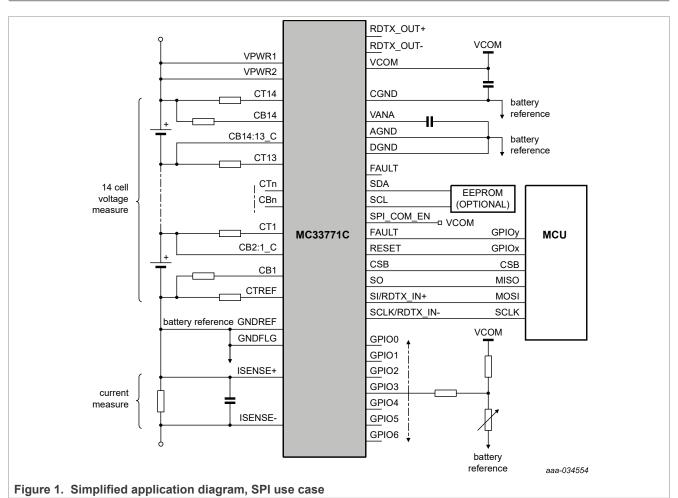
Product data sheet

MC33771C Battery cell controller IC

Rev. 7.0 — 16 July 2024

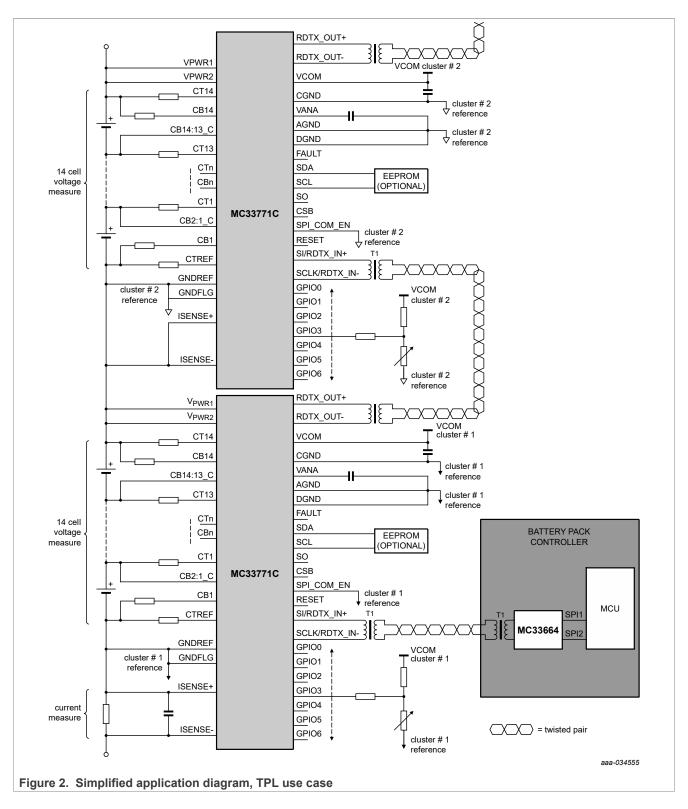
1 General description

The MC33771C is a SMARTMOS lithium-ion battery cell controller IC designed for automotive applications, such as hybrid electric (HEV) and electric vehicles (EV) along with industrial applications, such as energy storage systems (ESS) and uninterruptible power supply (UPS) systems.


The device performs ADC conversions of the differential cell voltages and current, as well as battery coulomb counting and battery temperature measurements. The information is transmitted to MCU using one of the microcontroller interfaces (Serial Peripheral Interface (SPI) or Transformer physical layer (TPL)) of the IC.

2 Features

- 9.6 V \leq V_{PWR} \leq 63 V operation, 75 V transient
- 7 to 14 cells management
- Isolated 2.0 Mbps differential communication or 4.0 Mbps SPI
- · Addressable on initialization
- · Bi-directional transceiver to support up to 63 nodes in daisy chain
- 0.8 mV maximum total voltage measurement error
- · Synchronized cell voltage/current measurement with coulomb count
- · Averaging of cell voltage measurements
- Total stack voltage measurement
- Seven GPIO/temperature sensor inputs
- 5.0 V at 5.0 mA reference supply output
- · Automatic over/undervoltage and temperature detection routable to fault pin
- · Integrated sleep mode over/undervoltage and temperature monitoring
- · Onboard 300 mA passive cell balancing with diagnostics
- · Hot plug capable
- · Detection of internal and external faults, as open lines, shorts, and leakages
- Designed to support ISO 26262, up to ASIL D safety system.
- Qualified in compliance with AECQ-100



Battery cell controller IC

3 Simplified application diagram

Battery cell controller IC

4 Applications

• Automotive: 48 V and high-voltage battery packs

MC33771C Product data sheet

- E-bikes, e-scooters
- Energy storage systems
- Uninterruptible power supply (UPS)

5 Ordering information

5.1 Part numbers definition

MC33771C T/y z AE/R2

Table 1. Part number breakdown

Code	Option	Description
	Т	TPL communication type
N N	Р	y = P (Premium with current measurement option)
У	А	y = A (Advanced)
7	1	z = 1 (7 to 14 channels)
Ζ.	2	z = 2 (7 to 8 channels)
	AE	Package suffix
	R2	Tape and reel indicator

5.2 Part numbers list

This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to <u>http://www.nxp.com</u>.

Table 2. Advanced orderable part tableTemperature range is -40 to 105 °CPackage type is 64-pin LQFP-EP

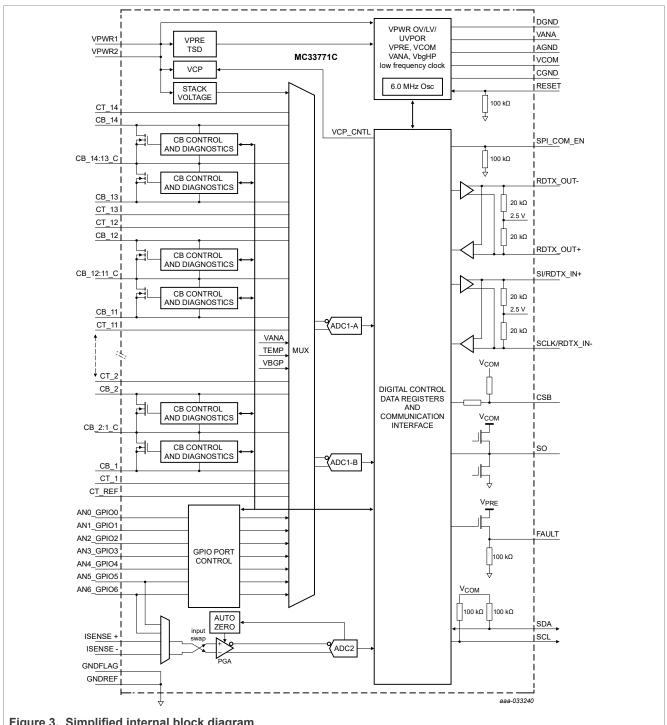
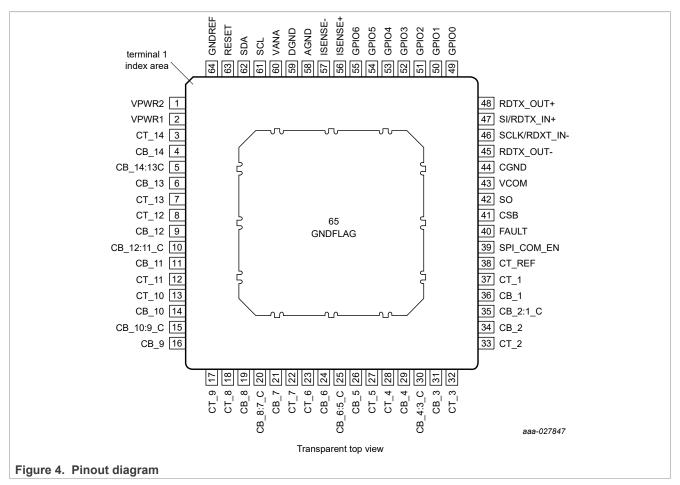

Orderable part	Number of channels	OV/UV		Current channel or coulomb count
TPL differential com	nmunication protoc	ol		
MC33771CTA1AE	7 to 14	Yes	Yes	No
MC33771CTA2AE	7 to 8	Yes	Yes	No

Table 3. Premium orderable part tableTemperature range is -40 to 105 °CPackage type is 64-pin LQFP-EP

Orderable part	Number of channels	OV/UV	Precision GPIO as temperature channels and OT/UT	Current channel or coulomb count		
TPL differential com	IPL differential communication protocol with current measurement option					
MC33771CTP1AE 7 to 14 Yes Yes Yes						
MC33771CTP2AE	7 to 8	Yes	Yes	Yes		

Battery cell controller IC



7 Pinning information

7.1 Pinout diagram

7.2 Pin definitions

Table 4. Pin d	definitions		
Number	Name	Function	Definition
1	VPWR2	Input	Power input to the MC33771C
2	VPWR1	Input	Power input to the MC33771C
3	CT_14	Input	Cell pin 14 input. Terminate to LPF resistor.
4	CB_14	Output	Cell balance driver. Terminate to cell 14 cell balance load resistor.
5	CB_14:13_C	Output	Cell balance 14:13 common. Terminate to CB_14:13_C balance load resistor.
6	CB_13	Output	Cell balance driver. Terminate to cell 13 cell balance load resistor.
7	CT_13	Input	Cell pin 13 input. Terminate to LPF resistor.
8	CT_12	Input	Cell pin 12 input. Terminate to LPF resistor.

MC33771C Product data sheet

Battery cell controller IC

Number	Name	Function	Definition
9	CB_12	Output	Cell balance driver. Terminate to cell 12 cell balance load resistor.
10	CB_12:11_C	Output	Cell balance 12:11 common. Terminate to CB_12:11_C balance load resistor.
11	CB_11	Output	Cell balance driver. Terminate to cell 11 cell balance load resistor.
12	CT_11	Input	Cell pin 11 input. Terminate to LPF resistor.
13	CT_10	Input	Cell pin 10 input. Terminate to LPF resistor.
14	CB_10	Output	Cell balance driver. Terminate to cell 10 cell balance load resistor.
15	CB_10:9_C	Output	Cell balance 10:9 common. Terminate to CB_10:9_C balance load resistor.
16	CB_9	Output	Cell balance driver. Terminate to cell 9 cell balance load resistor.
17	CT_9	Input	Cell pin 9 input. Terminate to LPF resistor.
18	CT_8	Input	Cell pin 8 input. Terminate to LPF resistor.
19	CB_8	Output	Cell balance driver. Terminate to cell 8 cell balance load resistor.
20	CB_8:7_C	Output	Cell balance 8:7 common. Terminate to CB_8:7_C balance load resistor.
21	CB_7	Output	Cell balance driver. Terminate to cell 7 cell balance load resistor.
22	CT_7	Input	Cell pin 7 input. Terminate to LPF resistor.
23	CT_6	Input	Cell pin 6 input. Terminate to LPF resistor.
24	CB_6	Output	Cell balance driver. Terminate to cell 6 cell balance load resistor.
25	CB_6:5_C	Output	Cell balance 6:5 common. Terminate to CB_6:5_C balance load resistor.
26	CB_5	Output	Cell balance driver. Terminate to cell 5 cell balance load resistor.
27	CT_5	Input	Cell pin 5 input. Terminate to LPF resistor.
28	CT_4	Input	Cell pin 4 input. Terminate to LPF resistor.
29	CB_4	Output	Cell balance driver. Terminate to cell 4 cell balance load resistor.
30	CB_4:3_C	Output	Cell balance 4:3 common. Terminate to CB_4:3_C balance load resistor.
31	CB_3	Output	Cell balance driver. Terminate to cell 3 cell balance load resistor.
32	CT_3	Input	Cell pin 3 input. Terminate to LPF resistor.
33	CT_2	Input	Cell pin 2 input. Terminate to LPF resistor.
34	CB_2	Output	Cell balance driver. Terminate to cell 2 cell balance load resistor.

 Table 4. Pin definitions...continued

Battery cell controller IC

Number	Name	Function	Definition	
35	CB_2:1_C	Output	Cell Balance 2:1 common. Terminate to CB_2:1_C balance load resistor.	
36	CB_1	Output	Cell balance driver. Terminate to cell 1 cell balance load resistor.	
37	CT_1	Input	Cell pin 1 input. Terminate to LPF resistor.	
38	CT_REF	Input	Cell pin REF input. Terminate to LPF resistor.	
39	SPI_COM_EN	Input	SPI communication enable. Pin must be high for the SPI to be active.	
40	FAULT	Output	Fault output dependent on user defined internal or external faults. If not used, it must be left open.	
41	CSB	Input	SPI chip select	
42	SO	Output	SPI serial output	
43	VCOM	Output	Communication regulator output	
44	CGND	Ground	Communication decoupling ground. Terminate to GNDREF.	
45	RDTX_OUT-	I/O	Receive/transmit output negative	
46	SCLK/RDTX_IN-	I/O	SPI clock or receive/transmit input negative	
47	SI/RDTX_IN+	I/O	SPI serial input or receive/transmit input positive	
48	RDTX_OUT+	I/O	Receive/transmit output positive	
49	GPIO0	I/O	General purpose analog input or GPIO or wake-up or fault daisy chain	
50	GPIO1	I/O	General purpose analog input or GPIO	
51	GPIO2	I/O	General purpose analog input or GPIO or conversion trigger	
52	GPIO3	I/O	General purpose analog input or GPIO	
53	GPIO4	I/O	General purpose analog input or GPIO	
54	GPIO5	I/O	General purpose analog input or GPIO	
55	GPIO6	I/O	General purpose analog input or GPIO	
56	ISENSE+	Input	Current measurement input+	
57	ISENSE-	Input	Current measurement input-	
58	AGND	Ground	Analog ground, terminate to GNDREF	
59	DGND	Ground	Digital ground, terminate to GNDREF	
60	VANA	Output	Precision ADC analog supply	
61	SCL	I/O	l ² C clock	
62	SDA	I/O	l ² C data	
63	RESET	Input	RESET is an active high input. RESET has an internal pull down. If not used, it can be tied to GND.	
64	GNDREF	Ground	Ground reference for device. Terminate to reference of battery cluster.	

 Table 4. Pin definitions...continued

Number	Name	Function	Definition
65	GNDFLAG		Device flag. Terminate to lowest potential of battery cluster.

Table 4. Pin definitions...continued

8 General product characteristics

8.1 Ratings and operating requirements relationship

The operating voltage range pertains to the VPWR pins referenced to the AGND pins.

Table 5. Ratings vs. operating requirements

Fatal range	На	ndling range – no permanent fail	ure	Fatal range
Permanent failure might occur	Lower limited operating range • No permanent failure, but IC functionality is not guaranteed	Normal operating range 100 % functional 	 Upper limited operating range IC parameters might be out of specification Detection of V_{PWR} overvoltage is functional 	 Permanent failure might occur
V _{PWR} < -0.3 V	7.6 V ≤ V_{PWR} < 9.6 V Reset range: -0.3 V ≤ V_{PWR} < 7.6 V	9.6 V ≤ V _{PWR} ≤ 63 V	63 V < V _{PWR} ≤ 75 V	75 V < V _{PWR}

In both upper and lower limited operating range, no information can be provided about IC performance. Only the detection of V_{PWR} overvoltage is guaranteed in the upper limited operating range.

Performance in normal operating range is guaranteed only if there is a minimum of seven battery cells in the stack.

8.2 Maximum ratings

 Table 6. Maximum ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min	Max	Unit
Electrical ratings				
VPWR1, VPWR2	Supply input voltage	-0.3	75	V
CT14	Cell terminal voltage	-0.3	75	V
VPWR to CT14	Voltage across VPWR1,2 pins pair and CT14 pin	-10	10.5	V
CT _N to CT _{N-1}	Cell terminal differential voltage [1]	-0.3	6.0	V
CT _{REF} to GND	Cell terminal reference to ground	_	5	V
CT _N to GND	Cell terminal voltage to ground (N=1 to 4 or N=6 to 14)	_	(N+1) * 5	V
	Cell terminal voltage to ground (N=5)	—	27.5	V
CT _{N(CURRENT)}	Cell terminal input current	—	±500	μA
CB_N to $CB_{N:N-1_C}$ $CB_{N:N-1_C}$ to CB_{N-1}	Cell balance differential voltage	-	10	V
CB _{2n} to GND	Cell balance voltage to GND (n=1 to 7)	-	(2n+1) . 5	V
CB _{2n+1} to GND	Cell balance voltage to GND (n=0 to 6)	_	(2n+1) . 5	V

Battery cell controller IC

Table 6. Maximum ratings...continued

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min	Max	Unit
CB _{2n:2n-1_C} to GND	Cell balance voltage to GND (n=1 to 6)	—	2n . 5	V
CB _{N:N-1_C} to CTn-1	Cell balance input to cell terminal input	-10	10	V
VISENSE	ISENSE+ and ISENSE– pin voltage	-0.3	2.5	V
VCOM	Maximum voltage may be applied to VCOM pin from external source	-	5.8	V
VANA	Maximum voltage may be applied to VANA pin	—	3.1	V
V _{GPIO0}	GPIO0 pin voltage	-0.3	6.5	V
V _{GPIOx}	GPIOx pins (x = 1 to 6) voltage	-0.3	VCOM + 0.5	V
V _{DIG}	Voltage I ² C pins (SDA, SCL)	-0.3	VCOM + 0.5	V
V _{RESET}	RESET pin	-0.3	6.5	V
V _{CSB}	CSB pin	-0.3	6.5	V
V _{SPI_COMM_EN}	SPI_COMM_EN	-0.3	6.5	V
V _{SO}	SO pin	-0.3	VCOM + 0.5	V
V _{GPIO5,6}	Maximum voltage for GPIO5 and GPIO6 pins used as current input	-0.3	2.5	V
FAULT	Maximum applied voltage to pin	-0.3	7.0	V
I _{pin_unpowered}	Input current in a pin when the device is unpowered	-2	2	mA
V _{COMM}	Maximum voltage to pins RDTX_OUT+, RDTX_OUT–, SI/RDTX_IN+, SCLK/RDTX_IN-	-10.0	10.0	V
V _{ESD1}	ESD voltage Human body model (HBM) Charge device model (CDM) Charge device model corner pins (CDM)		±2000 ±500 ^[2] ±750	V
V _{ESD2}	ESD voltage (VPWR1, VPWR2, CTx, CBx, GPIOx, ISENSE+, ISENSE-, RDTX_OUT+, RDTX_OUT-, SI/RDTX_IN+, SCLK/ RDTX_IN-) versus all ground pins Human body model (HBM)	_	±4000	V
V _{ESD3}	 ESD voltage (CTREF, CTx, CBx, GPIOx, ISENSE+, ISENSE-, RDTX_OUT+, RDTX_OUT-, SI/RDTX_IN+, SCLK/ RDTX_IN-) IEC 61000-4-2, Unpowered (Gun configuration: 330Ω / 150pF) HMM, Unpowered (Gun configuration: 330Ω / 150pF) ISO 10605:2009, Unpowered (Gun configuration: 2 kΩ / 150pF) ISO 10605:2009, Powered (Gun configuration: 2 kΩ / 150pF) 		±8000 ±8000 ±8000 ±8000	V

[1] Adjacent CT pins may experience an overvoltage that exceeds their maximum rating during OV/UV functional verification test or during open line diagnostic test. Nevertheless, the IC is completely tolerant to this special situation. For CT_REF pin applicable limit is ±450 V.

[2]

ESD testing is performed in accordance with the human body model (HBM) (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), and the charge device model (CDM) (C_{ZAP} = [3] 4.0 pF).

These voltage values can be sustained only if ESD caps are used as described in Section 13.2 [4]

8.3 Thermal characteristics

Table 7. Thermal ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)		Min	Max	Unit
Thermal rati	ngs				
	Operating temperature				°C
T _A	Ambient		-40	+105	
TJ	Junction ^[1]		-40	+150	
T _{STG}	Storage temperature		-55	+150	°C
T _{PPRT}	Peak package reflow temperature	[2] [3]	_	260	°C
Thermal resi	istance and package dissipation ratings				
R _{OJB}	Junction-to-board (bottom exposed pad soldered to board) 64 LQFP EP	[4]		10	°C/W
R _{ØJA}	Junction-to-ambient, natural convection, single-layer board (1s) 64 LQFP EP	[5] [6]		59	°C/W
R _{OJA}	Junction-to-ambient, natural convection, four-layer board (2s2p) 64 LQFP EP	[5] [6]		27	°C/W
R _{ØJCTOP}	Junction-to-case top (exposed pad) 64 LQFP EP	[7]		14	°C/W
R _{ØJCBOTTOM}	Junction-to-case bottom (exposed pad) 64 LQFP EP	[8]		0.97	°C/W
Ψ _{JT}	Junction to package top, natural convection	[9]	_	3	°C/W

The user must ensure that the average maximum operating junction temperature (TJ) is not exceeded. [1]

[2] Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device.

NXP's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture [3] Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable parts and review parametrics.

[4] Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient [5] temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

[6] Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1), with the cold plate [7] temperature used for the case temperature.

Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance [8]

[9] Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

8.4 Electrical characteristics

Table 8. Static and dynamic electrical characteristics

Characteristics noted under conditions 9.6 V \leq V_{PWR} \leq 63 V, -40 °C \leq T_A \leq 105 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 56 V, T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit		
Power management							
V _{PWR(FO)}	Supply voltage Full parameter specification	9.6	_	63	V		
I _{VPWR}	Supply current (base value) Normal mode, cell balance OFF, ADC inactive, SPI communication inactive, IVCOM = 0 mA	_	5.4	8.5 —	mA		

MC33771C **Product data sheet**

Battery cell controller IC

 Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Ivpwr(tpl_tx) Ivpwr(cbon) Ivpwr(adc)	Normal mode, cell balance OFF, ADC inactive, TPL communication inactive, IVCOM = 0 mA Supply current adder when TPL communication active		8.0	10.0	
VPWR(CBON)	Supply current adder when TPL communication active		1	<u> </u>	
. ,	113		<u> </u>	16	mA
VPWR(ADC)	Supply current adder to set all 14 cell balance switches ON	_	0.97	_	mA
	Delta supply current to perform ADC conversions (addend) ^[1] ADC1-A,B continuously converting ADC2 continuously converting	_	3.0 1.4	5.0 2.0 	mA
Ivpwr(ss)	Supply current in sleep mode and in idle mode, communication inactive, cell balance off, cyclic measurement off, oscillator monitor on SPI mode (25 °C) SPI mode (-40 °C to 60 °C) SPI mode (105 °C) TPL mode ($T_A = 25$ °C) TPL mode ($T_A = -40$ °C to 60 °C) TPL mode ($T_A = 105$ °C)	 64 54	40 	 75 100 108 115	μΑ
Ivpwr(ckmon)	Clock monitor current consumption	76 —	5	138 8	μA
Vvpwr_ct	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	-3.0 -2.0 -1.5		3.0 2.0 1.5	V
V _{PWR(OV_FLAG)}	V _{PWR} overvoltage fault threshold (flag)	63 —	65	68 —	V
V _{PWR(LV_FLAG)}	V _{PWR} low-voltage warning threshold (flag)	11.7 —	12	12.3	V
V _{PWR(UV_POR)}	V _{PWR} undervoltage shutdown threshold (POR)	7.6	8.5	9.6	V
V _{PWR(HYS)}	V _{PWR} UV hysteresis voltage	100 —	200	_	mV
t _{VPWR(FILTER)}	V _{PWR} OV, LV filter	_	50		μs
VCOM power supp	bly				
V _{COM}	VCOM output voltage	4.9 —	5.0	5.2 —	V
I _{VCOM}	VCOM output current allocated for external use	_	1_	5.0	mA
V _{COM(UV)}	VCOM undervoltage fault threshold	4.2	4.4	4.6	V
V _{COM_HYS}	VCOM undervoltage hysteresis	_	100	_	mV
	VCOM undervoltage fault timer	_	10		μs
t _{VCOM(FLT_TIMER)}					1
t _{VCOM(FLT_TIMER)}	VCOM fault retry timer	_	10		ms

MC33771C Product data sheet

Battery cell controller IC

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
ILIM_VCOM(OC)	VCOM current limit	65	—	140	mA
R _{VCOM(SS)}	VCOM sleep mode pull-down resistor	1.0	2.0	5.0 —	kΩ
t _{VCOM}	VCOM rise time (for V_{PWR} > 10V and CL = 2.2 µF (ceramic X7R only) in parallel with 220 pF)	^{1]}	_	440	μs
VANA power supp	bly			1	
V _{ANA}	VANA output voltage (not used by external circuits) Decouple with 47 nF X7R 0603 or 0402	2.6	2.65	2.7	V
V _{ANA(UV)}	VANA undervoltage fault threshold	2.28	2.4	2.5	V
V _{ANA_HYS}	VANA undervoltage hysteresis		50	_	mV
V _{ANA(FLT_TIMER)}	VANA undervoltage fault timer	—	11	_	μs
V _{ANA(OV)}	VANA overvoltage fault threshold	2.77	2.8	2.85 —	V
t _{VANA(RETRY)}	VANA fault retry timer	—	10	—	ms
ILIM_VANA(OC)	VANA current limit	5.0	—	10	mA
R _{VANA_RPD}	VANA sleep mode pull-down resistor	—	1.0	—	kΩ
t _{VANA}	VANA rise time (CL = 47 nF ceramic X7R only) [4]	^{1]}	—	400	μs
ADC1-A, ADC1-B					
CTn _(LEAKAGE)	Cell terminal input leakage current (except in SLEEP mode when cell balancing is ON)	-	10	100	nA
CTn _(FV)	Cell terminal input current - functional verification	-	0.365	0.5 —	mA
CT _N	Cell terminal input current during conversion	_	50	_	nA
R _{PD}	Cell terminal open load detection pull-down resistor	850 —	950	1250 —	Ω
V _{VPWR_RES}	VPWR terminal measurement resolution	_	2.44141	-	mV/LSB
V _{VPWR_RNG}	VPWR terminal measurement range	9.6	_	75	V
VPWR _{TERM_ERR}	VPWR terminal measurement accuracy	-0.5	_	0.5	%
V _{CT_RNG}	ADC differential input voltage range for CTn to CTn-1	^{5]} 0.0	_	4.85	V
V _{CT_ANx_RES}	Cell voltage and ANx resolution in 15-bit MEAS_xxxx registers	—	152.58789	—	µV/LSB
V _{ANX_RATIO_RES}	ANx resolution in 15-bit MEAS_xxxx registers in ratiometric mode	-	VCOM. (30.51758)	-	µV/LSB
V _{ERR33RT}	Cell voltage measurement error V _{CELL} = 3.3 V, T _A = 25 °C $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		±0.4	0.8	mV
V _{ERR}	Cell voltage measurement error [6] $0.1 \text{ V} \le \text{V}_{\text{CELL}} \le 4.8 \text{ V}, -40 \text{ °C} \le \text{T}_{\text{A}} \le 105 \text{ °C}$ (or -40 °C $\le \text{T}_{\text{J}} \le 125 \text{ °C}$) [7]	^{7]} -5 5	±0.7	5.5 —	mV
V _{ERR_1}	Cell voltage measurement errorIf $0 \ V \le V_{CELL} \le 1.5 \ V, -40 \ ^{\circ}C \le T_A \le 60 \ ^{\circ}C \ (or -40 \ ^{\circ}C \le T_J \le 85 \ ^{\circ}C)$ If	3] -1 5	±0.4	1.5	mV

Battery cell controller IC

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter		Min	Тур	Max	Unit
V _{ERR_2}	Cell voltage measurement error 1.5 V \leq V _{CELL} \leq 2.7 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [7]	-2.0	±0.4	2.0	mV
V _{ERR_3}	Cell voltage measurement error 2.7 V \leq V _{CELL} \leq 3.7 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [7]	-2.0	±0.5	2.0	mV
V _{ERR_4}	Cell voltage measurement error 3.7 V \leq V _{CELL} \leq 4.3 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [7]	-2.8	±0.7	2.8	mV
V _{ERR_5}	Cell voltage measurement error 1.5 V ≤ V _{CELL} ≤ 4.5 V, −40 °C ≤ T _A ≤ 105 °C (or −40 °C ≤ T _J ≤ 125 °C)	[6] [7]	-4.5	±0.7	4.5	mV
V _{err33rta}	Cell voltage measurement error after aging, V _{CELL} = 3.3 V, T _A = 25 $^\circ\text{C}$	[6] [9]	-1.5	±0.5	1.5	mV
V _{ERR_A}	Cell voltage measurement error after aging, 0.1 V \leq V _{CELL} \leq 4.8 V, -40 °C \leq T _A \leq 105 °C (or -40 °C \leq T _J \leq 125 °C)	[6] [8] [9]	-8.0 	±0.8	8.0	mV
V _{ERR_1A}	Cell voltage measurement error after aging, 0 V \leq V _{CELL} \leq 1.5 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [8] [9]	-2.0	±0.5	2.0	mV
V _{ERR_2A}	Cell voltage measurement error after aging, 1.5 V \leq V _{CELL} \leq 2.7 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [9]	-2.5	±0.5	2.5	mV
V _{ERR_3A}	Cell voltage measurement error after aging, 2.7 V \leq V _{CELL} \leq 3.7 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [9]	-3.2	±0.4	3.2	mV
V _{ERR_4A}	Cell voltage measurement error after aging, 3.7 V \leq V _{CELL} \leq 4.3 V, -40 °C \leq T _A \leq 60 °C (or -40 °C \leq T _J \leq 85 °C)	[6] [9]	-3.9	±0.7	3.9	mV
V _{ERR_5A}	Cell voltage measurement error after aging, $1.5 \text{ V} \le \text{V}_{\text{CELL}} \le 4.5 \text{ V}$, $-40 ^{\circ}\text{C} \le \text{T}_{\text{A}} \le 105 ^{\circ}\text{C}$ (or $-40 ^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125 ^{\circ}\text{C}$)	[6] [9]	-6.0	±0.7	6.0	mV
V _{ANX_ERR}	Magnitude of ANx error in the entire measurement range: Ratiometric measurement Absolute measurement after soldering and aging, input in the range [1.0, 4.5] V	[6] [9]			16 10	mV
	Absolute measurement after soldering and aging, input in the range [0, 4.85] V, for $-40 \degree C < T_A < 60 \degree C$) Absolute measurement after soldering and aging, input in the		-8.0 -11	_	8.0 11	
t _{vconv}	range [0, 4.85] V, for −40 °C < T _A < 105 °C) Single channel net conversion time 13-bit resolution 14-bit resolution 15-bit resolution			6.77 9.43 14.75		μs
V _{V_NOISE}	16-bit resolution Conversion noise			25.36		µVrm
_	13-bit resolution 14-bit resolution		_	1800 1000	_	

Battery cell controller IC

Symbol	Parameter	Min	Тур	Мах	Unit
	15-bit resolution	-	600	—	
	16-bit resolution	-	400	—	
ADC2/current sen	se module	I		I	I
V _{INC}	ISENSE+/ISENSE- input voltage (reference to AGND)	-300	_	300	mV
V _{IND}	ISENSE+/ISENSE- differential input voltage range	-150	-	150	mV
VISENSEX(OFFSET)	ISENSE+/ISENSE- input voltage offset error	[10]	_	0.5	μV
ISENSEX(BIAS)	ISENSE+/ISENSE- input bias current	-100	_	100	nA
I _{SENSE(DIF)}	ISENSE+/ISENSE- differential input bias current	-5.0	_	5.0	nA
IGAINERR	ISENSE error including nonlinearities	^[11] -0.5	_	0.5	%
IISENSE OL	ISENSE open load injected current	^[12] 109	130	151	μA
		_		—	
VISENSE_OL	ISENSE open load detection threshold	340	460	600	mV
-		—		—	
V _{2RES}	Current sense user register resolution	—	0.6	—	µV/LSB
V _{PGA_SAT}	PGA saturation half-range				mV
	Gain = 256	—	4.9	<u> </u>	
	Gain = 64	-	19.5	-	
	Gain = 16	-	78.1	—	
	Gain = 4		150.0		
V _{PGA_ITH}	Voltage threshold for PGA gain increase				mV
	Gain = 256	—	—	—	
	Gain = 64	—	2.344	—	
	Gain = 16	—	9.375	-	
	Gain = 4		37.50		
V _{PGA_DTH}	Voltage threshold for PGA gain decrease				mV
	Gain = 256	—	4.298	—	
	Gain = 64	—	17.188	—	
	Gain = 16	<u> </u>	68.750	—	
	Gain = 4	—	—	—	
t _{AZC_SETTLE}	Time to perform auto-zero procedure after enabling the current channel		200	—	μs
t _{ICONV}	ADC conversion time including PGA settling time				μs
	13 bit resolution	_	19.00	<u> </u>	
	14 bit resolution	_	21.67	<u> </u>	
	15 bit resolution	<u> </u>	27.00	—	
	16 bit resolution	—	37.67	—	
VI_NOISE	Noise error at 16-bit conversion	[10]	3.01	—	μVrms
V _{I_NOISE}	Noise error at 13-bit conversion	_	8.33	—	μVrms
ADC _{CLK}	ADC2 and ADC1-A,B clocking frequency	5.7	6.0	6.3	MHz
		—			
Diagnostic thresh	olds				
V _{OL_DETECT}	Cell terminal open load V detection threshold	[13]			mV
	$1.5 \text{ V} \le \text{V}_{\text{CELL}} \le 2.7 \text{ V}$	-	50	_	
	$2.5 \text{ V} \le \text{V}_{\text{CELL}} \le 3.7 \text{ V}$	-	100	_	
	$2.5 \text{ V} \le \text{V}_{\text{CELL}} \le 4.3 \text{ V}$	_	150	<u> </u>	

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Battery cell controller IC

 Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
V _{LEAK}	Cell terminal leakage detection level [6] [14]	-27	-	27	mV
V _{REF_DIAG}	ISENSE diagnostic reference with PGA having gain 4	124	127	130	mV
V _{OFF_DIAG}	ISENSE diagnostic common mode offset voltage [15]	_	_	37.2	μV
V _{REF_ZD}	Precision diagnostic Zener reference for cell voltage channel ^[6] functional verification	4.45 —	4.6	4.85 —	V
V _{CVFV}	Cell voltage channel functional verification allowable error in CT [6] verification measurement [14]	-22	-	6.0	mV
V _{BGP}	Voltage reference used in ADC1-A,B functional verification	_	1.18	_	V
ADC1a _{FV} , ADC1b _{FV}	ADC1-A and ADC1-B functional verification [14] Maximum tolerance between ADC1-A, B and diagnostic reference $(1.5 V \le V_{CELL} \le 4.3 V)$	-5.25	_	5.25	mV
CTx_UV_TH		390 650 1200			mV
CTx_OV_TH				1800 4000 4000	mV
Cell balance drivers			-	1	
V _{DS(CLAMP)}	Cell balance driver VDS active clamp voltage	10	11	12	V
V _{OUT(FLT_TH)}	Output fault detection voltage threshold Balance off (open load) Balance on (shorted load)	0.3	0.55	0.75	V
R _{PD_CB}	Output OFF open load detection pull-down resistor Balance off, open load detect disabled	1.7	2.0	2.9	kΩ
I _{OUT(LKG)}	Output leakage current Balance off, open load detect disabled at V _{DS} = 4.0 V	_	_	1.0	μA
R _{DS(on)}	Drain-to-source on resistance $I_{OUT} = 300 \text{ mA}, T_J = 105 \text{ °C}$ $I_{OUT} = 300 \text{ mA}, T_J = 25 \text{ °C}$ $I_{OUT} = 300 \text{ mA}, T_J = -40 \text{ °C}$		 0.5 0.4	0.80	Ω
I _{LIM_CB}	Driver current limitation	310	_	950	mA
t _{ON}	Cell balance driver turn on $R_L = 15 \Omega$	_	350	450	μs
t _{OFF}	Cell balance driver turn off $R_L = 15 \Omega$		200	_	μs
	Short/open detect filter time	l	20		μs

Battery cell controller IC

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Мах	Unit
IC_TEMP1_ERR	IC temperature measurement error	-3.0	-	3.0	к
IC_TEMP1_RES	IC temperature resolution	—	0.032	-	K/LSB
TSD_TH	Thermal shutdown	155 —	170	185 —	°C
TSD_HYS	Thermal shutdown hysteresis	5.0 —	10	12.2 —	°C
Default operational	parameters	1			
V _{CTOV(TH)}	Cell overvoltage threshold (8 bits), typical value is default value after RESET	0.0	4.2	5.0	V
V _{CTOV(RES)}	Cell overvoltage threshold resolution	-	19.53125	-	mV/LSB
V _{CTUV(TH)}	Cell undervoltage threshold (8 bits), typical value is default value after RESET	0.0	2.5	5.0	V
V _{CTUV(RES)}	Cell undervoltage threshold resolution	-	19.53125	-	mV/LSB
V _{GPIO_OT(TH)}	GPIOx configured as ANx input overtemperature threshold after RESET	-	1.16	-	V
V _{GPIO_OT(RES)}	Temperature voltage threshold resolution	—	4.8828125	-	mV/LSB
$V_{GPIO_UT(TH)}$	GPIOx configured as ANx input undertemperature threshold after RESET	-	3.82	-	V
V _{GPIO_UT(RES)}	Temperature voltage threshold resolution	-	4.8828125	-	mV/LSB
General purpose in		·			
V _{IH}	Input high-voltage (3.3 V compatible) [16]	2.0	-	-	V
V _{IL}	Input low-voltage (3.3 V compatible) [16]	—	-	1.0	V
V _{HYS}	Input hysteresis [16]	—	100	—	mV
I _{IL}	Input leakage current Pins tristate, V_{IN} = V_{COM} or AGND	-100	_	100	nA
I _{IDL}	Differential Input Leakage Current GPIO 5,6 GPIO 5,6 configured as digital inputs for current measurement	-30	_	30	nA
V _{OH}	Output high-voltage $I_{OH} = -0.5 \text{ mA}$	V _{COM} – 0.8	_	-	V
V _{OL}	Output low-voltage I _{OL} = +0.5 mA	_	-	0.8	V
V _{ADC}	Analog ADC input voltage range for ratiometric measurements	AGND	-	V _{COM}	V
V _{OL(TH)}	Analog input open pin detect threshold	0.1	0.15	0.23 —	V
R _{OPENPD}	Internal open detection pull-down resistor [17]	3.8 —	5.0	6.2 —	kΩ
t _{GPIO0_WU}	GPIO0 WU de-glitch filter	47	50	85 —	μs
t _{GPIO0_FLT}	GPIO0 daisy chain de-glitch filter both edges	19	20	48	μs
t _{GPIO2} soc	GPIO2 convert trigger de-glitch filter	1.9	2.0	2.1	μs
-		I —		I—	

MC33771C

Battery cell controller IC

Table 8. Static and dynamic electrical characteristicscontinued
Characteristics noted under conditions 9.6 V \leq V _{PWR} \leq 63 V, -40 °C \leq T _A \leq 105 °C, GND = 0 V, unless otherwise stated. Typical values refer
to V_{PWR} = 56 V, T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
V _{IH_RST}	Input high-voltage (3.3 V compatible)	2.0	—	_	V
V _{IL_RST}	Input low-voltage (3.3 V compatible)	—	—	1.0	V
V _{HYS}	Input hysteresis	_	0.6	_	V
t _{RESETFLT}	RESET de-glitch filter	_	100	_	μs
R _{RESET_PD}	Input logic pull down (RESET)	_	100	_	kΩ
SPI_COM_EN inpu	JIT III III III III III III III III III				
V _{IH}	Input high-voltage (3.3 V compatible)	2.0	_	_	V
V _{IL}	Input low-voltage (3.3 V compatible)	_	_	1.0	V
V _{HYS}	Input hysteresis		450		mV
R _{SPI_COM_EN_PD}	Input pull-down resistor (SPI_COM_EN)		100		kΩ
Digital interface	······································				
V _{FAULT_HA}	FAULT output (high active, IOH = 1.0 mA)	4.0	4.9	6.0	V
* FAULI_HA		_		_	v
I _{FAULT_CL}	FAULT output current limit	3.0	1	40	mA
R _{FAULT PD}	FAULT output pull-down resistance		100		kΩ
VIH_COMM	Voltage threshold to detect the input as high				V
TH_COMM	SI/RDTX_IN+, SCLK/RDTX_IN–, CSB, SDA, SCL (NOTE: needs to be 3.3 V compatible)	_	-	2.0	
VIL_COMM	Voltage threshold to detect the input as low SI/RDTX_IN+, SCLK/RDTX_IN–, CSB, SDA, SCL	0.8	_		V
V _{HYS}	Input hysteresis	30	80	120	mV
	SI/RDTX_IN+, SCLK/RDTX_IN-, CSB, SDA, SCL		80	130	
ILOGIC_SS	Sleep state input logic current				nA
LOGIC_SS	CSB	-100	_	100	
R _{SCLK_PD}	Input logic pull-down resistance (SCLK/RDTX_IN–, SI/RDTX_IN+)	_	20	_	kΩ
R _{I_PU}	Input logic pull-up resistance to V _{COM} (CSB, SDA, SCL)		100	_	kΩ
I _{SO_TRI}	Tristate SO input current 0 V to V _{COM}	-2.0	_	2.0	μA
V _{SO_HIGH}	SO high-state output voltage with $I_{SO(HIGH)} = -2.0 \text{ mA}$	V _{COM} -	<u> _</u>		V
oo_mon		0.4			
V _{SO_LOW}	SO, SDA, SLK low-state output voltage with $I_{SO(HIGH)}$ = -2.0 mA	_	-	0.4	V
CSB _{WU_FLT}	CSB wake-up de-glitch filter, low to high transition	_	-	80	μs
System timing			1		
t _{CELL_CONV}	Time needed to acquire all 14 cell voltages and the current after an ^{[1:} on-demand conversion	8]			μs
	13-bit resolution	56	59	62	
	14-bit resolution	—	80	-	
	15-bit resolution 16-bit resolution	76	123	84	
			208	 129	
		— 197		 218	

Battery cell controller IC

Symbol	Parameter	Min	Тур	Max	Unit
SYNC	V/I synchronization time	[18]			μs
	ADC1-A,B at 13 bit, ADC2 at 13 bit	_	48.16	_	
	ADC1-A,B at 14 bit, ADC2 at 13 bit	<u> </u>	53.50	_	
	ADC1-A,B at 15 bit, ADC2 at 13 bit	_	64.16	_	
	ADC1-A,B at 16 bit, ADC2 at 13 bit	_	85.50	_	
		[18]			
t _{SYNC}	V/I Synchronization time		50.44		μs
	ADC1-A,B at 13 bit, ADC2 at 14 bit	-	52.14	-	
	ADC1-A,B at 14 bit, ADC2 at 14 bit	-	57.48	-	
	ADC1-A,B at 15 bit, ADC2 at 14 bit		68.14	-	
	ADC1-A,B at 16 bit, ADC2 at 14 bit	-	89.48	-	
t _{SYNC}	V/I synchronization time	[18]			μs
SINC	ADC1-A,B at 13 bit, ADC2 at 15 bit		62.12		μü
	ADC1-A,B at 14 bit, ADC2 at 15 bit		65.46		
		-		_	
	ADC1-A,B at 15 bit, ADC2 at 15 bit	-	76.12	-	
	ADC1-A,B at 16 bit, ADC2 at 15 bit	—	97.46	-	
t _{SYNC}	V/I synchronization time	[18]			μs
	ADC1-A,B at 13 bit, ADC2 at 16 bit	<u> </u>	120.51	_	
	ADC1-A,B at 14 bit, ADC2 at 16 bit	<u> </u>	117.84	_	
	ADC1-A,B at 15 bit, ADC2 at 16 bit		112.51		
	ADC1-A,B at 16 bit, ADC2 at 16 bit		113.39		
			113.39		_
t _{VPWR(READY)}	Time after VPWR connection for the IC to be ready for initialization	—		5.0	ms
twake-up	Power up duration	—	—	440	μs
t _{WAKE} DELAY	Time between wake pulses	500	600	700	μs
-		<u> </u>		_	
tuounn	Time, starting from the first SOM received, to go back to Sleep/Idle			1.3	ms
t _{NOWUP}	mode time after receiving incomplete TPL bus wake-up sequence			1.5	1115
t	Idle timeout after POR	57	60	64	s
t _{IDLE}				_	3
+	Call halange timer range	0.5		511	min
	Cell balance timer range		-	-	min
t _{CYCLE}	Cyclic acquisition timer range	0.0		8.5	s
t _{FAULT}	Fault detection to activation of fault pin				μs
	Normal mode	-	—	56	
t _{DIAG}	Diagnostic mode timeout	0.047	1.0	8.5	s
	COC to data maghe (includes most messaging of data ADC	[18]			
t _{EOC}	SOC to data ready (includes post processing of data, ADC_ CFG[AVG]=0)			1	μs
		140	148	156	
	13-bit resolution		201	-	
	14-bit resolution	190	307	211	
	15-bit resolution	-	520	-	
	16-bit resolution	291		323	
		<u> </u>		_	
		494		546	
		_		_	
		^[18] 11.67	40.00	40.00	
I SETTLE	Time after SOC to begin converting with ADC1-A,B	^[18] 11.67	12.28	12.90	μs
	Time needed to send an SOC command and read back 96 cell				ms
t _{SYS_MEAS1}	voltages, 48 temperatures, 1 current, and 1 coulomb counter, and				1115
			1		1

