input Pin This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit)	7
CLK (Schmitt Trigger)	I	Clock Input Pin This pin reads serial data at the rising edge and outputs data at the falling edge of the shift clock	8
STB (Schmitt Trigger)	I	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this in is "HIGH", CLK is ignored.	9
K1 to K2	I	Key Data Input Pins The data inputted to these pins is latched at the end of the display cycle.	10, 11
VSS	-	Logic Ground Pin	12, 44
VDD	-	Logic Power Pin	13, 43
SG1/KS1 to SG16/KS16	0	High-Voltage Segment Output Pins Also acts as the Key Source.	14 to 29
VEE	-	Pull-Down Level	30
SG17/GR12 to SG24/GR5	0	High-Voltage Segment/Grid Output Pins	31 to 38
GR4 to GR1	0	High-Voltage Grid Output Pins	39 to 42

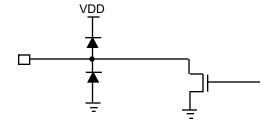


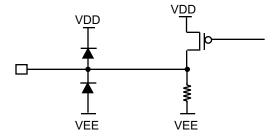
BLOCK DIAGRAM

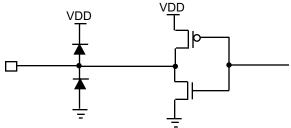

PIN CONFIGURATION



INPUT/OUTPUT PINS SCHEMATIC DIAGRAM


Input pins: CLK,STB,DIN


Input pins: K1,K2


Output pin: DOUT

Output pins : SGn, GRn

Output pins: LED1 to LED4

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25 °C, GND=0V)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	VDD	-0.3 to +7	V
Driver Supply Voltage	VEE	VDD+0.3 to VDD-40	V
Logic Input Voltage	VI	-0.3 to VDD+0.3	V
VFD Driver Output Voltage	VO	VEE-0.3 to VDD+0.3	V
LED Driver Output Voltage	IOLED	±20	mA
VFD Drive Output Current	IOVFD	-40 (Grid) -15 (Segment)	mA
Operating Temperature	Topr	-40 to +85	$^{\circ}$
Storage Temperature	Tstg	-65 to +150	°C
VDD	-	Logic Power Pin	13, 43

RECOMMENDED OPERATING RANGE

(Unless otherwise stated, Ta= 25 $^{\circ}$ C, GND=0V)

Parameter	Sumala a l		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	VDD	3.0	5	5.5	V
High-Level Input Voltage	VIH	0.7VDD	-	VDD	V
Low-Level Input Voltage	VIL	0	-	0.3VDD	V
Driver Supply Voltage	VEE	VDD-35	-	0	V