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Battery cell controller IC

Symbol	Parameter	Min	Тур	Max	Unit
	13-bit resolution	—	4.67	—	
	14-bit resolution	<u> </u>	4.73	<u> </u>	
	15-bit resolution	<u> </u>	4.83	<u> </u>	
	16-bit resolution	-	5.05	-	
SYS_MEAS2	Time needed to send an SOC command and read back 96				ms
	cell voltages, 1 current, and 1 coulomb counter and ADC1-A,B				
	configured as follows (with ADC_CFG[AVG]=0):				
	13-bit resolution	_	3.24	_	
	14-bit resolution	_	3.39	_	
	15-bit resolution		3.40	_	
	16-bit resolution	_	3.61	_	
CLST TPL	Time needed to send an SOC command and read back 14 cell				ms
_	voltages, 7 temperatures, 1 current, and 1 coulomb counter with TPL				
	communication working at 2.0 Mbps and ADC1-A,B configured as				
	follows (with ADC_CFG[AVG]=0):				
	13-bit resolution		0.85	_	
	14-bit resolution		0.90	_	
	15-bit resolution		1.101	_	
	16-bit resolution		1.101	_	
	Time needed to send an SOC command and read back 14 cell				ms
CLST_SPI	voltages, 7 temperatures, 1 current, and 1 coulomb counter with SPI				1115
	communication working at 4.0 Mbps and ADC1-A,B configured as				
	follows (with ADC_CFG[AVG]=0):				
	13-bit resolution		0.57		
	14-bit resolution	-	0.57	-	
	15-bit resolution		0.64	-	
	16-bit resolution	<u> </u>	0.76	-	
		-	1.03		
I2C_DOWNLOAD	Time to download EEPROM calibration after POR	-		1.0	ms
I2C_ACCESS	EEPROM access time, EEPROM write (depends on device selection)	-	5.0	-	ms
WAVE_DC_BITx	Daisy chain duty cycle off time				μs
	t _{WAVE DC BITx = 00}	450	500	550	
		-		_	
WAVE_DC_BITx	Daisy chain duty cycle off time				ms
	t _{WAVE_DC_BITx = 01}	0.9	1.0	1.1	
		—		—	
WAVE_DC_BITx	Daisy chain duty cycle off time				ms
	t _{WAVE DC BITx = 10}	9	10	11	
		<u> </u>		—	
WAVE_DC_BITx	Daisy chain duty cycle off time				ms
	twave_DC_BITx = 11	90	100	110	
		_		—	
WAVE_DC_ON	Daisy chain duty cycle on time	450	500	550	μs
		_		—	
COM_LOSS	Time out to reset the IC in the absence of communication	_	1024	_	ms
PI interface		1	I		
SPI_TD	Sequential data transfer delay in SPI mode (N) [19]	1.0	_	_	μs
вск	SCLK/RDTX_IN- frequency [19]			4.0	MHz
SCK					

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq 63$ V, -40 °C $\leq T_A \leq 105$ °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Product data sheet

Battery cell controller IC

Symbol	Parameter		Min	Тур	Max	Unit
^I scк_н	SCLK/RDTX_IN- high time (A)	[19]	125	_	_	ns
t _{SCK_L}	SCLK/RDTX_IN– high time (B)	[19]	125	_	_	ns
t _{scк}	SCLK/RDTX_IN- period (A+B)	[19]	250	-	_	ns
t _{FALL}	SCLK/RDTX_IN- falling time	[19]	_	_	15	ns
t _{RISE}	SCLK/RDTX_IN- rising time	[19]	—	_	15	ns
t _{SET}	SCLK/RDTX_IN- setup time (O)	[19]	20	_	_	ns
t _{HOLD}	SCLK/RDTX_IN- hold time (P)	[19]	20	_	_	ns
t _{SI_SETUP}	SI/RDTX_IN+ setup time (F)	[19]	40	-	_	ns
t _{SI_HOLD}	SI/RDTX_IN+ hold time (G)	[19]	40	_	_	ns
t _{SO_VALID}	SO data valid, rising edge of SCLK/RDTX_IN- to SO data valid (I)	[19]	—	—	40	ns
t _{SO_EN}	SO enable time (H)	[19]	_	_	40	ns
t _{SO_DISABLE}	SO disable time (K)		—	_	40	ns
t _{CSB_LEAD}	CSB lead time (L)	[19]	100	_	_	ns
t _{CSB_LAG}	CSB lag time (M)	[19]	100	_	_	ns
TPL interface (M				1		
t _{MCU_RES}	Time between two consecutive message request transmitted by MCU	[20]	4.0	-	_	μs
t _{WU_Wait}	Time the MCU shall wait after sending first wake-up message per [21] 33771 IC		0.75	—	—	ms
TPL interface (3	3771)		1		I	
t _{TPL_TD}	Sequential data transfer delay in TPL mode	[22] [23]	3.8	4.0	4.25 —	μs
t _{TPL}	Transmit pulse duration		_	210	_	ns
t _{port_delay}	Port delay introduced by each repeater in 33771	[24]	—	_	0.95	μs
t _{RES}	Slave response after read command	Slave response after read command [22] [25]		5.0	9	μs
V _{RDTX INTH}	Differential receiver threshold		480	580	680	mV
t _{EOM}	Message timeout duration	[26]	238	250	—	μs

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions 9.6 V \leq V_{PWR} \leq 63 V, -40 °C \leq T_A \leq 105 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 56 V, T_A = 25 °C, unless otherwise noted.

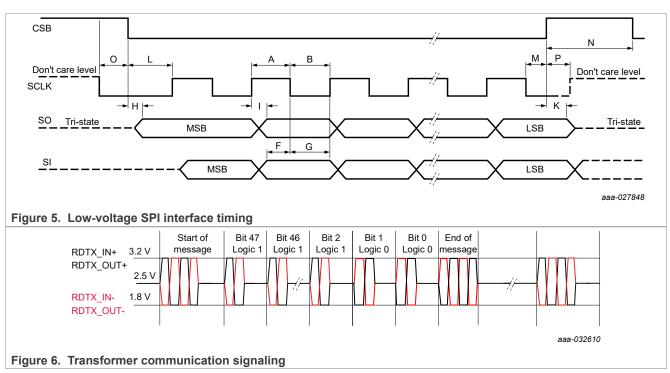
[1] Use of ADC1-A,B can be performed with a duty cycle of t_{EOC} /period (µs). For example, SYS_CFG1[CYCLIC_TIMER] = 010, corresponding to 100000 µs period, and ADC_CFG[ADC1_A_DEF] = ADC_CFG[ADC1_B_DEF] = 11, corresponding to 16 bits and therefore t_{EOC} = 520 µs, given a duty cycle of 0.0052 (or ROM). When an ADC is configured in continuous mode, the duty cycle is equal to 1, resulting in high-current consumption.

[2] To calculate the current consumption in sleep mode, the following formula has to be used: I_{SLEEP_MODE} = (1 - τ_{NORMAL}). I_{VPWR(SS}) + τ_{NORMAL}. [I_{VPWR} + I_{VPWR(ADC})] + I_{VPWR(SDN}) (not zero only if SYS_CFG1[CB_DRVEN] = 1), where τ_{NORMAL} = (t_{VCOM} + t_{EOC})/period (µs), where t_{EOC} depends on the selected number of bits for the ADCs (see ADC_CFG[ADC1_A_DEF, ADC1_B_DEF, ADC2_DEF] fields) and period (µs) depends on SYS_CFG1[CYCLIC_TIMER], as explained in note [1]. Evidently I_{SLEEP_MODE} = I_{VPWR(SS}) only if no conversion is requested in sleep mode (for example, SYS_CFG1[CYCLIC_TIMER] = 000) and if the cell balancing is OFF.

[3] If the battery stack has at least eight cells and if $-1.5 \text{ V} < V_{PWR} - V_{CT_{-14}} < -0.7 \text{ V}$, each cell voltage has to be greater than 2.0 V to meet the accuracy spec. If the battery stack has seven cells and if $-1.5 \text{ V} < V_{PWR} - V_{CT_{-14}} < -0.7 \text{ V}$, each cell voltage has to be greater than 2.3 V to meet the accuracy spec.

[4] 5 % to 95 % rise time

[5] ADC1-A/B may clamp when the voltage of the Cellx or ANx is over 4.85 V.


[6] The cell voltage error includes all internal errors, for example; ADC offset, gain error, INL and DNL. Current measurement is not active when measuring the cell voltage. Single shot measurements are affected by noise, which has zero mean and standard deviation given by VV_NOISE and is not included in the cell voltage error. In order to reduce it, SW implemented IIR or FIR low-pass filters may be used; example, a moving average, whose length is N samples, has output standard deviation VOUTPUT_NOISE = VV_NOISE /sqrt(N). Performance can be granted only if ADC1-A,B are configured at 16-bits resolution (ADC_CFG[ADC1_A_DEF] = ADC_CFG[ADC1_B_DEF] = 11) and if -100 mV ≤ CTREF - GND ≤ 100 mV.

Product data sheet

MC33771C

Battery cell controller IC

- [7] Inaccuracies from soldering or aging are not included.
- [8] If the battery stack has at least eight cells, for all accuracy ranges, the accuracy for a given cell can be guaranteed if all other cells are at least at 1.2 V. If the battery stack has seven cells, for all accuracy ranges, the achievement of the accuracy spec for a given cell can be guaranteed if all other cells are at least at 1.2 V. If the battery stack has seven cells, for all accuracy ranges, the achievement of the accuracy spec for a given cell can be guaranteed if all other cells are at least 1.2 V. If the battery stack has seven cells, for all accuracy ranges, the achievement of the accuracy spec for a given cell can be guaranteed if all other cells are at least 1.8 V.
- [9] Inaccuracies from soldering (MSL3 preconditioning) and aging (after 3000 h HTOL at T_A = 125 °C) are included.
- [10] Offset error is considered at PGA inputs, with PGA gain being set to 256. Both PGA inputs are grounded (shorted together with SYS_DIAG[I_MUX]=11). The offset value, guaranteed by design, does not include the noise, which is considered to be averaged. The noise is characterized by VI_NOISE and is also with PGA gain set to 256 and PGA inputs shorted together with SYS_DIAG[I_MUX]=11.
- [11] Performance can be granted only if the ADC2 is configured at the best resolution, namely, ADC_CFG[ADC2_DEF] = 11.
- [12] Setting the SYS_DIAG[ISENSE_OL_DIAG] bit to logic 1 causes the injection of the current I_{ISENSE_OL} in both ISENSE ± pins, so if the shunt is disconnected, in one or both of the input pins there is an increased voltage due to charging of external capacitors. Comparison to the threshold V_{ISENSE_OL} detects the open fault.
- [13] Only one of the three threshold values shall be selected, dependent on the voltage range in which the cell is typically working, provided a 5 KΩ resistor is used for the input cell low pass filter. Using a dynamic selection of the threshold, depending on the measured voltage is not allowed.
- [14] This threshold value corresponds to a safety margin as defined in the Safety Manual.
- [15] Diagnostic threshold when the PGA inputs are shorted together, the PGA gain is set at 256 and the ADC2 is configured at 16 bit.
- [16] For GPIO0 configured as wake-up, transition time must be shorter than 100 μ s [17] During internal open detection, an internal pull-up current of 10 μ A typical is generated in the pin.
- [17] During internal open detection, an internal pull-up current of [18] See the ADC conversion sequence in <u>Figure 10</u>
- [19] See the timing diagram in Figure 5
- [20] It is the time which MCU shall wait for sending new message request to 33771.
- [21] The waiting time for MCU after transmitting the first wake-up message is dependent on the number of 33771 in daisy chain. If the number of nodes in daisy chain is N, then the total waiting time for MCU after sending first wake-up message is N*t_{WU Wait}
- [22] See the waveforms diagram in Figure 29
- [23] t_{TPL_TD} is the time between two consecutive response messages at the node which is initiating transmission. This time could vary when measured at other forwarding nodes in daisy chain.
- [24] The expected waiting time for MCU, to get the response from 33771 is dependant on number of 33771 used in daisy chain. The repeater of each node imposes a delay of t_{port_delay} for both request and respose. Example: if 24, 33771 ICs are used in a daisy chain, the last node (24th 33771) receives the request in (24*0.95)µs = 22.8 µs.
- [25] t_{RES} is the time between request received and response transmitted by the slave device, which is addressed in the read command. This time could vary when measured at other forwarding nodes in daisy chain.
- [26] The EOM timeout counter starts/restarts after reception of SOM. This means that the maximum length of allowed message frame is t_{EOM}. If a valid EOM is not received in this time frame, the message frame is discarded and the device is ready for new reception.

8.5 Timing diagrams

9 Functional description

9.1 Introduction

The MC33771C contains all circuit blocks necessary to perform synchronized battery voltage measurements, battery current measurement, coulomb counting, cell temperature measurement and integrated cell balancing. These features along with high speed communication make the MC33771C ideal for automotive Lithium-ion battery monitoring. In addition to the battery management functions, the MC33771C is designed to monitor many internal and external functions to validate the integrity of the measurements and the measurement system. The following section describes in detail the features, functions and modes of operation of the device. Table 9 summarizes the IC measurement capability depending on the operating mode. Following terms, phrasings and conventions are used in this document:

- User: this word denotes the battery pack controller, including at least one MCU, where the intelligence of the system is located. The pack controller uses one or more 33771 to sense the physical quantities of a battery.
- User parameter (or simply parameter): it is a datum memorized in the IC registers that is readable or writable by the user and is denoted by an identifier within square brackets preceded by a prefix, for example, REGISTER_NAME[FIELD_NAME], where REGISTER_NAME is the symbol for the intended register and FIELD_NAME is the symbol for the parameter itself, which is, in general, a portion of the 16-bit register data.
- Channel: it is a signal, which can be measured. There are external channels, for example, cell voltages and temperatures, and internal channels, for example, die temperature, and voltage diagnostic references.
- Conversion: this word denotes an analog to digital conversion performed by an ADC and is often meant as measurement of a given channel.
- Sequence: this term denotes a scan of channels that enter some multiplexers to be routed to the ADCs according to a certain sequence. During the scan, each ADC performs subsequent data conversions, where each conversion affects a predetermined channel. Sequences are necessary because the number of channels is much greater than the number of ADCs.
- Cyclic measurement: this means the bank of ADCs perform sequences autonomously, for example, with no
 intervention requested to the user. The user has to do a single programming of an internal timer by providing
 it with the period value. Then the timer provides the periodic trigger starting each measurement sequence.
 For example, the period may be 100 ms, while the sequence duration is order of magnitudes shorter. The
 main purpose of performing cyclic measurements is to carry out automatic comparisons of some measured
 channels against predefined tunable thresholds, so some fault bits can be set accordingly. Fault bits are
 readable by the user by accessing the proper fault registers through the ordinary communication channel;
 or the fault bits may be used to assert the FAULT pin, for the safety information be propagated to the user
 through the fault line of daisy chained devices.
- On-demand measurement: this means the bank of ADCs perform a sequence when triggered by a SOC command, where SOC means start of conversion. Typically, the user periodically sends a SOC command followed by the reading of the measured values of the most important channels, namely all cell voltages, temperatures and current.

Operating mode	on-demand measurements	Voltage/temperature cyclic measurements	Current measurement	Coulomb counter	Reference
<u>Normal mode</u>	Available	Available, if SYS_CFG1[CYCLIC_ TIMER] ≠ 0	Available and running continuously if enabled by setting SYS_CFG1[I_MEAS_ EN] = 1	Available and running continuously if enabled by setting SYS_CFG1[I_MEAS_ EN] = 1 <u>Exception</u> : when the device transitions from sleep to normal mode, it is frozen until it is read and reset by the user	Section 9.3.4
<u>Diagnostic</u> <u>mode</u>	Available	Not available	Available and running continuously if enabled by	Available and running continuously if enabled by	Section 9.3.6

Table 9. Working mode versus measurements

Battery cell controller IC

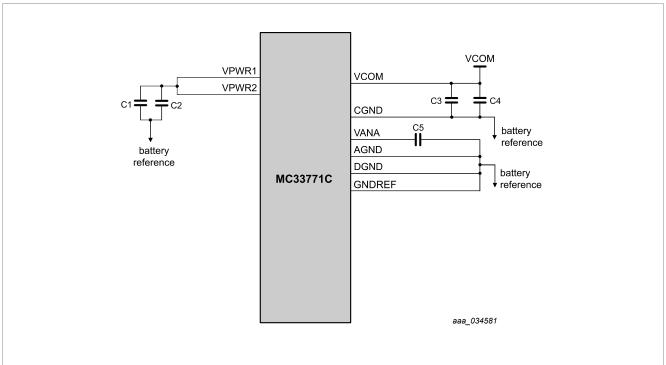

0						
Operating mode	on-demand measurements	Voltage/temperature cyclic measurements	Current measurement	Coulomb counter	Reference	
			setting SYS_CFG1[I_MEAS_ EN] = 1	setting SYS_CFG1[I_MEAS_ EN] = 1		
<u>Sleep mode</u>	Not available	Available, if SYS_CFG1[CYCLIC_ TIMER] ≠ 0	Available if enabled by setting SYS_CFG1[I_MEAS_EN] = 1, timing depends on SYS_ CFG1[CYCLIC_TIMER] (it must be ≠ 0)	Available if enabled by setting SYS_CFG1[I_MEAS_EN] = 1, timing depends on SYS_ CFG1[CYCLIC_TIMER] (it must be ≠ 0)	Section 9.3.5	
other modes	Not available	Not available	Not available	Not available		

Table 9. Working mode versus measurements...continued

9.2 Power supplies and reset

9.2.1 Decoupling of power supplies

The recommended decoupling of power supplies is shown in <u>Figure 7</u> The capacitors should be placed close to the IC pins.

Figure 7.	Recommended	decoupling	of power supplies	S
-----------	-------------	------------	-------------------	---

Table 10	Pacammandad	capacitor values	for nowor	supply decoupling	
	Recommended	capacitor values	ior power a	supply decoupling	

ID	Value	Units	Comments
C1	220	nF	
C2	1	nF	
C3	2.2	μF	Ceramic capacitor
C4	220	pF	
C5	47	nF	Ceramic capacitor

9.2.2 VPWR overvoltage, low-voltage

The MC33771C incorporates comparators to monitor VPWR pins for overvoltage and low-voltage conditions. In the event the voltage on VPWR pin is above the overvoltage threshold $V_{PWR(OV_Flag)}$ for greater than the $t_{VPWR(Filter)}$ period, the overvoltage fault flag is set in FAULT1_STATUS[VPWR_OV_FLT].

When unmasked by FAULT_MASK1[MASK_12_F], the FAULT1_STATUS[VPWR_OV_FLT] bit sets the FAULT output pin high. An overvoltage condition on the VPWR pin does not cause the MC33771C to perform a shutdown. The pack controller may clear the FAULT1_STATUS[VPWR_OV_FLT] bit when V_{PWR} returns to the normal operating range by writing logic 0 to the FAULT1_STATUS[VPWR_OV_FLT] bit.

A low-voltage condition on VPWR pin causes the FAULT1_STATUS[VPWR_LV_FLT] bit to be set. The FAULT1_STATUS[VPWR_LV_FLT] bit may be cleared when the normal operating range voltage resumes on the VPWR pin and by writing 0 to the FAULT1_STATUS[VPWR_LV_FLT].

9.2.3 VCOM supply

The VCOM supply is a linear regulator used to supply power for communication, GPIOx, SPI interface, external temperature sensor reference, and optional external EEPROM.

The VCOM supply is monitored by the MC33771C for undervoltage. Excessive load on the VCOM pin activates VCOM current limit causing an undervoltage fault condition to occur. During the event, the FAULT2_STATUS[VCOM_UV_FLT] fault bit is set and the regulator enters t_{VCOM(RETRY)} shutdown/retry strategy.

Undervoltage shutdown of the VCOM supply directly affects communication, GPIO outputs and external temperature measurements. In addition to setting the individual fault bits for each ANx/GPIO, multiple faults may be set in the FAULTx_STATUS register.

Faults may be cleared by the pack controller when communication resumes. VCOM also has a comparator that monitors for overvoltage. In the event the voltage on VCOM becomes greater than $V_{COM(OV)}$, the FAULT2_STATUS[VCOM_OV_FLT] fault flag is set.

9.2.4 VANA supply

The VANA supply is an internal 2.5 V supply used by the MC33771C for analog control. No circuits other than the decoupling capacitor should be terminated to the VANA pin. The VANA supply is monitored by the MC33771C for undervoltage. External load on the VANA pin activates the VANA current limit causing an undervoltage fault condition to occur. During the event, the FAULT2_STATUS[VANA_UV_FLT] fault bit is set and the regulator enters t_{VANA(retry}) shutdown/retry strategy.

Undervoltage shutdown of the VANA supply directly affects the performance of the analog to digital converters generating fault condition. Additionally, VANA is monitored by the ADC converter for an overvoltage condition each time a conversion sequence is performed. In the event VANA exceeds the $V_{ANA(OV)}$ threshold, the FAULT2_STATUS[VANA_OV_FLT] is set.

9.2.5 Power on reset (POR)

The MC33771C has two sources of power on reset (POR) in the IC system. An undervoltage condition on the VPWR pin causes the MC33771C to reset. Upon returning from undervoltage, the MC33771C performs a POR.

The second source of potential POR occurs during transient conditions when the internal digital logic supply voltage drops below the critical threshold where logic states cannot be guaranteed. In this case, the MC33771C performs a power on reset.

Power on reset is indicated by the FAULT1_STATUS[POR] bit. In the event of a POR, all registers in the MC33771C are set to their power on reset state and the FAULT pin becomes active.

9.2.6 Hardware and software reset

An active high on the RESET pin for greater than the t_{RESETFLT} filter time causes the MC33771C to reset. Software resets are performed when the MC33771C receives a message written to the SYS_CFG1[SOFT_RST] bit. Hardware and software resets are indicated by the status of the FAULT1_STATUS[RESET_FLT] bit, and the FAULT pin becomes active. After a HW or SW reset, it is necessary to wait for the time interval t_{VPWR(READY)} before being possible to reprogram the part.

9.3 Modes of operation

From RESET mode, the MC33771C must be initialized with a cluster ID before the device is allowed to enter NORMAL mode. After initialization, the MC33771C enters NORMAL mode. In NORMAL mode the device is in full operation performing the necessary safety functions as well as on-demand conversions. When commanded to SLEEP mode, the device will have reduced current consumption. Diagnostic mode provides a method for diagnosing the integrity of many safety functions as well as internal or external faults that may have occurred. If properly configured, if there is no traffic during NORMAL mode on the bus during t_{COM_LOSS}, the MC33771C will reset.

In the event the device is powered up and not initialized, the MC33771C enters the low-power IDLE mode after a t_{IDLE} timeout period. Detecting a wake-up pattern transfers the MC33771C to the initialization state INIT where the CID can be programmed. In Figure 8, an integer number enclosed in round brackets close to a transition arc indicates the priority of such a state transition in case the conditions are verified at the same time. The lower the number is, the higher is the priority, so if several conditions are true at the same time, the one with lowest priority number determines the state transition; a boolean condition is enclosed between square brackets. A list of actions after the state transition condition is preceded by the slash symbol. Symbol "t" represents the absolute time, symbol t_0 stays for a variable having the dimension of time.

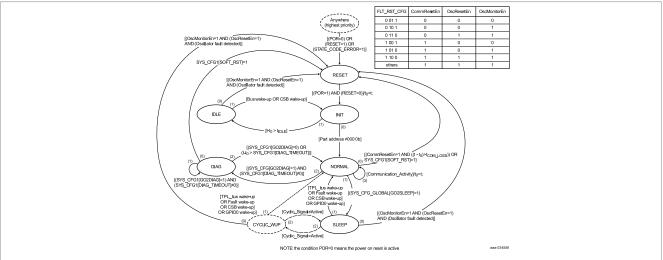


Figure 8. Operating mode state diagram

T. I. I. A.				
Table 11.	Power	supply	mode	operation

	Normal/Init mode	Diagnostic mode	Cyclic WUP	Sleep/Idle mode
Supplies active	VCOM = ON, VANA = ON	VCOM = ON, VANA = ON	VCOM = ON (during cycle) VANA = ON (during cycle)	VCOM = 0, VANA = 0
Communication	Communication enabled	Communication enabled	Communication enabled (during cycle)	Wake-up function only

9.3.1 Reset mode

The table in Figure 8 provides information about the mapping between all possible values of the SYS_CFG2[FLT_RST_CFG] field, which may be written and read by the user, and the corresponding values of the following internal bits, which are not user readable:

- CommResetEN: If it is equal to 1, the IC reset due to a communication timeout in NORMAL mode is enabled, else it is disabled
- OscResetEN: If it is equal to 1, the IC reset due to the detection of a defective oscillator in SLEEP mode is enabled, else it is disabled
- OscMonitorEN: If it is equal to 1, the oscillator monitoring is enabled, else it is disabled

The value "others" readable in the column labeled as SYS_CFG2[FLT_RST_CFG] refers to values that are different from those listed above.

The registers are reset to their default values, except some bits of the FAULT1_STATUS register.

9.3.2 Idle mode

The MC33771C enters IDLE mode from INIT mode when the communication bus is not active for the t_{IDLE} time period. While the MC33771C is in IDLE mode, no messages are recognized, only a valid wake-up sequence lets the device transition from IDLE mode to INIT mode. When the MC33771C is configured as a SPI interface and enters IDLE mode, the device transitions from IDLE mode to INIT mode to INIT mode if CSB duration is larger than CSB_{WU FLT} maximum value, otherwise the pulse will be considered as a glitch and then filtered.

9.3.3 Init mode

After a Power On Reset (POR) or Reset (Soft RST or pin RESET), the MC33771C enters INIT mode. The MC33771C's cluster ID is 0 (unassigned CID). All registers, except the INIT register, are read-only. In INIT mode, any unassigned MC33771C does not forward any message and responds (if needed) only on the side that received a request. The user has to assign a Cluster ID between 1 and 63, to enter NORMAL mode. This assignment is mandatory for both SPI and TPL communication. If the assignment of a Cluster ID is not performed within the t_{IDLE} timeout, IDLE mode will be entered to reduce current consumption.

9.3.4 Normal mode

In NORMAL mode, on reception of a valid message, the MC33771C executes the commanded operation. Device configuration registers control the operating characteristics of the MC33771C and are all programmed while the device is in NORMAL mode. Once programmed, the MC33771C performs safety operations like

overvoltage and undervoltage in the background without further instruction from the pack controller¹.

To accomplish the safety operations in NORMAL mode, the MC33771C performs a cyclic conversion sequence at the programmed timed interval. In the event the MC33771C receives an on-demand conversion request from the pack controller during a cyclic conversion, the device stops the cyclic conversion and immediately starts the on-demand conversion cycle. Halting the cyclic conversion and performing the on-demand conversion allows all MC33771C devices in the system to achieve synchronized measurements. From NORMAL mode, the MC33771C may be commanded to SLEEP mode or DIAG mode. If instructed by a proper value of the SYS_CFG2[FLT_RST_CFG] field, the part automatically resets whenever the communication is absent for longer than t_{COM_LOSS} .

¹ The cyclic measurement is disabled by default. Cyclic measurement can be activated by writing to SYS_CFG1[CYCLIC_TIMER].

9.3.5 Sleep mode

SLEEP mode provides a method to significantly reduce battery current and the overall quiescent current of the battery management system. In SLEEP mode, the overvoltage, undervoltage, overtemperature,

undertemperature, and overcurrent circuitry can remain cyclically active², as well as the monitoring of V_{PWR}.

Based on the CYCLIC_TIMER setting, the MC33771C may continue performing cyclic conversions in SLEEP mode. This is the meaning of the dotted bubble labeled as CYCLIC_WUP in the state diagram shown in <u>Figure 8</u>. The permanence time in the CYCLIC_WUP transient state is really short; it is basically the time needed to turn on the VCOM power supply and to acquire 20 channels.

In the event a conversion value is greater than or less than the threshold value and the particular wake-up/fault is unmasked, the MC33771C performs a bus wake-up and can activate the FAULT pin.

To instruct the MC33771C to enter the SLEEP mode, the user sets the SYS_CFG_GLOBAL[GO2SLEEP] bit to logic 1. If the communication type is TPL, only a global write command can be used, while in case of pure SPI communication, a local write command is necessary. In case the ADCs are performing acquisition (for a single sample or an average of N samples), the transition is delayed until the ongoing sequence is completed. It means that a single sample will be correctly acquired while an average will be potentially interrupted; in this latter case MEAS_CELL registers cannot be updated (DATA_RDY bit stays at 0 until the completion of the next average).

Exit from SLEEP mode is possible if one of the following occurs:

- Upon detection of a bus wake-up sequence, in TPL mode only
- By transitioning the CSB pin from low state to high state (shortly referred to as CSB wake-up)
- Upon detection of at least one out of a certain number of fault conditions (see FAULT1_STATUS, FAULT2_STATUS and FAULT3_STATUS along with their associated wake-up mask registers WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3)³
- Depending on the content of SYS_CFG2[FLT_RST_CFG] field, it is possible to set the OscResetEn variable to 1.
- Wake-up by GPIO0.

The CSB wake-up capability imply some system considerations when SPI communication is used. Assumed the CSB line is pulled up to the same power supply used by the MCU. When the MCU commands the MC33771C to go sleep and then the MCU itself goes to sleep, both devices sleep until the time the MCU wakes up. However, when this happens, the MC33771C wakes up, because the CSB line transitions from low state to high state. To avoid this behavior, the MCU has to take care to force the CSB line to the high state during the entire sleep time.

9.3.6 Diagnostic mode

In diagnostic mode, the system controller has extended control of the MC33771C in order to execute performance integrity checks of the device. It is critical to note that when the MC33771C is in diagnostic mode, cyclic conversions are halted and OV/UV/OT/UT detection is not performed automatically. To perform OV/UV/OT/UT or any other protection feature that requires a conversion, an on-demand conversion message must be sent by the pack controller.

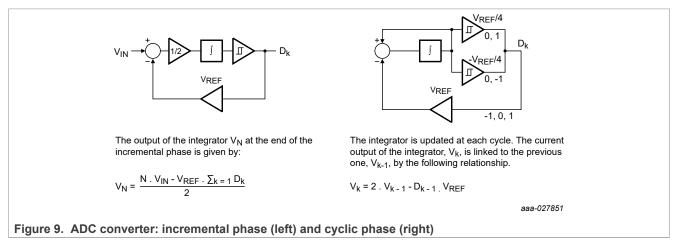
To prevent the MC33771C from remaining in diagnostic mode without automatic OV/UV/OT/UT detection, a protection DIAG_TIMEOUT timer has been implemented. In the event of the timeout, the MC33771C reverts to NORMAL mode and sets the bit FAULT3_STATUS[DIAG_TO_FLT] to logic 1.

MC33771C

 ² The cyclic measurement is disabled by default. Cyclic measurement can be activated by writing to SYS_CFG1[CYCLIC_TIMER].
 3 The wake-up performed by MC33771C under the detection of internal fault is disabled by default. It can be activated by writing to

registers WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3.

To enter diagnostic mode, the user must set the SYS_CFG1[GO2DIAG] bit to logic 1. To exit diagnostic mode, the user must clear the GO2DIAG bit.


Note: If cyclic acquisition is enabled, before transitioning to diagnostic mode, the cyclic acquisition needs to be disabled. Disabling of cyclic acquisition and GO2DIAG should be two separate commands sent by MCU.

9.4 Analog to digital converters ADC1-A, ADC1-B, ADC2

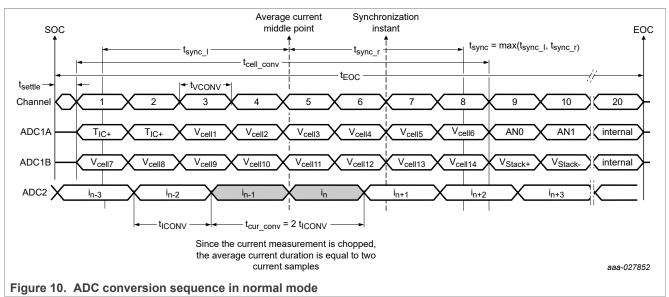
At the heart of the MC33771C are three hybrid ADCs using a 6.0 MHz clock and having two modes of operation, called *phases*:

- Incremental phase: it is necessary to compute the most significant bits. During this first phase, the ADC operates as shown in Figure 9 (left part). It appears equal to a 1st order ΣΔ, but it has no memory, as the initial state is always 0.
- The second phase, referred to as cyclic phase, is needed to extract the least significant bits. During this phase, the converter is blind to the input (but not to the reference) and performs the conversion of the residual error.

This ADC, which is built around a switched capacitor integrator, is much faster than a $\Sigma\Delta$, an essential feature when the input comes from a multiplexer and the channel switching has to be very fast. There is no decimation downstream the ADC.

The ADC architecture affords the user the flexibility to select the speed vs. accuracy. Conversion resolution setting for ADC1-A, ADC1-B and ADC2 are programmable from 13 to 16 bits (see <u>Section 11.7 "ADC</u> <u>configuration register – ADC_CFG"</u>). ADC1-A and ADC1-B settings must be equal to each other.

9.4.1 High precision voltage reference


To guarantee the accuracy of all ADC conversion data, the MC33771C integrates a high precision fully compensated voltage reference.

9.4.2 Measurement sequence

The MC33771C performs on-demand differential measurements of external inputs and internal measurements using three ADC converters for measurement, calibration, and diagnostics. Once the device is initialized, on-demand conversions are initiated by writing to the ADC_CFG [SOC] convert register or a GPIO2 input trigger.

The ADC_CFG register contains the conversion parameters for ADC1-A, ADC1-B, and ADC2 converters and the start conversion bit for synchronization. Writing a logic 1 to the SOC bit initiates the conversion sequence. Conversions in progress may be interrupted by reinitiating a new conversion. Measurements for each ADC

Battery cell controller IC

converters in the MC33771C have a predefined measuring sequence. Voltage conversions coming from ADC1-A and ADC1-B are synchronized with free running current measurements performed by ADC2.

Immediately after receipt of a conversion request, there is a dead time t_{SETTLE}, after which ADC1-A and ADC1-B converters start their conversion sequence. Voltage conversions of ADC1-A and ADC1-B run asynchronously with the current measurements performed by ADC2 as shown in <u>Figure 10</u>.

At time t_{CELL_CONV} , all voltage and current samples are frozen and then post-elaborated. Offset is measured and canceled, a multiplicative correction with a gain depending on the IC die temperature is performed. The completion of the entire sequence, whose length is equal to 20 time slots, occurs at time t_{EOC} . All results are stored into user registers and their associated data ready bits are set to Logic 1. Channels identified as "internal" are used for calibration purposes and are performed at each conversion sequence. Information on how the data is tagged and stored is provided in <u>Section 10</u>. On-demand conversions are not only used for storing measurement results in user registers, but also for OV/UV/OT/UT comparisons.

The MC33771C features a synchronized voltage and current measurements for each requested conversion. Synchronization point is after the 6th channel, that is, at this time the IC takes a snapshot of the latest two chopped conversions of the current signal, the average of which is calculated to get rid of the current offset.

The meaning of the time t_{SYNC} is the maximum value of two time intervals, $t_{SYNC L}$ and $t_{SYNC R}$, where:

- t_{SYNC_L} is the time interval between the middle point of the first voltage conversion and the instant corresponding to middle point of the latest valid average current value
- t_{SYNC_R} is the time interval between the previously mentioned instant and the middle point of the eighth converted channel

In addition to on-demand conversion requests, the MC33771C provides timing control for cyclic measurements, that is, conversions occurring with no need for the pack controller to repeatedly send SOC commands. Cyclic measurements are useful for automatic OV/UV/OT/UT check. The user may select the cycle period by programming register SYS_CFG1[CYCLIC_TIMER]. The effective duration of a cyclic sequence is given by the t_{EOC} parameter. A cyclic sequence does not affect the content of the measurement registers (namely, of registers MEAS_xxxx), while it has effect on the content of CELL_OV_FLT, CELL_UV_FLT, AN_OT_UT_FLT and FAULTx_STATUS registers.

9.4.2.1 Voltage averaging

The MC33771C provides a feature of on-demand, on-chip voltage averaging. Using this feature, cell terminal voltage, Vstack voltage, and VrefA and VrefB voltages can be averaged for a configured number of samples.

MC33771C

Battery cell controller IC

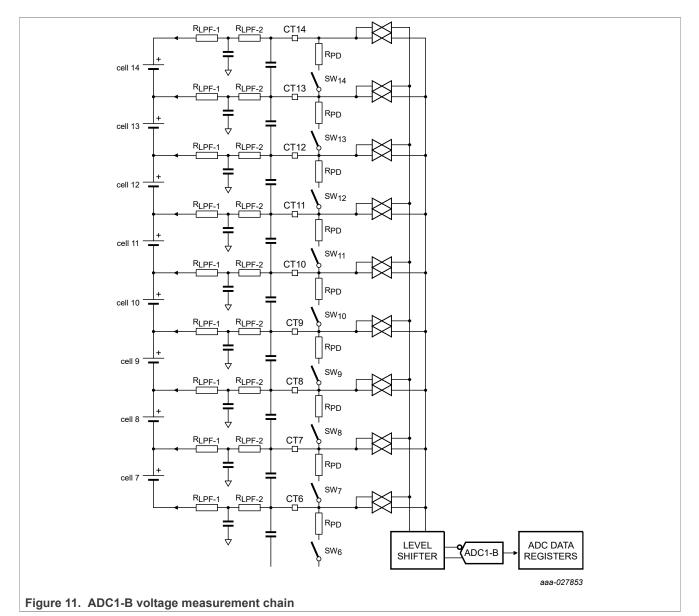
Averaging makes the measurement data more robust to noise, the averaging feature acts as a digital low pass filter. The on-chip averaging feature of MC33771C reduces the MCU load by performing the averaging on-chip and also reducing the number of communication frames to be exchanged between master and slave.

After initialization of MC33771C, averaging can be triggered by configuring the ADC_CFG register as described in <u>Section 11.7 "ADC configuration register – ADC_CFG"</u>. The number of samples to be averaged is chosen by writing to bit-field ADC_CFG[AVG] and accumulation of samples to be averaged is initiated by setting bit-field ADC_CFG[SOC] to logic 1 or by triggering GPIO2 input. Once the averaging is started the MC33771C accumulates the configured number of samples and divides the accumulated value by the number of configured samples. The final value is updated in MEAS_CELLXX registers.

Ongoing accumulation of samples can only be interrupted by the GO2SLEEP and GO2DIAG commands. However, the averaging can be restarted with a new SOC command. On reception of a new SOC command, the MC33771C discards the ongoing measurement (accumulation) and starts the new measurement. It is to be noted that the feature of voltage averaging is not available for cyclic measurement.

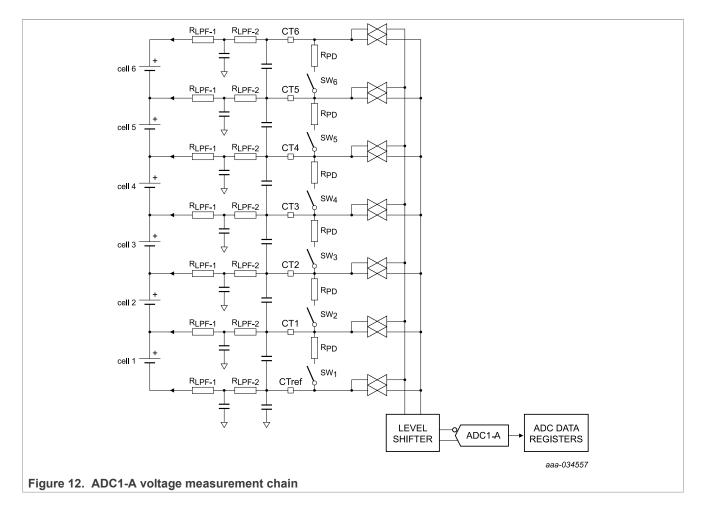
In NORMAL mode, during ongoing averaging the device can interrupt the voltage averaging and change its mode of operation. However, the GO2SLEEP and GO2DIAG commands have certain priority over averaging. The MC33771C performing averaging is able to transition to Sleep or Diagnostic mode on reception of a valid GO2SLEEP or GO2DIAG command but only after completion of the ongoing sequence of measurement.

9.5 Cell terminal voltage measurement


Cell terminal voltages are monitored differentially, level shifted and multiplexed to the ADC1-A and ADC1-B converters. Conversion results of the cells are available in MEAS_CELLx registers.

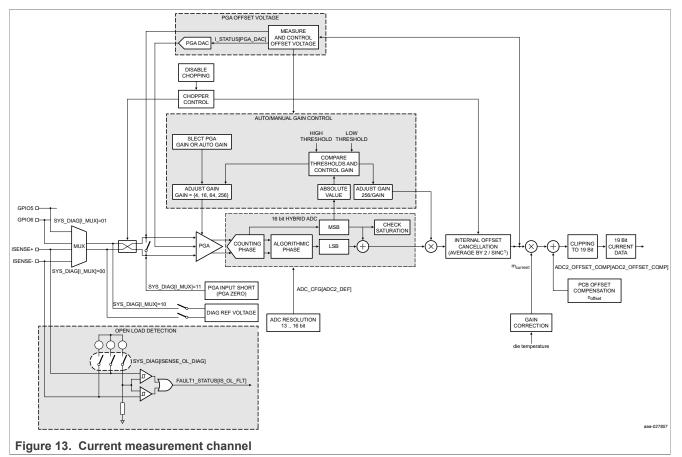
Unused cell terminal (CTx) inputs may be terminated as shown in <u>Figure 1</u> or as described in <u>Section 13.2.2</u> <u>"Unused cells"</u>. Overvoltage and undervoltage of unused inputs should be disabled through the OV_UV_EN[CTx_OVUV_EN] bits to prevent the input from triggering fault events. Conversions performed on unused inputs result in nearly zero ADC values.

The differential measurement of each cell terminal input is designed to function in conjunction with external antialiasing filter (see <u>Section 13.2 "MC33771C External Components"</u>).


MC33771C

Battery cell controller IC

Cell terminal CT7 through CT14 have the same type input structure as CTref through CT6 and are multiplexed to ADC1-B.


Battery cell controller IC

9.6 Current measurement

Current measurement channel features 16-bit ADC with an automatic programmable gain amplifier (PGA) allowing the user to accurately measure current from –1500 A to 1500 A (the actual range is in terms of voltage and is given by min and max of V_{IND}) with a 6.0 mA resolution (in terms of voltage it is V_{2RES}) when using a single 100 $\mu\Omega$ shunt resistor. The current channel includes automatic gain selection, redundant measurement path, and internal diagnostics.

Battery cell controller IC

From initialization, the current measurement chain is disabled. The MCU controller must enable the measurement chain by setting the SYS_CFG1[I_MEAS_EN] bit to logic 1, to initiate continuous current conversions. Current measurement conversions for coulomb counting are performed continuously in normal and diagnostic modes, while in sleep mode they occur periodically and the period is given by

SYS_CFG1[CYCLIC_TIMER].

Note: The conversion command ADC_CFG[SOC] must be sent at least 27 µs after SYS_CFG1[I_MEAS_EN] is enabled.

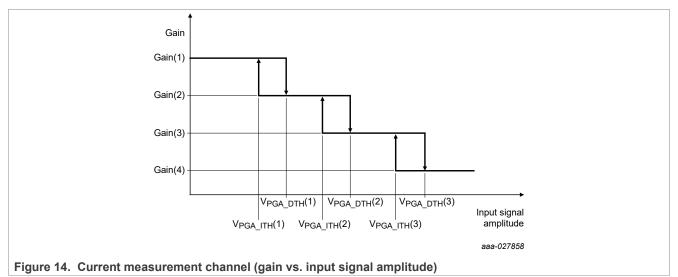
The Current Acquisition Channel fulfills accuracy and dynamic range requirement through:

- The Auto-Zero Compensation feature is guaranteeing the PGA dynamic range.
- A chopper function is ensuring a reduced offset introduced by the acquisition Chain.

The automatic auto-zero compensation for the PGA is performed each time the current measurement channel gets enabled. The time to perform the procedure is given by the parameter t_{AZC} SETTLE.

To minimize the offset introduced by the acquisition chain, the chopper sends alternatively and repetitively, the ISENSE+/– differential inputs and the ISENSE–/+ differential inputs (reverse input pair) to the PGA differential inputs. Downstream the ADC2, a digital post-processor computes the difference between the current sample and the past sample and divided it by 2. Therefore, the offset introduced by the acquisition chain is cancelled.

Conversion result of current channel will be stored into MEAS_ISENSE1[MEAS_I_MSB] and MEAS_ISENSE2[MEAS_I_LSB] with a resolution of V_{2RES} , which remains the same regardless of the PGA Gain setting.


Note: A conversion started with an ADC_CFG[AVG] bit-field set to a non-zero value would result in the toggling of MEAS_ISENSE1[DATA_RDY] and MEAS_ISENSE2[DATA_RDY] between 0 and 1 for each voltage

Battery cell controller IC

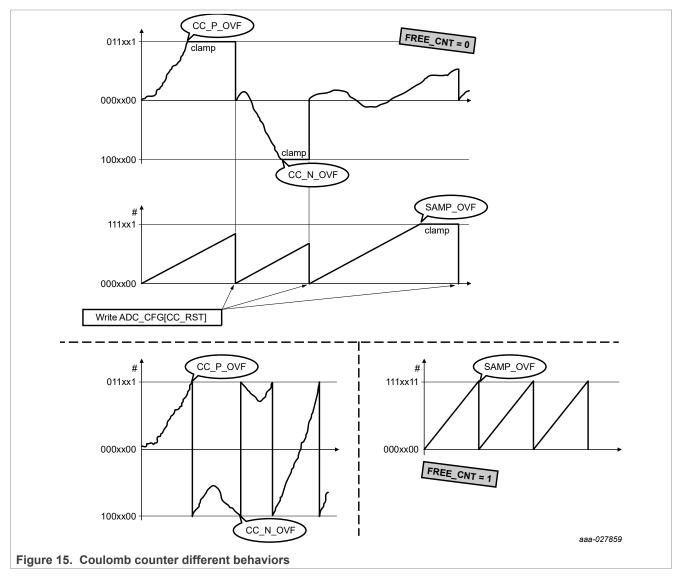
measurement sequence, unless the configured number of sequences are completed. At the end of averaging, the bit MEAS_ISENSEx[DATA_RDY] is stable at the end of last sequence.