ELECTRICAL CHARACTERISTICS

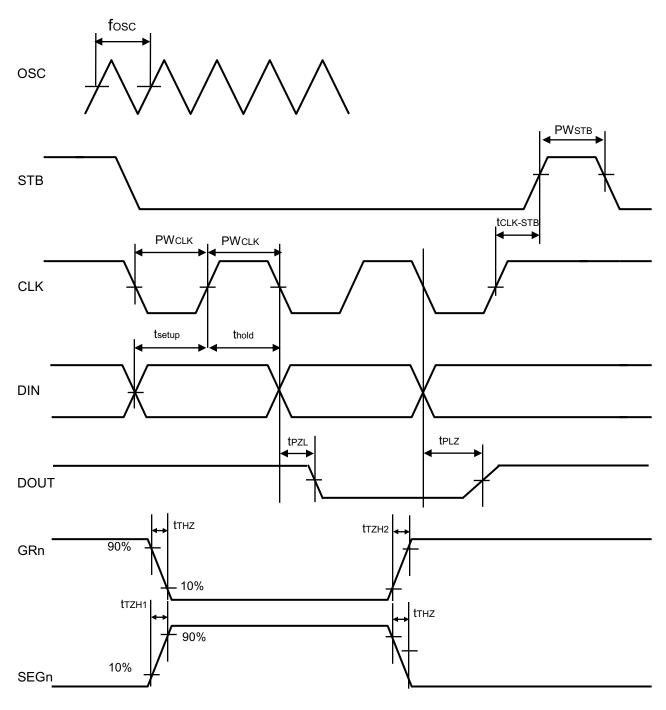
(Unless otherwise stated, VDD=5V, GND=0V, VEE=VDD-35V, Ta=25 ℃)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
High-Level Output Voltage	VOHLED	IOHLED = -12mA LED1 to LED4	VDD-1	-	-	V
Low-Level Output Voltage	VOLLED	IOLLED = +15mA LED1 to LED4	-	-	1	V
Low-Level Output Voltage	VOLDOUT	IOLDOUT = 4mA DOUT	-	-	0.4	V
High-Level Output Current	IOHSG	VO = VDD – 2V SG1/KS1 to SG16/KS16	-3	1	-	mA
High-Level Output Current	IOHGR	VO = VDD – 2V GR1 to GR8, SG17/GR12 to SG24/GR5	-15	1	1	mA
Oscillation Frequency	fosc	R=82ΚΩ	350	500	650	KHz
Schmitt-Trigger Transfer Voltage (+)	VT+	VDD = 5V DIN, CLK, STB	2.7	3	3.3	V
Schmitt-Trigger Transfer Voltage (-)	VT-	VDD = 5V DIN, CLK, STB	0.7	1.0	1.3	V
Hysteresis Voltage	Vhys	VDD = 5V DIN, CLK, STB	1.4	2.0	-	V
Input Current	II	VI = VDD or VSS	-	-	±1	uA
Dynamic Current Consumption	IDDdyn	Under no load Display Off	-	-	5	mA

Note: The frequency value is for MC3401 test condition: fosc = 224/T (see page 13 for detailed data)

ELECTRICAL CHARACTERISTICS

(Unless otherwise stated, VDD=3.3V, GND=0V, VEE=VDD-35V, Ta=25 ℃)


Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
High-Level Output Voltage	VOHLED	IOHLED = -6mA LED1 to LED4	VDD-1	-	-	V
Low-Level Output Voltage	VOLLED	IOLLED = +15mA LED1 to LED4	-	-	1	V
Low-Level Output Voltage	VOLDOUT	IOLDOUT = 4mA DOUT	-	-	0.4	V
High-Level Output Current	IOHSG	VO = VDD – 2V SG1/KS1 to SG16/KS16	-1.5	-	-	V
High-Level Output Current	IOHGR	VO = VDD – 2V GR1 to GR8, SG17/GR12 to SG24/GR5	-6	1	1	mA
Oscillation Frequency	fosc	R=100ΚΩ	350	500	650	KHz
Schmitt-Trigger Transfer Voltage (+)	VT+	VDD = 5V DIN, CLK, STB	1.8	2.0	2.2	V
Schmitt-Trigger Transfer Voltage (-)	VT-	VDD = 5V DIN, CLK, STB	0.2	0.4	0.6	V
Hysteresis Voltage	Vhys	VDD = 5V DIN, CLK, STB	1.0	1.6	-	٧
Input Current	II	VI = VDD or VSS	-	-	±1	uA
Dynamic Current Consumption	IDDdyn	Under no load Display Off	-	-	3	mA

Note: The frequency value is for MC3401 test condition: fosc = 224/T (see page 13 for detailed data)

SWITCHING CHARACTERISTIC WAVEFORM

MC3401 Switching Characteristics Waveform is given below.