The PGA gain of the current acquisition channel (4, 16, 64, 256) can either be set in a manual or an automatic mode. The setting of the PGA gain in manual or automatic mode can be performed by configuring ADC_CFG[PGA_GAIN] register.

The setting of the PGA gain in automatic mode will also be performed by the automatic gain control. Automatic gain control allows the device to obtain the most appropriate gain setting for the amplifier input signal level. In automatic gain control mode, the conversion result is digitally compared with internally programmed thresholds. See <u>Figure 14</u>.

PGA auto-gain is implemented by applying a hysteresis to each threshold. Saturation of the ADC is reported by the flag MEAS_ISENSE2[ADC2_SAT]. A PGA setting change between two chopped measurements is reported by the flag MEAS_ISENSE2[PGA_GCHANGE] to indicate reduced accuracy for the resulting measurement value. An external low-pass filter is required to prevent an over range event within the PGA. Such event may happen if the time derivative of the current signal is so high that it causes the voltage drop across the ISENSE +/- terminals to exceed the maximum allowed slope value of ±4 V/s. The way this limit on the slope has to be understood is the following: if the battery current changes like a large ideal step, the output signal of the input filter must have a slope whose absolute value must not exceed the aforementioned value. So, this limit only applies to large signals, that is, it does not apply, for example, to a sinusoidal current signal having small amplitude but very large frequency, because a small signal normally does not require a change in the gain value. Large signal signifies that the signal magnitude is so high that the PGA gain is required to be switched to a value different from the currently used one.

ADC2, dedicated to the current measurement channel, performs continuous conversions in normal and diagnostic modes. Receiving an on-demand conversion request, the most recent current measurement obtained before the last cell voltage gets converted is stored in MEAS_ISENSE1 and MEAS_ISENSE2 registers, so synchronizing the current with all voltages within the t_{SYNC} window.


The current measurement channel includes a sleep mode wake-up feature. In sleep mode, the PGA gain is constantly equal to 256 and each cyclic current measurement result is compared with the current wake-up threshold TH_ISENSE_OC register. Three out of four current values above the threshold trigger a system wake-up and activate the fault output when the wake-up enable bit is set.

9.7 Coulomb counting

All conversions of ADC2 increment the internal coulomb counter, referred to as COULOMB_CNT, which represents the discrete integral of ADC2 samples, where the time index can only take positive integer values. COULOMB_CNT is copied to registers COULOMB_CNT1, COULOMB_CNT2. In addition to this, the MC33771C provides the number of accumulated samples in register CC_NB_SAMPLES, which represents the elapsed time expressed in integer units. The coulomb counter registers COULOMB_CNT1, COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES are reset by writing the ADC_CFG[CC_RST] reset bit.

The registers CC_NB_SAMPLES/COULOMB_CNT1/COULOMB_CNT2 are updated if a write command has been done on one of these 3 registers (updated at next read) or if a read/write command has been done on another register (updated at next read). If the 3 registers are read in loop without any write or read command on other registers, their values are not updated.

In the event an overflow occurs in either COULOMB_CNT or CC_NB_SAMPLES, the CC_OVR_FLT bit is set and, when unmasked, the FAULT pin is activated. The coulomb count value is impacted by conversions performed during diagnosis of the current measurement chain.

The COULOMB_CNT is an integer whose associated resolution is V_{2RES} , therefore, COULOMB_CNT· V_{2RES} gives μV . If the shunt resistance R_{SHUNT} is expressed in $\mu \Omega$, then COULOMB_CNT· V_{2RES} / R_{SHUNT} gives A.

The coulomb counting feature allows the pack controller to compute the average current. Value of R_{SHUNT} is only owned by the pack controller. By assuming two snapshots of the above mentioned registers are taken at two consecutive times T_{k-1} and T_k , the ratio $lav_k = (ACC_k - ACC_{k-1}) / (N_k - N_{k-1})$ provides the average value of the current during the time interval $(T_k - T_{k-1})$, where ACC_k and ACC_{k-1} are the values of the quantity COULOMB_CNT·V_{2RES} / R_{SHUNT} respectively at times T_k and T_{k-1} , and N_k and N_{k-1} are the values of CC_NB_SAMPLES corresponding to the same two instants. To get an electric charge, the pack controller needs to multiply the ratio lav_k by $(T_k - T_{k-1})$ to get an electric charge.

Reading one of the three user registers (COULOMB_CNT1, COULOMB_CNT2, CC_NB_SAMPLES) triggers the MC33771C to copy the content of the coulomb counter internal registers into these three user registers. The content of the coulomb counter user registers is updated only when an address different from \$2D, \$2E, and \$2F is read, and then one or more of the registers (COULOMB_CNT1, COULOMB_CNT2, CC_NB_SAMPLES) are read again.

It is important to reset the entire coulomb counter status each time the type of input source is changed. In fact, the coulomb counter integrates not only the current signal, but also other possible diagnostic inputs.

If the bit ADC2_OFFSET_COMP[CC_RST_CFG] is set to logic 1, reading any coulomb counter register (from @ \$2D to @ \$2F) also resets the coulomb counter.

The coulomb counter can behave in two different ways: clamping mode (by setting ADC2_OFFSET_COMP[FREE_CNT] = 0) and rollover mode (by setting ADC2_OFFSET_COMP[FREE_CNT] = 1): see Figure 15.

Flags ADC2_OFFSET_COMP[CC_P_OVF] and ADC2_OFFSET_COMP[CC_N_OVF] respectively signal an occurred overflow or an occurred underflow in the coulomb counter accumulator; they can be reset to zero by writing a logic 0 in those bits.

The flag ADC2_OFFSET_COMP[SAMP_OVF] signals an occurred overflow of the number of samples. It can be reset to zero by writing a Logic 0 in it. Any kind of occurring overflow is reflected in the content of the FAULT3_STATUS[CC_OVR_FLT] bit as well.

If ADC2 is enabled (SYS_CFG1[I_MEAS_EN] = 1) AND cyclic measurement is active (SYS_CFG1[CYCLIC_TIMER] \neq 0), the coulomb counter is calculated also in sleep mode. If so, each time the device is entering into Cyclic Wake-Up mode at the period equal of the cyclic timer configured according to SYS_CFG1[CYCLIC_TIMER], the current will be measured, with PGA gain set to 256, and integrated in the Coulomb Counter. The number of samples accumulated in the Coulomb Counter will also be incremented by 1.

If any fault condition occurs by these operations, depending on the fault and wake-up mask configuration, the device is awakened and the fault line is activated, including the case where the coulomb counter crosses the threshold TH_COULOMB_CNT, which is specific to sleep mode and produces the setting of both ADC2_OFFSET_COMP[CC_OVT] and FAULT3_STATUS[CC_OVR_FLT] bits.

When the device transitions from sleep mode to normal mode, the coulomb counter is frozen until it is read and reset by the user, and the acquisition speed is turned from the configured one (by the cyclic timer SYS_CFG1[CYCLIC_TIMER]) to continuous.

TYPE A (free running mode with explicit reset):

CONFIGURATION instructions:

- 1. SYS_CFG1[IMEAS_EN] = 1; //Enable the current measurement
- 2. ADC2_OFFSET_COMP[FREE_CNT] = 1; // Select the free running mode
- 3. ADC2_OFFSET_COMP[CC_RST_CFG] = 0; // Do not reset to zero upon read:

RESET instructions:

- 1. write ADC_CFG[CC_RST] = 1; //Reset to zero:
- COULOMB_CNT = COULOMB_CNT_old = CC_NB_SAMPLES_old = Time = Time_old = 0; // Variables initialization

NORMAL USE instructions:

- 1. Time = get_abs_time(); // get the absolute time
- 2. Read registers COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES;
- 3. COULOMB_CNT = (COULOMB_CNT1, COULOMB_CNT2); // concatenate MSB and LSB
- I_AVG = (COULOMB_CNT COULOMB_CNT_old)/(CC_NB_SAMPLES -CC_NB_SAMPLES_old); // this is average current
- 5. DELTA_Q = I_AVG * (Time Time_old); // this delta charge may be accumulated in a different variable
- 6. COULOMB_CNT_old = COULOMB_CNT;
- 7. CC_NB_SAMPLES_old = CC_NB_SAMPLES;
- 8. Time_old = Time;
- 9. Read any register different from COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES
- 10. Jump to step 1

TYPE B (free running mode with implicit reset):

CONFIGURATION instructions:

- 1. SYS_CFG1[IMEAS_EN] = 1; // Enable the current measurement
- 2. ADC2_OFFSET_COMP[FREE_CNT] = 1; // Select the free running mode
- 3. ADC2_OFFSET_COMP[CC_RST_CFG] = 1; // Reset to zero upon read:

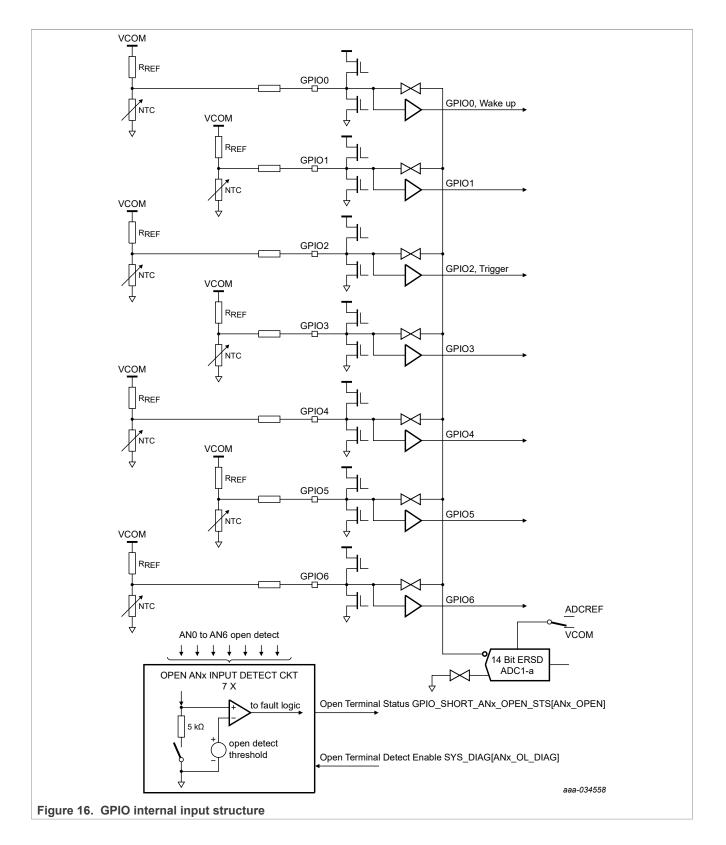
RESET instructions:

- 1. ADC_CFG[CC_RST] = 1; // Reset to zero
- 2. Time = Time_old = 0; // Variables initialization

NORMAL USE instructions:

- 1. Time = get_abs_time(); // get the absolute time
- 2. Read registers COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES;
- 3. COULOMB_CNT = (COULOMB_CNT1, COULOMB_CNT2); // concatenate MSB and LSB
- 4. I_AVG = COULOMB_CNT/CC_NB_SAMPLES; // this is average current
- 5. DELTA_Q = I_AVG *(Time-Time_old); // this delta charge may be accumulated in a different variable
- 6. Time_old = Time;
- 7. Read any register different from COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES
- 8. Jump to step 1

9.8 GPIOx port control and diagnostics


For user flexibility, the MC33771C has seven GPIO to support voltage measurements referenced to GND - typically coming from NTC based circuits used to extract temperature information, e.g. that of cells - or to drive external circuits. All GPIOs may be individually configured as digital inputs or output ports, wake-up inputs, convert trigger inputs, ratiometric analog inputs with reference to VCOM, or analog inputs with absolute measurements. With the exception of the GPIO0, no external voltage must be applied on GPIOx pins when the device is off or in SLEEP mode.

Battery cell controller IC

Table 12. GPIO port configurations

GPIO port		GPIO		A	ISENSE	
	Standard GPIO	Wup and daisy chain	Convert trigger	Absolute	Ratiometric	(diagnostic mode only)
0	x	x		x	x	
1	x			x	x	
2	x		x	x	x	
3	x			x	x	
4	x			x	x	
5	x			x	x	x
6	x			x	x	x

Battery cell controller IC

9.8.1 GPIOx used as digital I/O

Setting the GPIO_CFG1[GPIOx_CFG] bits to 10 or 11 configures the specific port as an input or output. Pins configured as outputs are driven high or low by writing to the GPIO_CFG2 register. Status of the ports, regardless of the digital configuration, is provided in the GPIO_STS register, which is a feedback of the actually commanded output.

Ports configured as GPIO outputs are diagnosed by the MC33771C. An output state GPIO_STS[GPIOx_ST], which is opposite of the commanded state GPIO_CFG2[GPIOx_DR], is considered to be shorted. Each short fault bit GPIO_SHORT_ANx_OPEN_STS[GPIOx_SH] associated with each GPIOx is OR wired to the FAULT2_STATUS[GPIO_SHORT_FLT] bit. Each GPIO_SHORT_ANx_OPEN_STS[GPIOx_SH] bit when unmasked activates the FAULT pin.

9.8.2 GPIO0 used as wake-up input or fault pin activation input

Setting the GPIO_CFG1[GPIO0_CFG] bits to 10 is used to configure a GPIO0 port as an input. To program GPIO0 as wake-up input, the user must set the GPIO_CFG2[GPIO0_WU] bit to logic 1. In this case, the device performs a wake-up on the rising or falling edge.

By setting the GPIO_CFG2[GPIO0_FLT_ACT] to logic 1, the GPIO0 port may be used to activate the FAULT pin in normal, sleep, and diagnostic modes of operation. This feature allows the user to daisy chain the FAULT pin in high-voltage battery pack applications.

9.8.3 FAULT pin daisy chain operation

The FAULT pin may be programmed to provide the battery management system with a diagnostic feedback. Two behaviors are possible. One is based on logic levels: low level indicates normal condition, high level reveals a faulty condition. The other possibility is based on the heartbeat signal, a periodic signal generated by the IC to indicate normal operation, which provides a higher integrity level.

Both modes can be activated in NORMAL mode, SLEEP mode, and diagnostic mode. The fault pin, carrying the diagnostic signal, is daisy chained to the next lower MC33771C GPIO0 port. Each MC33771C device is programmed to pass the heartbeat through to the neighboring device in the system. In this configuration, any fault that the MC33771C can automatically detect may activate the FAULT line.

To configure the MC33771C for daisy chain fault output:

- 1. Set GPIO0 as an input GPIO0_CFG = 10.
- 2. Disable wake-up on GPIO0 with $GPIO0_WU = 0$.
- 3. Set GPIO0 to propagate signal to FAULT pin with GPIO_CFG2[GPIO0_FLT_ACT] = 1.

To use the MC33771C heartbeat feature, the user must write a 1 in the SYS_CFG1[FAULT_WAVE] bit. The signaling square wave has constant on time, whereas the desired off time may be selected by writing a proper value in the SYS_CFG1[WAVE_DC_BITx] configuration field.

The usage of the fault pin is essential if the IC uses SPI communication and must provide some monitoring functionality in SLEEP mode. In such use case the fault line is the only means to alert the system controller about an occurred fault, while in TPL mode, even if the IC is sleeping, it has the chance to send a wake-up signal through the bus. The fault line usage is optional in NORMAL and diagnostic modes, as well as in SLEEP mode and TPL configuration.

Battery cell controller IC

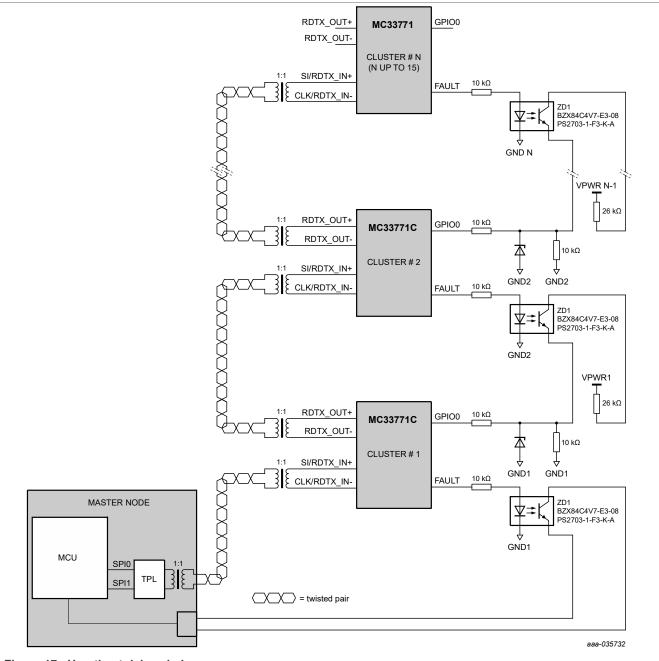


Figure 17. Heartbeat daisy chain

9.8.4 GPIO2 used as ADC trigger

The MC33771C provides a convenient method to trigger an ADC conversion from an external digital source. To use GPIO2 as an ADC trigger, configure the port as a digital input through the setting GPIO_CFG1[GPIO2_CFG] = 10 and enable the trigger through the setting GPIO_CFG2[GPIO2_SOC] = 1. With the port configured, positive edge events on GPIO_CFG2[GPIO2_SOC] triggers a start of conversion sequence.

With a GPIO2 trigger, the converter operates as programmed in the ADC_CFG[SOC] bit. The GPIO2 convert trigger feature is not available in sleep mode.

9.8.5 GPIOx used as analog

Setting the GPIO_CFG1[GPIOx_CFG] bits to 00 or 01 configures the specific port as an analog ratiometric input or single ended. GPIOs configured as analog inputs are usually used for temperature measurement. The MC33771C may be programmed to detect overtemperature and undertemperature.

To detect overtemperature and undertemperature, the generated digital value is compared to an individually programmed threshold in the TH_ANx_OT and TH_ANx_UT registers. Any ADC1-A result that exceeds the threshold, on any temperature measurement input, activates the FAULT1_STATUS[AN_OT_FLT,AN_UT_FLT] bit. The conversion results for the analog inputs are available in MEAS_ANx register for the pack controller to read.

9.8.6 GPIO5, GPIO6 used as ISENSE

To use GPIO5 and GPIO6 as inputs to the current sense PGA, the MC33771C must be in diagnostic mode. As a secondary method of measuring current for functional verification, the user may connect input ports 5 and 6 as inputs to the positive and negative inputs of the PGA, that is, GPIO5 plays the role of ISENSE+ and GPIO6 plays the role of ISENSE-.

Customers using GPIO5 and GPIO6 as a secondary current measurement in diagnostic mode must command GPIO5 and GPIO6 to digital inputs by setting GPIO_CFG1[GPIO5_CFG] = 10 and GPIO_CFG1[GPIO6_CFG] = 10.

9.9 Cell balance control

The MC33771C features fully protected integrated cell balancing drivers with fault diagnostics. The cell balancing feature is active in normal, sleep and diagnostic modes. The MC33771C contains registers to control and monitor cell balance drivers and cell balance fault status.

The SYS_CFG1 register contains the CB_DRVEN bit. The CB_DRVEN bit must be enabled for any of the drivers to be activated. All drivers are disabled when CB_DRVEN bit is logic 0. For cell balance drivers to be active, both the SYS_CFG1[CB_DRVEN] and the CBx_CFG[CB_EN] bits must be set to logic 1.

The individual cell balance timer is set through the CBx_CFG[CB_TIMER]. Timing parameters can be found in the register map of this specification. Each time the cell balance CBx_CFG[CB_TIMER] bit is written by the MCU controller, the MC33771C initiates the cell balance timer. It is important to explicitly mention, each time the CB_DRVEN bit is set to logic 0, then cell balancing timers get reset to 0 (the CBx_CFG[CB_TIMER] bits are unchanged) and all cell balancing MOSFETs are turned off. Before the CB_DRVEN bit is set again to logic 1, all CBx_CFG registers need to be configured again. Otherwise, a cell balancing sequence will be started with the previous settings.

The SYS_CFG1 register contains the CB_MANUAL_PAUSE bit, which, if set to logic 1, instructs the MC33771C to disable the cell balance switches. When the CB_MANUAL_PAUSE bit is set again to logic 0, the cell balance switches are restored according to the programming. However, the cell balance timers are not frozen during a manual pause. The contents of CBx_CFG[CB_TIMER] and ADC2_OFFSET_COMP[ALLCBOFF ON SHORT] bits must not be changed while balancing.

It is not recommended to perform any cell measurement when cell balancing switches are activated, for two main reasons:

1) During SLEEP mode, when cell balancing switches are ON, additional leakage current can be generated by the cell balancing activation which may cause a cell voltage measurement error.

2) The parasitic resistance on the cell terminal connections may also lead to a cell voltage measurement error which depends on the value of the CT parasitic resistance and on the cell balancing current.

In addition, due to the input cell low pass filter, it is required to wait a certain amount of time after opening the cell balancing switches before performing an accurate cell measurement sequence. This time depends on the

input cell filter used. For the cell input filter described in <u>Table 88</u>, the waiting time recommended is 3ms. For similar reasons, it is also recommended to disable cyclic acquisitions when cell balancing is active to avoid false cell OV/UV fault detections. These recommendations are valid when the IC is in NORMAL mode or SLEEP mode.

9.10 Internal IC temperature

Internal temperature measurement is completed automatically during each ADC conversion sequence. The MEAS_IC_TEMP register containing the IC temperature measurement may be read at any time by the pack controller. Resolution of MEAS_IC_TEMP is 32 mK/LSB.

9.11 Internal temperature fault

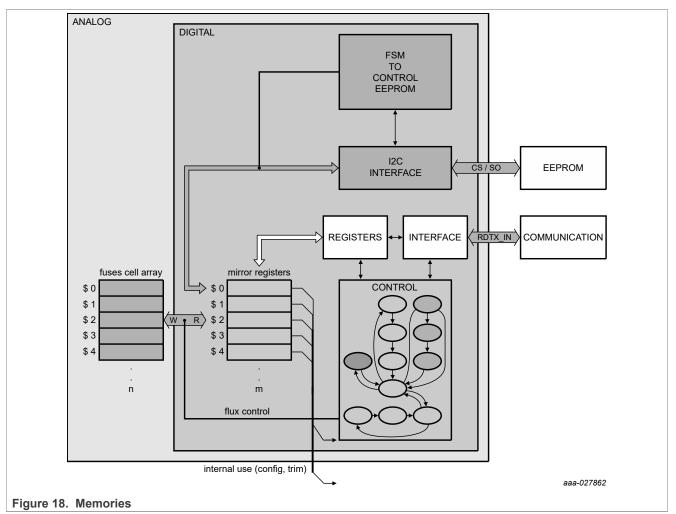
In addition to the digital temperature measurement register, the MC33771C is equipped with a silicon overtemperature thermal shutdown (TSD). In the event the silicon thermal shutdown is activated in normal mode, the MC33771C halts all monitoring operations and enters a low-power state with the FAULT pin activated. When the die temperature returns to normal, the MC33771C resumes operation in normal mode.

In the event of an internal TSD:

- 1. Conversion sequence is aborted and the MC33771C stops converting.
- 2. The FAULT2_STATUS[IC_TSD_FLT] bit is set to logic 1, implying a FAULT pin activation.
- 3. VCOM and VANA are in shut down, communication gets blocked.
- 4. All cell balance switches are disabled and CB_DRVEN cleared.

When the die temperature returns to normal level, the MC33771C resumes to Init mode. Therefore, the user shall provide the device with an address and proper parameters again.

Overtemperature TSD events are also detected while the MC33771C is in sleep mode during cyclic measurements. TSD events detected during the sleep mode cyclic measurement force the MC33771C to set the IC_TSD_FLT bit and activate the FAULT pin while remaining in sleep mode. When the MC33771C returns to normal operating temperature it transfers to normal mode and initiates a wake-up sequence on the bus.


9.12 Storage of parameters in an optional EEPROM

NXP provides parts with optimal calibration values. Standard parameters are stored in a read only memory called *fuses cell array*. It is typically neither necessary nor advised to change the standard values. Nevertheless, sometimes this might be required. An example is adjusting the gain calibration of the current channel to take into account the behavior of the external shunt resistor, due to the temperature coefficient and individual resistance deviation from the nominal value. New gains may be determined in normal mode and then stored in an external EEPROM. In such cases, EEPROM calibration parameters must be programmed at the manufacturer's assembly and final test.

If the MC33771C is linked to an EEPROM, the latter device is automatically recognized, provided the address \$00 of the EEPROM contains the proper one byte key value, namely \$CB hex. To program the EEPROM with calibration parameters, the user's final test and assembly must write to the EEPROM_CTRL register, providing address and data in EEPROM_CTRL[EEPROM_ADD] and EEPROM_CTRL[DATA_TO_WRITE] fields, with the EEPROM_CTRL[RW] bit set to logic 0. The user must simply send the write command with the EEPROM address and data to be written, and set the write bit to logic 0. The MC33771C automatically writes the data to the given EEPROM address. To read data from the EEPROM, the user has to first write to the EEPROM_CTRL register, providing the address in EEPROM_CTRL[EEPROM_ADD] field, with the EEPROM_CTRL[RW] bit set to logic 1, then read in the same register to get the data in EEPROM_CTRL[RAD_DATA] field.

Each time the part experiences a power up or reset event, an internal R/W memory, which is referred to as *mirror memory*, is first of all uploaded with the value of the fuses cell array. The content of such memory is propagated to the applicative part of the chip. All calibration values, before being used in the IC, are protected

by an ECC (Error correction code). But if an EEPROM is recognized, the mirror registers bank, in which the content of the fuses memory was stored at the very beginning of the initialization process (transparent to the user), gets automatically reloaded with the content of the EEPROM.

The space of EEPROM-addresses and the space of mirror-addresses correlate to each other. Mirror data are organized in 16-bit words, while the data of the EEPROM have been thought as bytes. As at EEPROM-address \$00 there is the key value, the first calibration byte of the EEPROM must have EEPROM-address \$01 and corresponds to the most significant byte of the mirror word having mirror-address \$00. The second calibration byte of the EEPROM must have EEPROM must have EEPROM must have EEPROM-address \$02 and corresponds to the least significant byte of the mirror word still having mirror-address \$00, and so on.

This can be seen in <u>Table 14</u>. The columns labeled as "Gain comp.?" and "by ..." show if the input signals are gain compensated (yes/no) and by which gain. For instance, GCF_c1 stays for a gain, which may be calculated by using GCF_room_c1, GCF_hot_c1 and GCF_cold_c1 variables specified in <u>Table 87</u>. In this table, attributes "cold" and "hot" refer to -40 °C and 89 °C respectively, and attribute room refers to 25 °C. A gain may or may not depend on the temperature (column "Temp. comp.?" may attain the value yes or no). If a gain depends on the IC temperature, there are three scalar gains. For instance: gain_cold_a, acq_gain_a, gain_hot_a represent respectively the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation values at cold (-40 °C) vs room, room (+25 °C) and the delta gain compensation, the actual value of gain at any temperature.

ADC2 works with GCF_ix (x = 4, 16, 64, 256), depending on the current gain used by the PGA. See <u>Table 87</u>. The value of a gain is centered on the unity, so it is of the form 1 + DG. Therefore, DG is centered on zero and is represented in two's complement. In the IC, only the DG part of the gain needs to be stored. See <u>Table 13</u>.

Even if the most typical usage of the EEPROM is as storage of gains, nothing prevents the user to use it as a generic information storage. If this is the case, the first portion of the EEPROM has to be reserved to the copy of all gains, even if this is identical to the content of the fuse memory.

 Table 13. Gain format

Gain = 1 + DG (DG)	Representation: 2's complement (number of bits)	Min (%)	Max (%)	Resolution (%)
GCF_room_cx (odd cell)	10	-6.2500	6.2378	0.01221
GFC_room_c(x+1)vs(x) (even cell vs odd cell)	4 for x = 1 2 for x ≠ 1	-0.098 for x = 1 -0.024 for x \neq 1	0.085 for x = 1 0.012 for x ≠ 1	0.01221
GFC_cold_cx (odd cell) (cold temp vs room)	7 for x = 1 6 for x ≠ 1	-0.781 for x = 1 -0.391 for x \neq 1	0.769 for x = 1 0.378 for x ≠ 1	0.01221
GFC_cold_c(x+1)vs(x) (even cell vs odd cell)	6 for x = 1 2 for x ≠ 1	-0.391 for x = 1 -0.024 for x \neq 1	0.378 for x = 1 0.012 for x ≠ 1	0.01221
GFC_hot_cx (odd cell) (hot temp vs room)	7 for x = 1 6 for x ≠ 1	-0.781 for x = 1 -0.391 for x \neq 1	-0.769 for x = 1 -0.378 for x \neq 1	0.01221
GFC_hot_c(x+1)vs(x) (even cell vs odd cell)	5 for x = 1 3 for x ≠ 1	-0.195 for x = 1 -0.049 for x \neq 1	0.183 for x = 1 0.037 for x ≠ 1	0.01221
GFC_Vbgtj1-2 (diagnostic voltage reference) ^[1]	8	-3.1250	3.1006	0.02441
GFC_i4-256 (current)	9	-25.0000	24.9023	0.09766
GFC_stack (Stack voltage)	7	-3.1250	3.0762	0.04883
GCF_ANx_ratio (ANx ratio)	5	-1.5625	1.4648	0.09766
GCF_IcTemp (IC temperature)	4	-3.1250	2.7344	0.39063

[1] This gain compensation factor is relative to GCF_c1.

Table 14. Gain compensation

Measured channel	No.	Offset comp.?	Gain comp.?	Ву	Temp. comp. ?	Result stored in	checked by	in the range	e of
By ADC1-A									
ICTEMP1	1	Chopper	Yes	GCF_IcTemp	No	MEAS_IC_TEMP	N/A	N/A	N/A
ICTEMP1	2	Chopper	Yes	GCF_IcTemp	No	MEAS_IC_TEMP	N/A	N/A	N/A
CT1	3	Yes	Yes	GCF_c1	Yes	MEAS_CELL1	IC	CT1_UV_TH	CT1_OV_TH
CT2	4	Yes	Yes	GCF_c2	Yes	MEAS_CELL2	IC	CT2_UV_TH	CT2_OV_TH
CT3	5	Yes	Yes	GCF_c3	Yes	MEAS_CELL3	IC	CT3_UV_TH	CT3_OV_TH
CT4	6	Yes	Yes	GCF_c4	Yes	MEAS_CELL4	IC	CT4_UV_TH	CT4_OV_TH
CT5	7	Yes	Yes	GCF_c5	Yes	MEAS_CELL5	IC	CT5_UV_TH	CT5_OV_TH
CT6	8	Yes	Yes	GCF_c6	Yes	MEAS_CELL6	IC	CT6_UV_TH	CT6_OV_TH
AN0	9	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN0	IC	AN0_UT_TH	AN0_OT_TH
AN1	10	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN1	IC	AN1_UT_TH	AN1_OT_TH

Measured channel	No.	ompensa Offset comp.?	Gain comp.?	By	Temp. comp. ?	Result stored in	checked by	in the range	e of
AN2	11	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN2	IC	AN2_UT_TH	AN2_OT_TH
AN3	12	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN3	IC	AN3_UT_TH	AN3_OT_TH
AN4	13	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN4	IC	AN4_UT_TH	AN4_OT_TH
AN5	14	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN5	IC	AN5_UT_TH	AN5_OT_TH
AN6	15	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN6	IC	AN6_UT_TH	AN6_OT_TH
V _{BG_TJ}	16	Yes	Yes	GCF_Vbgp1	Yes	MEAS_VBG_ DIAG_ADC1A	IC	thresholds vs. f	use_bg_ti
Reserved	17								
Reserved	18								
Reserved	19								
Reserved	20								
By ADC1-B		1		I					
CT7	1	Yes	Yes	GCF_c7	Yes	MEAS_CELL7	IC	CT7_UV_TH	CT7_OV_TH
CT8	2	Yes	Yes	GCF_c8	Yes	MEAS_CELL8	IC	CT8_UV_TH	CT8_OV_TH
CT9	3	Yes	Yes	GCF_c9	Yes	MEAS_CELL9	IC	CT9_UV_TH	CT9_OV_TH
CT10	4	Yes	Yes	GCF_c10	Yes	MEAS_CELL10	IC	CT10_UV_TH	CT10_OV_TH
CT11	5	Yes	Yes	GCF_c11	Yes	MEAS_CELL11	IC	CT11_UV_TH	CT11_OV_TH
CT12	6	Yes	Yes	GCF_c12	Yes	MEAS_CELL12	IC	CT12_UV_TH	CT12_OV_TH
CT13	7	Yes	Yes	GCF_c13	Yes	MEAS_CELL13	IC	CT13_UV_TH	CT13_OV_TH
CT14	8	Yes	Yes	GCF_c14	Yes	MEAS_CELL14	IC	CT14_UV_TH	CT14_OV_TH
Stack	9	Chopper	Yes	GCF_stack	No	MEAS_STACK	N/A	N/A	N/A
Stack	10	Chopper	Yes	GCF_stack	No	MEAS_STACK	N/A	N/A	N/A
Reserved	11	No	Yes	N/A	Yes	ADC1_B_RESULT	N/A	N/A	N/A
VANA	12	Yes	Yes	GCF_c1	Yes	ADC1_B_RESULT	IC	N/A	VANA_OV_ TH
$V_{BG_{TJ}}$	13	Yes	Yes	GCF_Vbgp2	Yes	MEAS_VBG_ DIAG_ADC1B	IC	thresholds vs. f	use_bg_ti
Reserved	14								
Reserved	15								
Reserved	16								
Reserved	17								
By ADC2						1			
ISENSE	1	Yes	Yes	GCF_i4-256	Yes	MEAS_I	IC	N/A	TH_ISENSE_ H
ISENSE	2	Yes	Yes	GCF_i4-256	Yes	MEAS_I	IC	N/A	TH_ISENSE_ H

Table 14. Gain compensation...continued

[1] It is assumed that all ANx have been programmed as ratiometric; in case a certain ANx is programmed as an absolute input, the gain GCF_ANx_ratio gets replaced by GFC_c1 and the 'No' value contained in the column labeled 'Temp. comp. ?' is replaced by a 'Yes'.

9.12.1 Gain correction of the current channel

The following is a detailed explanation of the gain correction of the current channel.

MC33771C Product data sheet

- Room temperature delta gains: GCF_ix (for x = 4, 16, 64, 256 representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-256...+255) 0.09765625 %
- Cold temperature delta gains: GCF_cold_ix (for x = 4, 16, 64, 256 representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-16...+15) 0.09765625 %
- Hot temperature delta gains: GCF_hot_ix (for x = 4, 16, 64, 256 representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-16...+15) 0.09765625 %

In contrast to i_gain_x, which is represented by a 9-bit word, GCF_hot_ix and GCF_cold_ix are represented by a reduced number of bits (5) and therefore their range is 16 times smaller than the one at room temperature, because the resolution is the same for all gains. Basically GCF_hot_ix and GCF_cold_ix can only additively correct the i_gain_x respectively in hot and cold conditions. This becomes clear by considering the gain temperature dependency, which is as follows:

If (temperature T is higher than T_room) Then // T is the IC temperature

gain_selected = GCF_hot_ix

Else

gain_selected = GCF_cold_ix

Endlf

DG = GCF_ix + (gain_selected * k(T)) // where k(T) is a stored function, such that: $0 \le k(T) \le 1$, $k(T_room) = 0$ and $k(T_cold) = k(T_hot) = 1$

Gain = 1 + DG

If there is an EEPROM containing the equivalent of the fuse memory, some ECC bits are needed to protect them, as in the standard case of the fuse memory. The customized values and their own ECC values are completely independent on the NXP basic calibrations and their specific ECC stored in the fuses. Therefore, the user has to evaluate new ECC bits starting from its own calibration data and, finally, save both in the EEPROM.

There is a special calculation sheet the customer has to request from NXP. This sheet contains the correct values for DED_ENCODE_2 and DED_ENCODE_1 information, that is, ECC words used in the MC33771C to detect a single error in the data and to correct it. In case of a double error, the problem can only be detected. However, in the normal usage, the SYS_CFG2[HAMM_ENCOD] bit has to be set at logic 0. For safety reasons, it is recommended the value of such bit is periodically checked to be at logic 0. If the bit is not at logic 0, then it must be written at logic 0 again.

9.13 Mirror memory access

The mirror memory can be changed by using the FUSE_MIRROR_DATA and FUSE_MIRROR_CNTL general registers. The former contains the value of the data to be written into the mirror or to be read from it, while the latter contains the data address FMR_ADDR (whose value is in the range 0 to 31 decimal), some control fields (FSTM and FST) and a read only information about a possibly occurred detection and correction of data values (SEC_ERR_FLT).

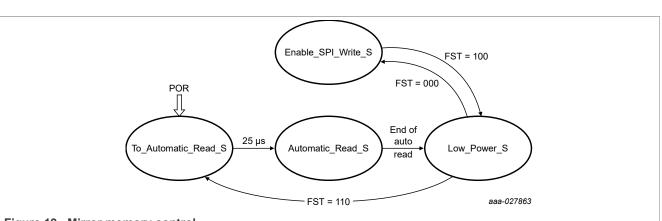


Figure 19. Mirror memory control

To manage the mirror memory the FSM of <u>Figure 19</u> must be used.

Meaning of the states:

- To_Automatic_Read_S: transient state for slightly delaying the automatic read, after POR.
- Automatic_Read_S: in this state the entire bank of fuses is automatically transferred from analog matrix to the digital mirror.
- Low_Power_S: low power state; it must be the initial and final state of a sequence of write operations. This is the state where the mechanism idles after an automatic read.
- Enable_SPI_Write_S: state allows writing into the mirror.

Type of command	FSTM	FST	FMR_ADDR	FUSE_MIRROR_DATA
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00000	x
FUSE_MIRROR_DATA	Х	Х	x	data read at addr \$0
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00001	X
FUSE_MIRROR_DATA	X	Х	x	data read at addr \$1
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00010	X
FUSE_MIRROR_DATA read	Х	Х	x	data read at addr \$2

Table 15. Sequence of read operations

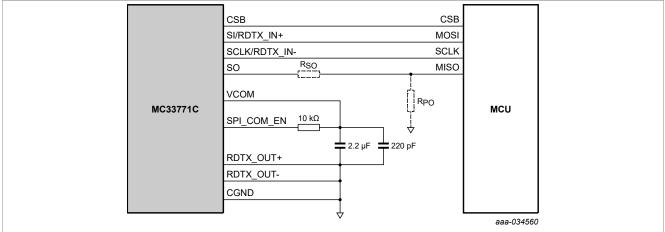
The read sequence may be useful, for example when the user wants to read the traceability information (serial number) contained in some specific words of the mirror memory. See <u>Table 35</u> and <u>Table 87</u>.

Table 16. Sequence of write operations

Type of command	FSTM	FST	FMR_ADDR	FUSE_MIRROR_DATA
FUSE_MIRROR_CNTL to enable writing	1	000	00000	x
FUSE_MIRROR_CNTL[FMR_ADDR] at \$0	1	000	00000	x
FUSE_MIRROR_DATA	Х	Х	X	Data to be written at addr \$0
FUSE_MIRROR_CNTL[FMR_ADDR] at \$1	1	000	00001	x
FUSE_MIRROR_DATA	Х	Х	X	Data to be written at addr \$1
FUSE_MIRROR_CNTL[FMR_ADDR] at \$2	1	000	00010	x
FUSE_MIRROR_DATA	Х	Х	X	Data to be written at addr \$2
FUSE_MIRROR_CNTL to low power	1	100	x	X

MC33771C

Battery cell controller IC


10 Communication

The MC33771C is designed to support Serial Peripheral Interface (SPI) or Transformer Physical Layer (TPL) communication.

SPI communication uses the standard CSB to select the MC33771C and clocks data in and out using SCLK, SI, and SO. Using SPI to communicate to the MC33771C provides system isolation when used in conjunction with galvanic isolators. Serial communication is enabled using the SPI_COM_EN pin. To select SPI communication, the SPI_COM_EN pin must be terminated to the VCOM supply. Terminating the SPI_COM_EN pin to CGND pin selects TPL communication. Systems using only SPI communication to the MC33771C may leave RDTX_OUT+ and RDTX_OUT– unterminated or may short them to ground.

During initialization, each MC33771C device is assigned a specific address by the MCU by writing a nonzero value to INIT[CID] bit field. Only the MC33771C with the correct address acts upon and responds to the request from MCU. After initialization, the MCU may communicate globally to all slave devices by using a global command. No response is generated when a global command is received by each slave device in the chain.

Note: The MC33771C supports only one communication method at a time and is determined by the state of SPI_COM_EN pin. Changing the state of the SPI_COM_EN pin after POR and VCOM is in regulation is considered a communication fault, and sets the COM_LOSS_FLT bit. The MC33771C remains in same configuration determined at POR.

10.1 SPI communication

In the presence of 3.3 V SPI interface, resistors represented by a dotted line could have $R_{SO} = 5.23 \text{ k}\Omega$ and $R_{PO} = 10 \text{ k}\Omega$. For a 5.0 V SPI interface, it must be $R_{SO} = 0 \Omega$ (short) and $R_{PO} = \infty$ (open).

Figure 20. SPI interface termination

SPI input signal levels to the MC33771C operate at 5.0 V logic levels but are 3.3 V compatible.

The SO output driver provides 5.0 V levels only and therefore must be attenuated to be compatible with a 3.3 V MCU.

The MC33771C SPI interface is a standard SPI interface with a chip select (CSB), clock (SCLK), master in slave out (MISO), and master out slave in (MOSI). The SI/SO shifting of the data follows a first-in-first-out method, with both input and output words transferring the most significant bit (MSB) first. All SPI communication to the MC33771C is controlled by the microcontroller.

One 48-bit message frame for previously requested data is retrieved through serial out for each current serial in message sent by the MCU. For message integrity and communication robustness, each SPI transmit message consists of nine bit fields with a total of 48 bits message frame. The nine transmit fields are defined as following:

- 1. Register data (16 bits).
- 2. Master/slave (1 bit), always at 1 in the response.
- 3. Register address (7 bits).
- 4. Reserved (2 bits).
- 5. Cluster ID (6 bits).
- 6. Message counter (4 bits).
- 7. Reserved (2 bits).
- 8. Command (2 bits).
- 9. Cyclic redundancy check (8 bits)

Messages having less or more than 48 bits, incorrect CRC, or incorrect SCLK phase are disregarded. Communication faults set the COM_ERR_FLT fault bit in the FAULT1_STATUS register and increments the COM_STATUS[COM_ERR_COUNT] register.

Note: It is required that the SCLK input is low before the falling edge of CSB (SCLK phase).

Table 17. SPI command format

Register data	Master/ slave	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]

Information is transferred to and from the MC33771C through the read and write commands. After a power-up (POR) or RESET (pin) or SYS_CFG1[SOFT_RST], the MC33771C device only responds to the cluster ID of 00 0000b. The user must change the cluster ID of the device by writing a new cluster ID into register INIT[CID]. Subsequent read/write command must use the new cluster ID to communicate to the device. Whatever the type of transmitted message, the master has to write a logic 0 in the master/slave bit. Any message transmitted by the user with master/slave bit set to 1 or with wrong CID is treated as Invalid request by MC33771C.

Notes:

- In SPI communication, global write commands are not allowed and the MC33771C responds with all bit field set to zero except message counter and correct CRC, in the subsequent message frame.
- In SPI communication, the MC33771C responds with all bit filed set to zero except message counter and correct CRC to an invalid request from MCU.
- In SPI communication, the MC33771C responds with all bit filed set to zero except message counter and the correct CRC to the very first MC33771C/ MCU message frame.

The response message sent by MC33771C to MCU is similar to the receive message and includes the 4-bit message counter. The Message counter is a local counter to MC33771C. It is increased by one for each new response transmitted by MC33771C, this applies also to auto read generated by MC33771C for write and NOP commands. It is recommended that the MCU compares the message counter value of two consecutive responses transmitted by MC33771C, if the values are same then MCU shall treat the messages as error.

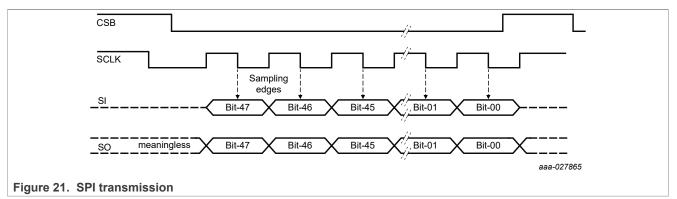
- 1. Register data (16 bits)
- 2. Master/slave (1 bit)
- 3. Register address (7 bits)
- 4. Reserved (2 bits)
- 5. Cluster ID (6 bits)
- 6. Message counter (4 bits)
- 7. Reserved (2 bits)
- 8. Command (2 bits)
- 9. Cyclic redundancy check (8 bit)

Register data	Master/ slave	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC			
Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]			

Table 18. SPI response format

To initiate communication, the MCU transitions CSB from high to low. The data from the MCU is sent with the most significant bit first. The SI data is latched by the device on the falling edge of SCLK. Data on SO is changed on the rising edge of SCLK and read by MCU on the falling edge of SCLK. The SO response message is dependent on the previous command.

Falling edge of CSB initiates the following:


- 1. Enables the SI Input
- 2. Enables the SO output driver

Rising edge of CSB initiates the following operation:

- 1. Disables the SO driver (high-impedance)
- 2. Activates the received 48-bit command word allowing the MC33771C to act upon the new command

Notes:

- The MC33771C responds to a NO_OPERATION command with a NO_OPERATION response (with increased message counter value) in the subsequent response.
- After initialization, when writing to a register, the MC33771C responds with an auto read of the register which was written in the subsequent write request.
- The MC33771C does not execute any command if the master/slave bit is equal to logic 1.