PW _{CLK} (Clock Pulse Width) ≥400ns

t setup (Data Setup Time) ≥ 100ns

 $t_{CLK-STB}$ (Clock - Strobe Time) $\ge 1 \mu S$

 t_{TZH2} (Grid Rise Time) $\leq 0.5 \mu s$ (VDD=5V)

t TZH2 (Grid Rise Time) $\leq 1.2 \mu$ S (VDD=3.3V)

t _{TZH1} (Segment Rise Time) < 2.0 μ S (VDD=5V)

 t_{TZH1} (Segment Rise Time) < 4.0 μ S (VDD=3.3V)

 PW_{STB} (Strobe Pulse Width) $\geq 1 \mu s$ thold (Data Hold Time) $\geq 100 ns$

t _{TH7} (Fall Time) ≤ 150 µS

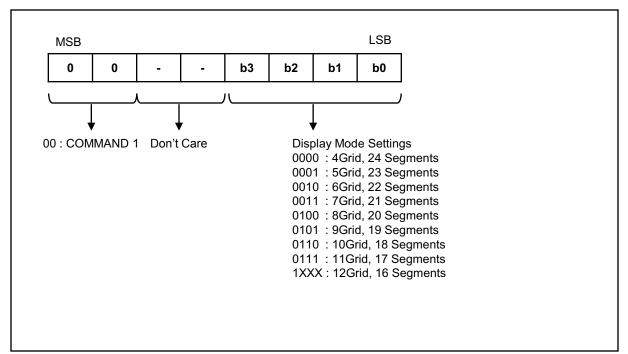
t _{PZL} (Propagation Delay Time) ≤ 100ns

t _{PLZ} (Propagation Delay Time) ≤ 400ns (VDD=5V)

 t_{PLZ} (Propagation Delay Time) = 400ns (VDD=3.3V)

fosc = Oscillation Frequency

FUNCTIONAL DESCRIPTION COMMANDS

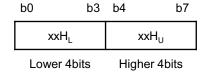

Commands determine the display mode and status of MC3401. A command is the first byte (b0 to b7) inputted to MC3401 via the DIN Pin after STB Pin has changed from "HIGH" to "LOW" State. If for some reason the STB Pin is set to "HIGH" while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

COMMAND 1: DISPLAY MODE SETTING COMMAND

MC3401 provides 8 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to MC3401 via the DIN Pin when STB is "LOW". However, for these commands, the bits 5 to 6 (b4 to b5) are ignored, bits 7 & 8 (b6 to b7) are given a value of "0".

The Display Mode Setting Commands determine the number of segments and grids to be used (1/4 to1/12 duty, 16 to 24 segments). When these commands are executed, the display is forcibly turned off, the key scanning stops. A display command "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.

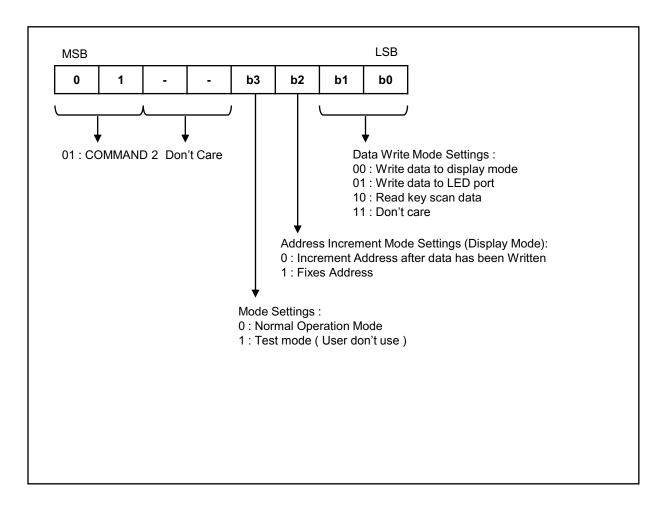
When Power is turned "ON", the 12-digit, 16-segment modes is selected.



Display Mode and RAM Address

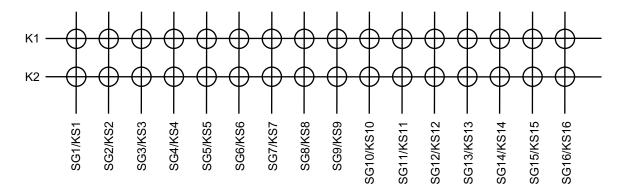
Data transmitted from an external device to MC3401 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of MC3401 are given below in 8bits unit.