10.2 TPL communication

High speed differential isolated communication is achieved through the use of transformer or capacitive isolation. Terminating the SPI_COM_EN pin to the CGND pin selects transformer communication. For transformer communication (TPL), an MC33664 IC is required between the MC33771C IC and the MCU, as shown in Figure 50

For TPL communication, it is recommended that the device is terminated as shown in <u>Figure 50</u>. Component values are given in <u>Section 13.2 "MC33771C External Components"</u>.

The MC33771C IC is equipped with a bi-directional transceivers for upstream and downstream communication. The bi-directional transceiver is implemented to support up to 63 nodes in one daisy chain (CID = 00 0000b is reserved for network initialization). The message received by the receiver on one port of MC33771C is retransmitted by the transmitter of the opposite port of MC33771C. This ensures that the message is not attenuated as it propagates through the daisy chain. Each node in the daisy chain adds a delay of t_{port_delay} for forwarding messages in the daisy chain.

In TPL communication, the CSB pin may be used as a wake-up input. During SLEEP mode, an edge transition of the CSB initiates the wake-up function. Alternatively, the CSB pin may be shorted to ground or software masked to prevent undesired wake-up events.

Communication between the pack controller and the MC33771C is half duplex communication with transformer isolation. Transformer physical layer in the pack controller creates a pulse phase modulated signal transmitted to the bus through the transformer. The MC33771C physical layer is equipped with a segment-based transmitter, which is used as a terminating resistor (internally) during the receive mode. The default value of terminating resistance is set to 120 Ω for impedance matching and network stability. In TPL communication, the MC33771C IC is always electrically connected to its neighbouring MC33771C ICs in a daisy chain.

10.2.1 TPL Encoding

The transformer physical layer (TPL) uses pulse encoded symbols for communication. The three signal pulses used for encoding positive (P,black), negative (N, red) and zero (M, black) are shown in <u>Figure 22</u>.

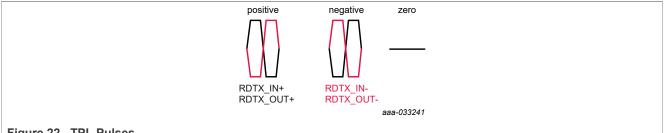


Figure 22. TPL Pulses

Start-of-message and end-of-message symbols are generated by the transformer driver and always occur at the start and end of the communication message. The start-of-message symbol and end-of-message symbol each contain two complete signal pulses. The start-of-message symbol produces a double pulse with a logic 1 phase. End-of-message produces a double pulse with logic 0 phase. Data pulses are single period pulse waves that indicate logic 1 or 0, based on the phase. The four symbols shown in <u>Table 19</u> are used.

Table 19. TPL encoding

Symbols	Pulse modulation	Description
Start-of-message (SOM)	Start of message Two pulse positive aaa-032623 square waves	positive phase, double pulse (and plus pause)
	Figure 23. SOM	

MC33771C

Symbols	Pulse modulation	Description
End-of-message (EOM)	Figure 24. EOM	negative phase, double pulse
Logic 1	Bit n Logic 1 aaa-032625 Figure 25. Logic 1	positive phase, single pulse (and plus pause)
Logic 0	Bit n Logic 0 aaa-032626	negative phase, single pulse (and plus pause)

 Table 19.
 TPL encoding ...continued

10.2.2 Command message bit order

Same as in Section 10.1 "SPI communication"

10.2.3 Response message bit order

Same as in Section 10.1 "SPI communication"

10.2.4 Transformer communication format

Command and response frames are exchanged primarily between a single master and any single slave. One exception is the use of a global command, which can be transmitted from one master to multiple slaves, but includes no slave response. The purpose of the command and response transactions are to read and write to registers within the slave register map.

The command and response communication structure provides all context information required for unambiguous single-exchange transactions for extended memory applications requiring safety critical and efficient memory access.

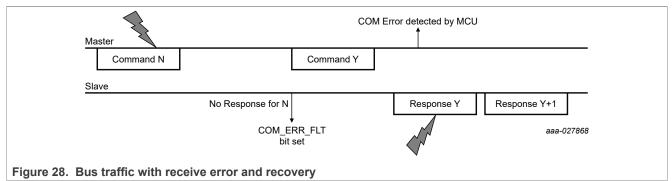
The message structures have predefined fixed bit length frames and defined timing between transfers. To transfer data efficiently from the slave, multiple response packets may be requested by the read command. The MC33771C defines a set of fields that constitute the command and response message structure.

Transformer message format is identical to the SPI format. Command message frames consist of nine fields containing exactly 48 bits. The response structure is similar to the SPI format.

After initialization, information is transferred to and from the MC33771C through the read and write commands.

On Power Up or POR, the first MC33771C device in the chain responds to address 00 0000b^{4 5}. The user must program the first device with a new address by writing to the INIT[CID] register. Programming the device with a new address allows the pack controller to communicate and initialize the next device in the daisy chain. Subsequent read/write commands to the next device must use the new address to communicate.

All write commands sent by the master must consist of a single frame. The slave device does not generate any response to a write command from master but only acts on it. Similarly, the slave device does not generate any response nor performs any operation after receiving a valid NOP message from the master.

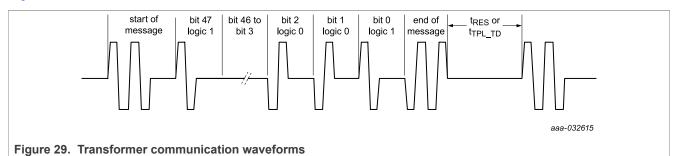

Read commands sent by the master may generate a single response or multiple responses depending on the parameters set in the read request. The packet size and memory start location are identified in the read command sent by the master.

Master	Master								
Command N	1	Command Y							
Slave									
	Response N		Response Y	Response Y+1	_				
				 aaa-027	867				
igure 27. Bus traffic exar	nple								

No response is generated by a slave MC33771C when a corrupted message is received. Confirmation that a

global write command is received by the slave must be done by reading the register in which it was written. In cases where a bus error occurs, due to induced noise or a bus fault, the slave detects bad data transfers.

The MC33771C slave reacts to communication faults by setting the FAULT1_STATUS[COM_ERR_FLT] and incrementing the COM_STATUS[COM_ERR_COUNT] register.

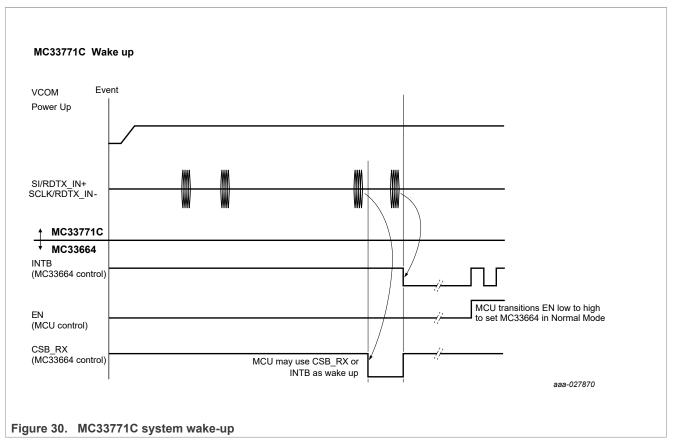

All valid read commands sent to an individual slave provide a response. In the event a slave does not respond to a read request message, the master must assume the message was corrupted or lost. To recover from the event, the master must retransmit the message. Corrupted messages received by the master are detected through an incorrect CRC code. To recover, the master must request the data again.

⁴ A slave device at POR with INIT[CID] = 00 0000b responds only at the port it received the request.

⁵ A slave device with CID = 00 0000b does not forward messages.

10.2.5 Transformer communication timing

Command and response message frames are to be sent and received at 2.0 Mbps bit rate. The response to a first read request command is provided within t_{RES} of the end of the frame. However, two consecutive message responses transmitted by MC33771C IC for burst read request are separated by t_{TPL_TD} time as shown in Figure 29.

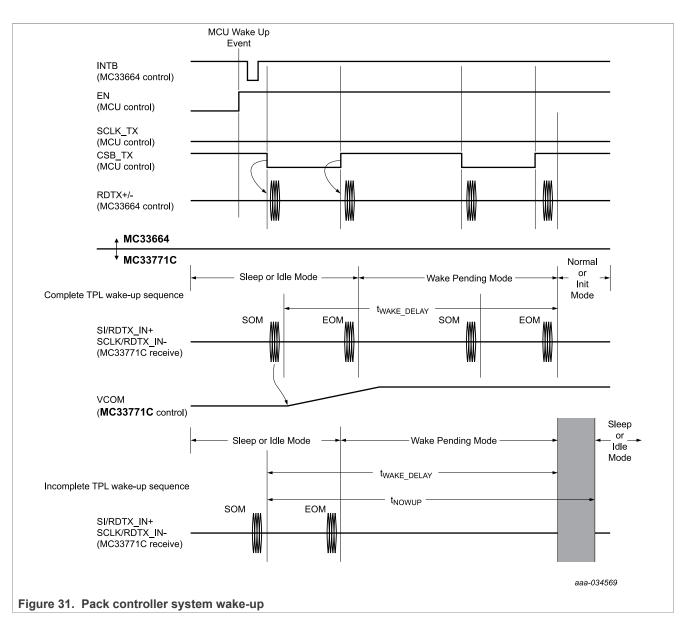

Each sent and received message starts with Start of Message (SOM) bit followed by a 48-bit message and ends with an End of Message (EOM) bit.

10.2.6 Transformer communication wake-up

In TPL communication, the system wake-up can be triggered by either the MC33771C IC (wake-up due to internal event) or the pack controller (MCU). In both cases, a dedicated wake-up pulse sequence is used. The wake-up pulse sequence consists of two transmit messages with no data transmitted. The messages are separated by a delay time (t_{WAKE DELAY}). Each message contains a SOM and EOM symbol.

10.2.6.1 MC33771C System wake-up

By default, the internal event wake-up capability of the MC33771C is disabled. When enabled and in the event the MC33771C detects a wake-up condition, the device initiates a wake-up pulse sequence on the bus to alert the pack controller. The MC33771C IC initiating the wake-up, due to an internal event, sends the wake-up sequence upstream and downstream in the daisy chain to ensure the wake-up message propagates along the entire chain to the pack controller. Each neighbouring MC33771C IC in daisy chain forwards the received wake-up sequence opposite to the direction where it received the wake-up sequence. In this process, all MC33771C devices in the daisy chain, along with the pack controller, are awoken. After the pack controller gets awoken; it is recommended the pack controller interrogate each MC33771C in the system to determine the source of the wake-up.



Note: The system wake-up performed by MC33771C IC in case of any internal event is disabled by default. This wake-up can be activated by writing to register WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3.

10.2.6.2 Pack controller system wake-up

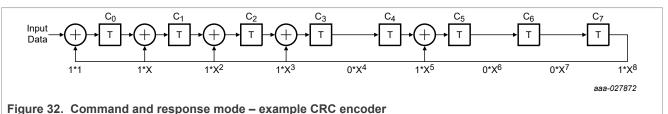
The pack controller can also perform system wake-up by sending a wake-up sequence to the first MC33771C IC. The pack controller can use the CSB_TX pin of the MC33664 to generate SOM and EOM with correct timing.

Battery cell controller IC

If the device is in Sleep mode, each successive slave device awoken by the wake-up message on the bus, generates a new wake-up message for its neighbor. The message is to be transmitted in one direction only on the bus. The direction of transmission of the wake-up message on the bus is always at the opposite port of the received wake-up message. In the unlikely event of a collision, the message at the lower port (RDTX_IN) is given a higher priority than the message at the higher port (RDTX_OUT).

Note:

- Any write message of any length can be used to generate both wake-up pulses and obtain a valid device wake-up.
- The second wake-up message should be sent after a minimum time of t_{WAKE_DELAY} (min) from the first SOM reception.
- The device falls back to Sleep or Idle mode when an SOM followed by EOM is not received in t_{WAKE_DELAY} (max).
- If the wake-up sequence is incomplete, then a new wake-up attempt can only be done after a t_{NOWUP} delay. See <u>Figure 31</u>.


- The pack controller must wait for t_{WU_Wait} ms per node to communicate with the MC33771C ICs after sending the first wake-up message. For example, given that the MC33771C IC is enumerated, with 10 nodes in a daisy chain the pack controller must wait 7.5 ms before communicating to MC33771C IC. The waiting time allows all the MC33771C ICs in the system to transition to normal mode.
- The pack controller must use only one master node to perform wake-up of devices.

10.3 CRC generation

The master and slaves calculate a CRC on the entire message using the processes detailed in this section.

The command and response CRC is fixed at 8 bits in length. The CRC is calculated using the polynomial $x^8 + x^5 + x^3 + x^2 + x + 1$ (identified by 0x2F) with a seed value of binary 11111111.

An example CRC encoding HW implementation is shown in Figure 32.

The effect of the CRC encoding procedure is shown in the following table. The seed value is appended into the most significant bits of the shift register.

Table 20. Data preparation for CRC encoding

Seed	Register data		Register address	Reserved	Cluster ID	Message counter	Reserved	Cmd
1111_1111	Bits [47:32]	Bit [31]	Bits [30:24]	Bits[23:22]	Bits[21:16]	Bits[15:12]	Bits[11:10]	Bits[9:8]

Seed	padded with the message to encode	padded with 8 zeros
		With 0 20103

- 1. Using a serial CRC calculation method, the transmitter rotates the seed and data into the least significant bits of the shift register.
- 2. During the serial CRC calculation, the seed and the data bits are XOR compared with the polynomial data bits. When the MSB is logic 1, the comparison result is loaded in the register, otherwise the data bits are simply shifted. It must be noted the 48-bit message to be processed must have the bits corresponding to the CRC byte all equal to zero (0000000).
- 3. Once the CRC is calculated, it replaces the CRC byte initially set to all zeros and is transmitted.

Following is the procedure for the CRC decoding:

- 1. The seed value is loaded into the most significant bits of the receive register.
- 2. Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- 3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.
 - If the shift register contains all zeros, the CRC is correct.
 - If the shift register contains a value other than zero, the CRC is incorrect.

CRC calculation examples:

Data 16 bit (Hex)	Master/slave bit and memory address, 8 bit (Hex)	Reserved (2 bits) and Cluster Id (6 bit), 8 bit (Hex)	Message counter, 4 bit (Hex)	Reserved (2 bits) and Command (2 bits), 4 bit (Hex)	CRC 8 bit (Hex)	Frame 48 bit (Hex)
0x0101	0x08	0x01	0x3	0x0	0x3C	0x0101080130 3C
0x0A0A	0x01	0x0A	0x9	0x1	0x84	0x0A0A010A9 184
0x01C4	0x0F	0x02	0x1	0x2	0x26	0x01C40F0212 26
0x7257	0x01	0x05	0x7	0x3	0xC7	0x7257010573 C7

Table 21. Command CRC calculation examples

 Table 22. Response CRC calculation examples

Data 16 bit (Hex)	Master/slave bit and memory address, 8 bit (Hex)	Reserved (2 bits) and Cluster Id (6 bit), 8 bit (Hex)	Message counter 4 bit (Hex)	Reserved (2 bits) and Command (2 bits), 4 bit (Hex)	CRC 8 bit (Hex)	Frame 48 bit (Hex)
0x1101	0x89	0x01	0x3	0x0	0x26	0x1101890130 26
0x2002	0x89	0x05	0x9	0x0	0x7A	0x2002890590 7A
0x5103	0x89	0x0A	0x1	0x5	0x07	0x5103890A1 507
0xFF04	0x89	0x06	0x7	0x2	0xA6	0xFF04890672 A6

10.4 Commands

10.4.1 Read command and response

Read command is intended to be used for SPI and transformer interface. The read command is a local command used for retrieving data from the MC33771C device. The data field contains the number of data registers to be returned. Requesting data from registers greater than address \$7F forces the device to loop the register counter back to register \$00.

Command name	Register d	lata	Response/ Command	Register address	Reserved	Device address (cluster ID)	-	Reserved	Command	CRC
	Bit[47:32	2]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Read command	XXXX XXXX X	NRT- 01 to 7F	0b	Register address	xxb	CID	xxxxb	xxb	01b	CRC

 Table 23. Read command table

Table 24. Re	able 24. Read response table									
Command name	Register data	Response/ Command	Register address	Reserved	Device address (cluster ID)	counter	Reserved	Command	CRC	
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]	
Read MsgCntr Response	Register Data	1b	Register address	00b	CID	MsgCntr	00b	01b	CRC	

Table 24. Read response table

 Table 25. Legend for read command, read response tables

Read com	mand	Read response				
Bit[7:0]	= 8-bit CRC	Bit[7:0]	= 8-bit CRC			
Bit[9:8]	= Command (01b)	Bit[9:8]	= Command field (01b)			
Bit[11:10]	= Reserved (xxb)	Bit[11:10]	= Reserved (00b)			
Bit[15:12]	= Message counter	Bit[15:12]	= Message counter			
Bit[21:16]	= Device address (Cluster ID)	Bit[21:16]	= Device address (Cluster ID)			
Bit[23:22]	= Reserved = X, don't care	Bit[23:22]	= Reserved (00b)			
Bit[30:24]	= Register address	Bit[30:24]	= Register address			
Bit[31]	= Master/slave = 0b (master)	Bit[31]	= Response/Command = 1b(slave)			
Bit[39:32]	= NRT, number of registers to transfer back. Max is \$7F, loop back on address \$00	Bit[47:32]	= Data at memory address			
Bit[47:40]	= X, don't care					

Notes:

- The read command is a local command
- Requesting a read of a reserved register provides a \$0000 data response
- Registers are read-only on devices that have not been initialized
- Requesting a number of NRT equal to 00 is the same as requesting 01
- The MsgCntr is a local counter of MC33771C IC. It is only increased by the node responding to MCU request. The node increases the value of MsgCntr by 1 with each new response transmitted by MC33771C. On saturation of this counter it restarts from 0000b.
- The initial value of message counter is 0000b and first response transmitted by MC33771C has the message counter value set to 0000b.

10.4.2 Local write command

Unlike the read command, for which MC33771C responds with data, the write command does not generate any response. When the slave receives a valid local write command, the message is acted upon but no response is generated. Writing to read only registers does not allow the register content to be updated.

Table 26. W	rite comman	id table							
Command name	Register data	Response/ Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Write command	Register Data	0b	Register address	xxb	CID	xxxxb	xxb	10b	CRC

Table 26. Write command table

Table 27.	Leaend for	write comman	d and write res	sponse tables

Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command (10b)
Bit[11:10]	= Reserved (xxb)
Bit[15:12]	= Message counter (xxxxb)
Bit[21:16]	= Device address (cluster ID)
Bit[23:22]	= Reserved (xxb)
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

Note: Writing to reserved registers performs no operation and loads no data in the reserved register.

10.4.3 Global write command

The global write command allows the transformer user to communicate to all devices on the bus at the same time. The global write command is useful to program all devices at the same time with values for fault threshold or to synchronize conversions for all devices on the bus. When a slave receives a valid global write command, the message is acted upon, but no response is generated.

Table 28. GI	able 28. Global write command table									
Command name	Register data	Response/ Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC	
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]	
Global Write command	Register Data	0b	Register address	xxb	XX XXXXb (global)	MsgCntr	xxb	11b	CRC	

Table 28. Global write command table

Table Iel Iegeli	a for grobal write command table
Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command field (11b)
Bit[11:10]	= Reserved (xxb)
Bit[15:12]	= Message counter = xxxxb (global)
Bit[21:16]	= Device address (Cluster ID) = xx xxxxb (global)
Bit[23:22]	= Reserved = xxb, Don't care
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

Table 29. Legend for global write command table

10.4.4 No operation command

The No Operation (NOP) command allows the user to reset the communication time-out timer of the MC33771C. If the pack controller has no new request for MC33771C IC but does not want the MC33771C to reset (and lose its CID address), it can send a NOP command to the MC33771C IC. The NOP command does not trigger any response or operation from the MC33771C. Thus, the NOP command can be used by the pack controller like a ping to prevent the IC from resetting itself.

	operation con	inianu table	;						
Command name	Register data	Response/ Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
No operation (NOP) command	Register Data	0b	Register address	xxb	CID	xxxxb	xxb	00b	CRC

Table 30. No operation command table

Table 31. Legend for no operation command and no operation response tables

Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command field (00b)
Bit[11:10]	= Reserved (xxb)
Bit[15:12]	= Message counter
Bit[21:16]	= Device address (Cluster ID) = CID
Bit[23:22]	= Reserved = xxb, Don't care
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

10.4.5 Command and response summary

 Table 32. Command summary table

Command name	Register data	Response/ Command	Register address	Reserved	Device address (Cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
NOP command	xxxx xxxxb	0b	xxx xxxxb	xxb	CID	XXXXb	XXb	00b	CRC
Read command	Number of registers	0b	Register address	xxb	CID	XXXXb	XXb	01b	CRC
Write command	Register Data	0b	Register address	xxb	CID	XXXXb	XXb	10b	CRC
Global write command	Register Data	0b	Register address	xxb	XX XXXXb	XXXXb	XXb	11b	CRC

If a device has its cluster ID (CID) equal to 00 0000b, then only its INIT register can be written by the pack controller. All the MC33771C devices have their First message from MCU controller writing to cluster ID 00 0000b. To perform a read/write operation of any register (other than INIT) of MC33771C IC, the MCU must first assign a unique address to each MC33771C device by writing to its INIT register with a suitable CID value. The process of assigning a unique CID address to each slave device by the pack controller is called *initialization*.

After initialization, each time the device receives a frame having the master/slave bit equal to logic 1, this frame is not recognized, even though the address contained in the CID field is equal to the programmed one. In this condition, the device neither acts upon nor answers the command. This is a normal behavior, whose purpose is to avoid the device acting upon or responding to a frame generated by another slave device of the network.

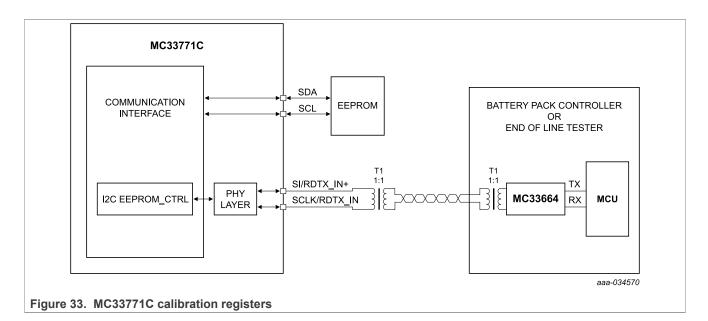

10010 00. 1100									
Command name	Register data	Response/ Command	Register address	Reserved	Device address (Cluster ID)	Message counter	Reserved	Commanc	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Read response	Register Data	1b	Register address	00b	CID	MsgCntr	XXb	01b	CRC

Table 33. Response summary table

10.5 I²C communication interface

As an optional feature, the MC33771C has an integrated I²C communication link to an external local EEPROM, which may be used to store calibration parameters defined by the user. If the EEPROM is not used, then the SCL and SDA pins must be left open. When this occurs, the FAULT1_STATUS[I2C_ERR_FLT] bit is automatically updated to logic 1. The automatic update happens even if an error bit is masked. If no EEPROM is mounted, the pack controller has to ignore the content of FAULT1_STATUS[I2C_ERR_FLT].