SG1 SG4	SG5 SG8	SG9 SG12	SG13 SG16	SG1 7 SG20	SG21 SG24	
00H _L	00H _U	01H _L	01H _U	02H _L	02H _U	DIG1
03H _L	03H _U	04H _L	04H _U	05H _L	05H _U	DIG2
06H _L	06H _U	07H _L	07H _U	08H _L	08H _U	DIG3
09H _L	09H _U	0AH _L	0AH _U	0BH _L	0BH _U	DIG4
0CH _L	0CH _U	0DH _L	0DH _U	0EH _L	0EH _U	DIG5
0FH _L	0FH _U	10H _L	10H _U	11H _L	11H _U	DIG6
12H _L	12H _U	13H _L	13H _U	14H _L	14H _U	DIG7
15H _L	15H _U	16H _L	16H _U	17H _L	17H _U	DIG8
18H _L	18H _U	19H _L	19H _U	1AH _L	1AH _U	DIG9
1BH _L	1BH _U	1CH _L	1CH _U	1DH _L	1DH _U	DIG10
1EH _L	1EH _U	1FH _L	1FH _U	20H _L	20H _U	DIG11
21H _L	21H _U	22H _L	22H _U	23H _L	23H _U	DIG12



COMMAND 2: DATA SETTING COMMAND

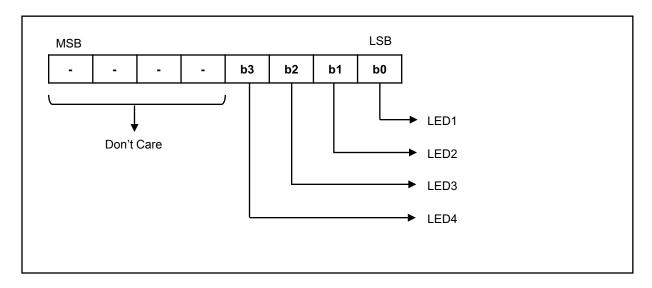
The Data Setting Commands executes the Data Write or Data Read Modes for MC3401. The data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of "1" while bit 8 (b7) is given the value of "0". Please refer to the diagram below.


When power is turned ON, the bit 4 to bit 1 (b3 to b0) are given the value of "0".

MC3401 Key Matrix & Key Input Data Storage RAM

MC3401 key matrix consists of 16×2 array as shown bellows.

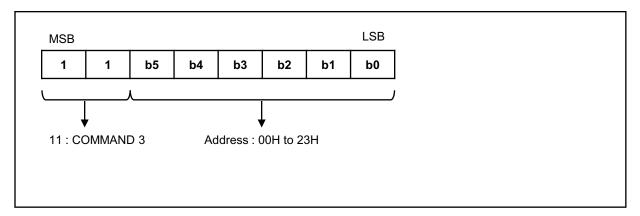
Each data inputted by each key are stored as follows. They are read by a READ Command, starting from the last significant bit. When the most significant bit of the data (SG16, b7) has been read, the least significant bit of the next data (SG1, b0) is read.


K1 K2	K1 K2	K1 K2	K1 K2	_	
SG1/KS1	SG2/KS2	SG3/KS3	SG4/KS4		
SG5/KS5	SG6/KS6	SG7/KS7	SG8/KS8		Reading
SG9/KS9	SG10/KS10	SG11/KS11	SG12/KS12		Sequence
SG13/KS13	SG14/KS14	SG15/KS15	SG16/KS16	$ \ \downarrow$,
b0b1	b2 b3	b4 b5	b6 b7	-	

LED Display

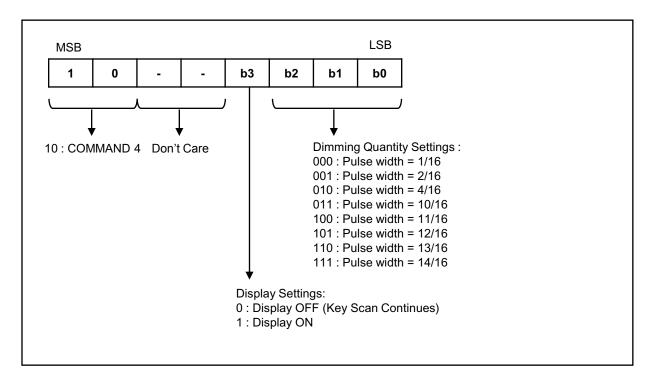
MC3401 provides 4 LED Display Terminals, namely LED1 to LED4. Data is written to the LED Port starting from the least significant bit (b0) of the port using a WRITE Command. Each bit starting from the least significant (b0) activates a specific LED Display Terminal – b0 corresponds LED1 Display, b1 activates LED2 and so forth. Since there are only 4 LED display terminals, bits 5 to 8 (b4 \sim b7) are not used and therefore ignored. This means that b4 to b7 does NOT in anyway activate any LED Display, they are totally ignored.

When a bit ($b0 \sim b3$) in the LED Port is "1", the corresponding LED is OFF. Conversely, when the bit is "0", the LED Display is turned ON. For example, Bit 1 (as designated by b0) has the value of "1", then this means that LED1 is OFF. It must be noted that when power is turned ON, bit 1 to bit 4 (b0 to b3) are given the value of "0" (all LEDs are turned ON). Please refer to the diagrams below.



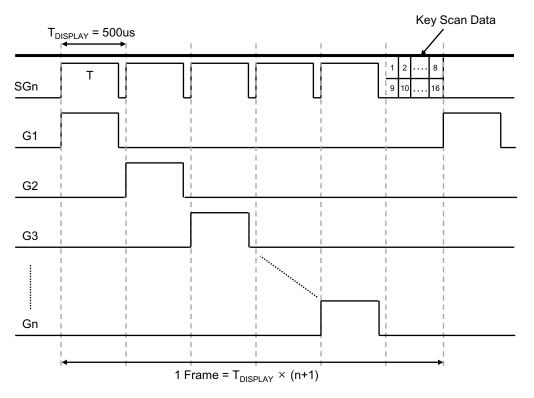
COMMAND 3: ADDRESS SETTING COMMAND

The display memory is addressed by Address Setting Command. The valid address range is "00H" to 23H". If the address is set to 24H or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".


Please refer to the diagram below.

COMMAND 4: DISPLAY CONTROL COMMANDS

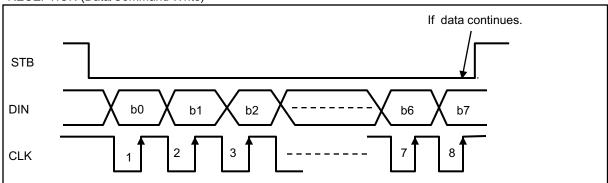
The Display Control Commands are used to turn ON or OFF a display. It is also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the display is turned OFF (the key scanning is stopped).

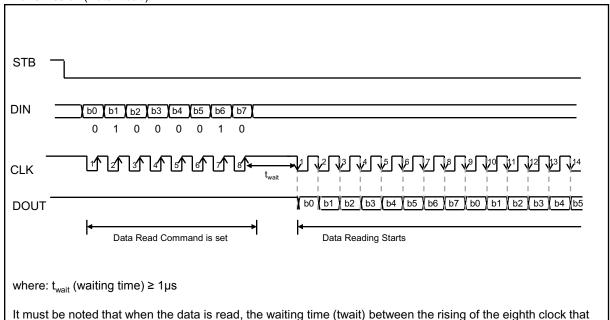


SCANNING AND DISPLAY TIMING

The Key Scanning and display timing diagram is given below. One cycle of key scanning consists of 2 frames. The data of the 16 x 2 matrix is stored in the RAM.

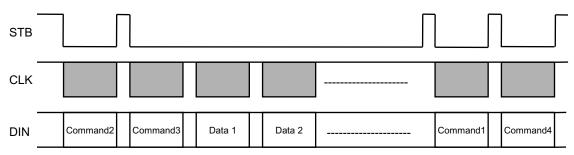
Internal Operating Frequency (fosc) = 224/T


Note: T is the width of segment only


SERIAL COMMUNICATION FORMAT

The following diagram shows the MC3401 serial communication format. The DOUT Pin is an N-channel, open-drain output pin, therefore, it is highly recommended that an external pull-up resistor ($1K\Omega$ to $10K\Omega$) must be connected to DOUT.

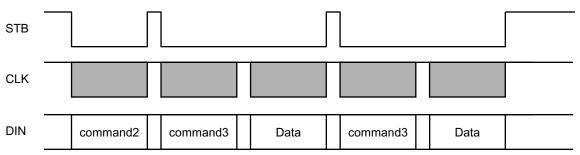
Transmission (Data Read)



has set the command and the falling of the first clock that has read the data is greater or equal to $1\mu s$.

SERIAL COMMUNICATION EXAMPLES

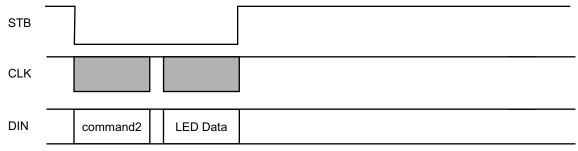
Serial communication timing diagram for initialization setting.


Where: Command 1: Display Mode Setting

Command 2 : Data Setting Command Command 3 : Address Setting Command

Data 1 to n : Transfer Display Data (36 Bytes max.)

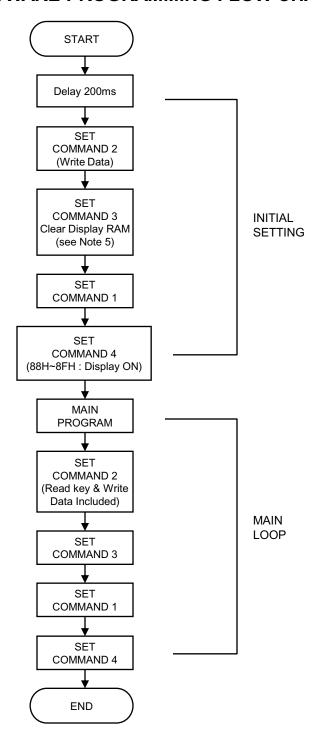
Command 4: Display Control Command


Transmission diagram for new Data on specific addresses.

Where : Command 2 -- Data Setting Command Command 3 -- Address Setting Command

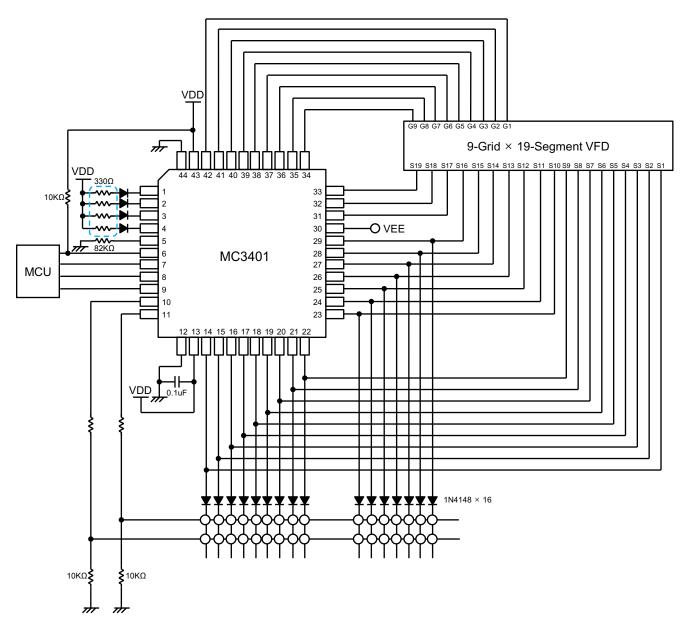
Data -- Display Data

Transmission diagram for LED Data setting diagram.


Where: Command 2 -- Data Setting Command

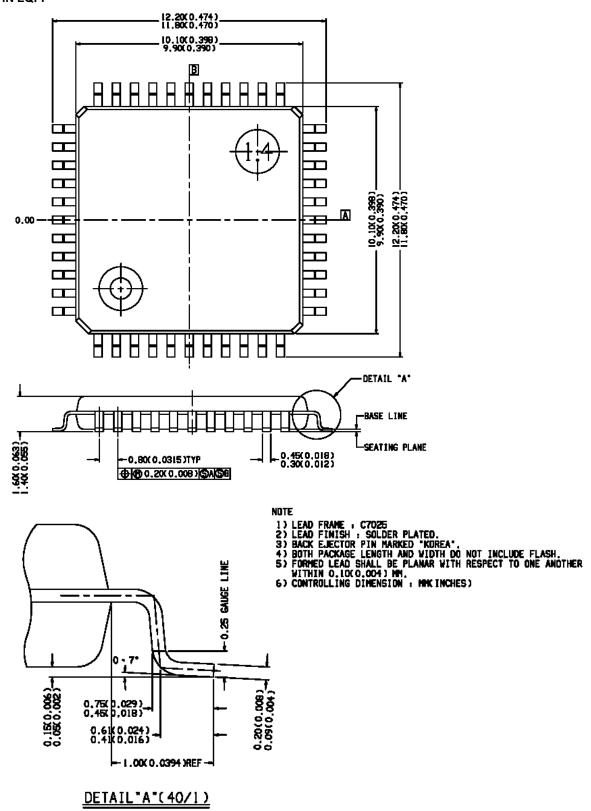
LED Data - 4 LED(LED1 to LED4) Display Data

(bit value 0: LED is turned ON, bit value 1: LED is turned OFF)


RECOMMENDED SOFTWARE PROGRAMMING FLOW CHART

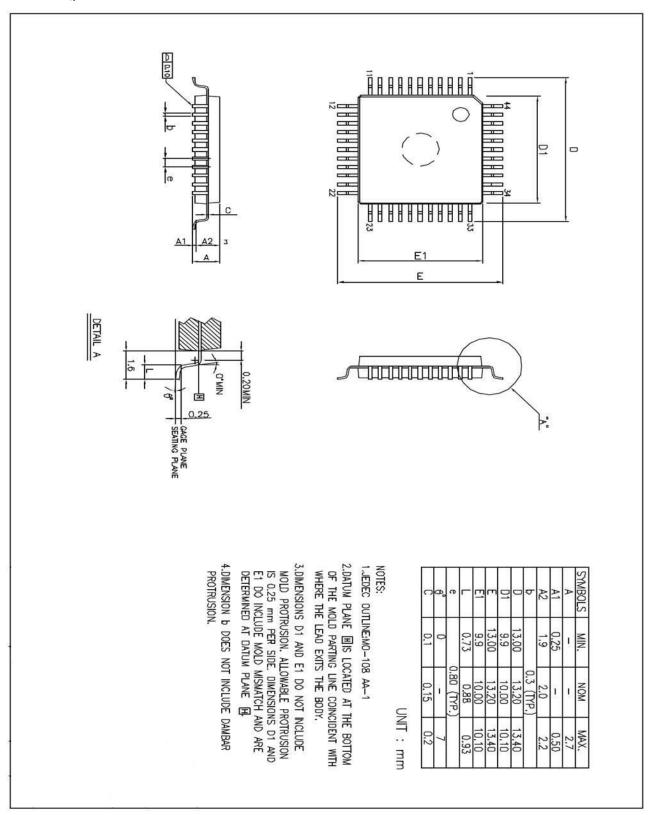
- Note: 1. Command 1: Display Mode Setting
 - 2. Command 2: Data Setting Commands
 - 3. Command 3: Address Setting Commands
 - 4. Command 4: Display Control Commands
 - 5. When IC power is applied for the first time, the contents of the Display RAM are not defined: thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

APPLICATION CIRCUIT



 $\underline{\text{Note}}$: The capacitor (0.1 μ F) connected between the GND and the VDD pins must be located as close as possible to the MC3401 chip.

PACKAGE INFORMATION


44-PIN LQFP

PACKAGE INFORMATION

44-PIN MQFP