Battery cell controller IC

11 Registers

11.1 Register map

Important: Trying to access registers marked as reserved produces responses having all zeros in the data field.

Unless otherwise stated, in all register descriptions, POR means one of the following:

- · Power on reset
- Hardware reset
- Software reset
- Reset event based on SYS_CFG2[FLT_RST_CFG] register configuration

Table 34. Register table

Registe	er	Response	Reference	Description	Notes
A[6:0]	Symbol				
\$00	Reserved	Table 24		Reserved	Not readable or writeable
\$01	INIT	Table 24	Section 11.2	Device initialization	Global write is forbidden for CID
\$02	SYS_CFG_ GLOBAL	Table 24	Section 11.3	Global system configuration	Only accessible through a global access in transformer mode. In SPI mode it can be written by a standard write command.
\$03	SYS_CFG1	Table 24	Section 11.4	System configuration	
\$04	SYS_CFG2	Table 24	Section 11.5	System configuration	
\$05	SYS_DIAG	Table 24	Section 11.6	System diagnostic	Writable in DIAG mode only, automatically

All information provided in this document is subject to legal disclaimers.

MC33771C

Battery cell controller IC

Registe	I. Register tablecor Pr	Response	Reference	Description	Notes
A[6:0]	Symbol	_			
					cleared when exiting DIAG mode
\$06	ADC_CFG	Table 24	Section 11.7	ADC configuration	
\$07	ADC2_OFFSET_ COMP	Table 24	Section 11.8	ADC2 offset compensation	
\$08	OV_UV_EN	Table 24	Section 11.9	CT measurement selection	
\$09	CELL_OV_FLT	Table 24	Section 11.10	CT overvoltage fault	
\$0A	CELL_UV_FLT	Table 24	Section 11.11	CT undervoltage fault	
\$0B	TPL_CFG	Table 24	Section 11.12	TPL configuration for up and down Transmitter	
\$0C	CB1_CFG	Table 24	Section 11.13	CB configuration for cell 1	
\$0D	CB2_CFG	Table 24	Section 11.13	CB configuration for cell 2	
\$0E	CB3_CFG	Table 24	Section 11.13	CB configuration for cell 3	
\$0F	CB4_CFG	Table 24	Section 11.13	CB configuration for cell 4	
\$10	CB5_CFG	Table 24	Section 11.13	CB configuration for cell 5	
\$11	CB6_CFG	Table 24	Section 11.13	CB configuration for cell 6	
\$12	CB7_CFG	Table 24	Section 11.13	CB configuration for cell 7	
\$13	CB8_CFG	Table 24	Section 11.13	CB configuration for cell 8	
\$14	CB9_CFG	Table 24	Section 11.13	CB configuration for cell 9	
\$15	CB10_CFG	Table 24	Section 11.13	CB configuration for cell 10	
\$16	CB11_CFG	Table 24	Section 11.13	CB configuration for cell 11	
\$17	CB12_CFG	Table 24	Section 11.13	CB configuration for cell 12	
\$18	CB13_CFG	Table 24	Section 11.13	CB configuration for cell 13	
\$19	CB14_CFG	Table 24	Section 11.13	CB configuration for cell 14	
\$1A	CB_OPEN_FLT	Table 24	Section 11.14	Open CB fault	
\$1B	CB_SHORT_FLT	Table 24	Section 11.15	Short CB fault	
\$1C	CB_DRV_STS	Table 24	Section 11.16	CB driver status	
\$1D	GPIO_CFG1	Table 24	Section 11.17	GPIO configuration	
\$1E	GPIO_CFG2	Table 24	Section 11.18	GPIO configuration	
\$1F	GPIO_STS	Table 24	Section 11.19	GPIO diagnostic	
\$20	AN_OT_UT_FLT	Table 24	Section 11.20	AN over and undertemperature	
\$21	GPIO_SHORT_ ANx_OPEN_STS	Table 24	Section 11.21	Short GPIO/open AN diagnostic	
\$22	I_STATUS	Table 24	Section 11.22	PGA DAC value	
\$23	COM_STATUS	Table 24	Section 11.23	Number of COM error counted	
\$24	FAULT1_STATUS	Table 24	Section 11.24	Fault status	
\$25	FAULT2_STATUS	Table 24	Section 11.25	Fault status	

Table 34. Register table...continued

MC33771C

Battery cell controller IC

Registe	. Register tablecom r	Response	Reference	Description	Notes
A[6:0]	Symbol	-			
\$26	FAULT3_STATUS	Table 24	Section 11.26	Fault status	
\$27	FAULT_MASK1	Table 24	Section 11.27	FAULT pin mask	
\$28	FAULT_MASK2	Table 24	Section 11.28	FAULT pin mask	
\$29	FAULT_MASK3	Table 24	Section 11.29	FAULT pin mask	
\$2A	WAKEUP_MASK1	Table 24	Section 11.30	Wake-up events mask	
\$2B	WAKEUP_MASK2	Table 24	Section 11.31	Wake-up events mask	
\$2C	WAKEUP_MASK3	Table 24	Section 11.32	Wake-up events mask	
\$2D	CC_NB_SAMPLES	Table 24	Section 11.33	Number of samples in coulomb counter	
\$2E	COULOMB_CNT1	Table 24	Section 11.34		
\$2F	COULOMB_CNT2	Table 24	Section 11.34	Coulomb counting accumulator	
\$30	MEAS_ISENSE1	Table 24	Section 11.35	ISENSE measurement	
\$31	MEAS_ISENSE2	Table 24	Section 11.35	ISENSE measurement	
\$32	MEAS_STACK	Table 24	Section 11.36	Stack voltage measurement	
\$33	MEAS_CELL14	Table 24	Section 11.36	Cell 14 voltage measurement	
\$34	MEAS_CELL13	Table 24	Section 11.36	Cell 13 voltage measurement	
\$35	MEAS_CELL12	Table 24	Section 11.36	Cell 12 voltage measurement	
\$36	MEAS_CELL11	Table 24	Section 11.36	Cell 11 voltage measurement	
\$37	MEAS_CELL10	Table 24	Section 11.36	Cell 10 voltage measurement	
\$38	MEAS_CELL9	Table 24	Section 11.36	Cell 9 voltage measurement	
\$39	MEAS_CELL8	Table 24	Section 11.36	Cell 8 voltage measurement	
\$3A	MEAS_CELL7	Table 24	Section 11.36	Cell 7 voltage measurement	
\$3B	MEAS_CELL6	Table 24	Section 11.36	Cell 6 voltage measurement	
\$3C	MEAS_CELL5	Table 24	Section 11.36	Cell 5 voltage measurement	
\$3D	MEAS_CELL4	Table 24	Section 11.36	Cell 4 voltage measurement	
\$3E	MEAS_CELL3	Table 24	Section 11.36	Cell 3 voltage measurement	
\$3F	MEAS_CELL2	Table 24	Section 11.36	Cell 2 voltage measurement	
\$40	MEAS_CELL1	Table 24	Section 11.36	Cell 1 voltage measurement	
\$41	MEAS_AN6	Table 24	Section 11.36	AN6 voltage measurement	
\$42	MEAS_AN5	Table 24	Section 11.36	AN5 voltage measurement	
\$43	MEAS_AN4	Table 24	Section 11.36	AN4 voltage measurement	
\$44	MEAS_AN3	Table 24	Section 11.36	AN3 voltage measurement	
\$45	MEAS_AN2	Table 24	Section 11.36	AN2 voltage measurement	
\$46	MEAS_AN1	Table 24	Section 11.36	AN1 voltage measurement	
\$47	MEAS_AN0	Table 24	Section 11.36	AN0 voltage measurement	
\$48	MEAS_IC_TEMP	Table 24	Section 11.36	IC temperature measurement	

Table 34. Register table...continued

MC33771C

Product data sheet

Battery cell controller IC

Registe	Register tableco	Response	Reference	Description	Notes
A[6:0]	Symbol				
\$49	MEAS_VBG_ DIAG_ADC1A	Table 24	Section 11.36	ADCIA voltage reference measurement	
\$4A	MEAS_VBG_ DIAG_ADC1B	Table 24	Section 11.36	ADCIB voltage reference measurement	
\$4B	TH_ALL_CT	Table 24	Section 11.37	CTx over and undervoltage threshold	
\$4C	TH_CT14	<u>Table 24</u>	Section 11.38	CT14 over and undervoltage threshold	
\$4D	TH_CT13	Table 24	Section 11.38	CT13 over and undervoltage threshold	
\$4E	TH_CT12	Table 24	Section 11.38	CT12 over and undervoltage threshold	
\$4F	TH_CT11	Table 24	Section 11.38	CT11 over and undervoltage threshold	
\$50	TH_CT10	Table 24	Section 11.38	CT10 over and undervoltage threshold	
\$51	ТН_СТ9	Table 24	Section 11.38	CT9 over and undervoltage threshold	
\$52	TH_CT8	Table 24	Section 11.38	CT8 over and undervoltage threshold	
\$53	TH_CT7	Table 24	Section 11.38	CT7 over and undervoltage threshold	
\$54	TH_CT6	Table 24	Section 11.38	CT6 over and undervoltage threshold	
\$55	TH_CT5	Table 24	Section 11.38	CT5 over and undervoltage threshold	
\$56	TH_CT4	Table 24	Section 11.38	CT4 over and undervoltage threshold	
\$57	TH_CT3	Table 24	Section 11.38	CT3 over and undervoltage threshold	
\$58	TH_CT2	Table 24	Section 11.38	CT2 over and undervoltage threshold	
\$59	TH_CT1	Table 24	Section 11.38	CT1 over and undervoltage threshold	
\$5A	TH_AN6_OT	Table 24	Section 11.39	AN6 overtemperature threshold	
\$5B	TH_AN5_OT	Table 24	Section 11.39	AN5 overtemperature threshold	
\$5C	TH_AN4_OT	Table 24	Section 11.39	AN4 overtemperature threshold	
\$5D	TH_AN3_OT	Table 24	Section 11.39	AN3 overtemperature threshold	
\$5E	TH_AN2_OT	Table 24	Section 11.39	AN2 overtemperature threshold	
\$5F	TH_AN1_OT	Table 24	Section 11.39	AN1 overtemperature threshold	
\$60	TH_AN0_OT	Table 24	Section 11.39	AN0 overtemperature threshold	

Table 34. Register table...continued

MC33771C

All information provided in this document is subject to legal disclaimers.

Battery cell controller IC

Registe	r	Response	Reference	Description	Notes
A[6:0]	Symbol				
\$61	TH_AN6_UT	Table 24	Section 11.39	AN6 undertemperature threshold	
\$62	TH_AN5_UT	Table 24	Section 11.39	AN5 undertemperature threshold	
\$63	TH_AN4_UT	Table 24	Section 11.39	AN4 undertemperature threshold	
\$64	TH_AN3_UT	Table 24	Section 11.39	AN3 undertemperature threshold	
\$65	TH_AN2_UT	Table 24	Section 11.39	AN2 undertemperature threshold	
\$66	TH_AN1_UT	Table 24	Section 11.39	AN1 undertemperature threshold	
\$67	TH_AN0_UT	Table 24	Section 11.39	AN0 undertemperature threshold	
\$68	TH_ISENSE_OC	Table 24	Section 11.40	ISENSE overcurrent threshold	
\$69	TH_COULOMB_ CNT_MSB	Table 24	Section 11.41	Coulomb counter threshold (MSB)	
\$6A	TH_COULOMB_ CNT_LSB	Table 24	Section 11.41	Coulomb counter threshold (LSB)	
\$6B	SILICON_REV	Table 24	Section 11.42	Silicon revision	
\$6C	EEPROM_CNTL	Table 24	Section 11.43	EEPROM transfer control	
\$6D	DED_ENCODE1	Table 24	Section 11.44	ECC signature 1	
\$6E	DED_ENCODE2	Table 24	Section 11.45	ECC signature 2	
\$6F	FUSE_MIRROR_ DATA	Table 24	Section 11.46	Fuse mirror data	
\$70	FUSE_MIRROR_ CNTL	Table 24	Section 11.46	Fuse mirror address	
\$71	Reserved	Table 24	Section 11.47	NXP reserved	
	Reserved	Table 24	Section 11.47	NXP reserved	
\$7F	Reserved	Table 24	Section 11.47	NXP reserved	

Table 34. Register table...continued

Table 35. Mirror memory

Register		Description	Notes
A[4:0]			
\$00	FUSE_MIRROR_BANK	Fuse bank 0	
\$01	FUSE_MIRROR_BANK	Fuse bank 1	
\$02	FUSE_MIRROR_BANK	Fuse bank 2	
\$03	FUSE_MIRROR_BANK	Fuse bank 3	
\$04	FUSE_MIRROR_BANK	Fuse bank 4	
\$05	FUSE_MIRROR_BANK	Fuse bank 5	
\$06	FUSE_MIRROR_BANK	Fuse bank 6	
\$07	FUSE_MIRROR_BANK	Fuse bank 7	
\$08	FUSE_MIRROR_BANK	Fuse bank 8	

Register		Description	Notes
\$09	FUSE_MIRROR_BANK	Fuse bank 9	
\$0A	FUSE_MIRROR_BANK	Fuse bank 10	
\$0B	FUSE_MIRROR_BANK	Fuse bank 11	
\$0C	FUSE_MIRROR_BANK	Fuse bank 12	
\$0D	FUSE_MIRROR_BANK	Fuse bank 13	
\$0E	FUSE_MIRROR_BANK	Fuse bank 14	
\$0F	FUSE_MIRROR_BANK	Fuse bank 15	
\$10	FUSE_MIRROR_BANK	Fuse bank 16	
\$11	FUSE_MIRROR_BANK	Fuse bank 17	
\$12	FUSE_MIRROR_BANK	Fuse bank 18	
\$13	FUSE_MIRROR_BANK	Fuse bank 19	
\$14	FUSE_MIRROR_BANK	Fuse bank 20	
\$15	FUSE_MIRROR_BANK	Fuse bank 21	
\$16	FUSE_MIRROR_BANK	Fuse bank 22	DED_ENCODE 2
\$17	FUSE_MIRROR_BANK	Fuse bank 23	DED_ENCODE 1
\$18	FUSE_MIRROR_BANK	Fuse bank 24	
\$19	FUSE_MIRROR_BANK	Fuse bank 25	
\$1A	FUSE_MIRROR_BANK	Fuse bank 26	
\$1B	FUSE_MIRROR_BANK	Fuse bank 27	
\$1C	FUSE_MIRROR_BANK	Fuse bank 28	
\$1D	FUSE_MIRROR_BANK	Fuse bank 29	
\$1E	FUSE_MIRROR_BANK	Fuse bank 30	
\$1F	FUSE_MIRROR_BANK	Fuse bank 31	

Table 35. Mirror memory...continued

11.2 Initialization register – INIT

Following power-up or soft POR, the MC33771C is in a reset state. In the INIT mode, the user may read the registers of the MC33771C using the cluster id 00 0000b. The MC33771C must be enumerated before it acts upon to write commands.

To initialize the device, a write command has to be sent with the value of 00 0000b in the cluster Identifier field of the frame, <u>Section 10.4.2</u>, with the new cluster ID, that is the new address to be assigned to the node, must be written to the CID field of the INIT register. Only a device with current cluster ID of 00 0000b may be programmed to a new address. By programming the device with a new CID the device is considered enumerated. After a device has been initialized, it only acts on subsequent global write (transformer mode) or local write and responds to read commands matching the device cluster ID. Once a device has been enumerated, the CID bits in the register INIT cannot be reprogrammed unless the device receives a hard or soft reset.

The bit field INIT[TPLx_TX_TERM] is used for preventing pins (RDTX_IN/OUT±) from floating when the MC33771Cs are connected in single ended daisy chain (without loop-back). It is to be noted that this applies only to last node in the daisy chain. Depending on which pin (RDTX_IN± or RDTX_OUT±) of last node is floating, INIT[TPLx_TX_TERM] should be set to 1.The MC33771C IC used in daisy chain communication

with loop-back shall have the bit fields INIT[TPLx_TX_TERM] set to zero while for single ended daisy chain communication (without loop-back) the floating TPL port shall be set to 1.

INIT																
\$01	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write									TPL1_	TPL2_						
Read	0	0	0	0	0	0	0	0	TX_ TERM	TX_ TERM			C	D		
Reset	0	0	0	0	0	0	0	0	0	0	0	0 0 0 0 0 0				0
		Descrip	otion	Enable	for TPL	port term	nination	for RDT	X_IN pin							
		1		Enable	b											
)		on	POR											0	
		Descrip	otion	Enable	Enable for TPL port termination for RDTX_OUT pin											
TPL-TX	Initiation initiation TX_IN) I Enabled 1 Enabled Reset condition POR -TX_nination TX_OUT) Enable for TPL port termination for RDTX_OUT pin 0 Disabled 1 Enabled Reset POR															
		1		Enable	t											
	_001)		on	POR												
		Descrip	otion	Cluster global v		r, can be	overrid	den by a	iny comb	oination o	different	from all :	zeros. N	ot acces	sible wit	h
		0000	0 0	Default												
CID		xxxx	хx	CID												
		Reset conditic	on	POR												

11.3 System configuration global register SYS_CFG_GLOBAL

In TPL mode, only a global command can be used to write to register \$02, while a local write is disregarded. In contrast, if using the SPI mode, only a local write to register \$02 can be executed.

SYS_CFG_GLOBAL																
\$02	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																GO2 SLEEP
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GO2SLEEP		Description		Go to sleep command												
		0		Disabled												
		1 (active pulse)		Device goes to sleep mode after all conversions in progress are completed												
		Reset condition		POR												

Table 36. INIT

11.4 System configuration register 1 – SYS_CFG1

The SYS_CFG1 register contains control bits and register settings that allow the user to adapt the MC33771C to specific applications and system requirements. Of these control bits, it is important to note the SYS_CFG1[SOFT_RST] bit is used to reset register contents of the device.

SYS_CFG	1																
\$03	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	CYC		MER	DIA	G_TIME	OUT	I_ MEAS_	Do not	CB_ DRVEN	GO2DIAG	CB_ MANUAL_	SOFT_ RST	FAULT_		VE_	x	
Read							EN	change	DRVEN	DIAG_ST	PAUSE	0	WAVE		_BITx	x	
Reset	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	
		Descri	ption	Timer t	o trigge	r cyclic r	neasurem	nents in nor	mal mode	or sleep moo	le						
		000		Cyclic	measure	e is disal	bled, wha	tever the m	ode								
		001		Contin	uous me	easurem	ents										
		010		0.1 s													
		011		0.2 s													
CYCLIC_T	IMER	100		1.0 s													
		101		2.0 s													
		110		4.0 s													
		111		8.0 s													
		Reset conditi															
		Descri	ption	DIAG r	node tin	neout. Le	ength of ti	me the dev	ice is allow	ed to be in c	liag mode b	efore bein	g forced to	norma	l mode.		
		000		No time	er, not a	llowed to	o enter dia	ag mode									
		001		0.05 s													
	010			0.1 s													
		011		0.2 s													
DIAG_TIM	EOUT	100		1.0 s													
		101		2.0 s													
		110		4.0 s													
		111		8.0 s													
		Reset conditi	on	POR													
		Descri	ption	Enable	for curr	ent mea	surement	chain									
		0		Disable	ed												
I_MEAS_E	N	1		Curren	t measu	rement	chain is e	nabled									
		Reset conditi	on	POR													
		Descri	ption	Genera	al enable	e or disa	ble for all	cell balanc	e drivers.								
		0		Disable	ed												
CB_DRVE	N	1		Enable	d, each	cell bala	ance drive	er can be ind	dividually s	witched on a	and off by Cl	B_xx_CFG	G register.				
		Reset conditi	on	POR													
		Descri	ption	Comm	ands the	e device	to diag m	ode. Rewrit	ting the GC	2DIAG bit re	estarts the D	DIAG_TIM	EOUT.				
	0				ag mode	9											
GO2DIAG		1		Enter c	liag moo	de (starts	s timer)									_	
		Reset conditi	on	POR													

Table 38. SYS_CFG1

Battery cell controller IC

Table 38. SYS	_CFG1conti	inued
	Description	Cell balancing manual pause
CB_MANUAL_	0	Disabled CB switches can be normally commanded on/off by the dedicated logic functions
PAUSE	1	CB switches are forced off, CB counters are not frozen
	Reset condition	POR
	Description	Identifies when the device is in diag mode
	0	System is not in diag mode
DIAG_ST	1	System is in diag mode
	Reset condition	POR
	Description	Software reset
	0	Disabled
SOFT_RST	1 (active pulse)	Active software reset
	Reset condition	POR (bit is not reset if reset was due to software reset)
	Description	FAULT pin wave form control bit.
	0	FAULT pin has high or low level behavior. FAULT pin high, fault is present. FAULT pin low indicates no fault present.
FAULT_WAVE	1	FAULT pin has heartbeat wave when no fault is present. Pulse high time is fixed at 500 μ s.
	Reset condition	POR
	Description	Controls the off time of the heartbeat pulse.
	0 0	500 µs
	0 1	1.0 ms
WAVE_DC_BITx	10	10 ms
	11	100 ms
	Reset condition	POR

Table 38. SYS_CFG1...continued

11.5 System configuration register 2 – SYS_CFG2

Table 39. SYS_CFG2

SYS_C	FG2																	
\$04	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
Write	x	x	x											NUMB	НАММ			
Read	x	x	x	PRE	vious_s	TATE								_ENCOD				
Reset	0	0	0	0	0	0	1	1 1 0 0 1 1 0 0 0							0			
		Descrip	tion	Informa	tion about the previous state of the device													
		000		The dev	ne device is coming from INIT state													
	001			The dev	The device is coming from IDLE state													
PREVIC	DUS_	010		The dev	The device is coming from NORMAL state													
STATE		011		The dev	vice is cor	ning from	DIAG st	tate										
		111		The dev	vice is cor	ning from	SLEEP	state										
		110		The dev	vice is cor	ning from	CYCLIC	C_WUP st	ate									
		Reset c	ondition	POR														
		Descrip	scription No communication timeout - flag in FAULT1_STATUS[COM_LOSS] if no communication during															
ΤΙΜΕΟΙ	JT_	0 0	0 0 32 ms															
COMM	0 1			64 ms														
		10		128 ms														

MC33771C

Battery cell controller IC

	-	
	11	256 ms
	Reset condition	POR
	Description	Fault reset configuration ^[2]
	0011	Disabled COM timeout (1024 ms) reset and OSC fault monitoring and reset
	0101	Enabled OSC fault monitoring
	0110	Enabled OSC fault monitoring and reset
FLT_RST_CFG	1001	Enabled COM timeout (1024 ms) reset
	1010	Enabled COM timeout (1024 ms) reset and OSC fault monitoring
	1100	Enabled COM timeout (1024 ms) reset and OSC fault monitoring and reset
	others	Invalid, leads to enabled COM timeout (1024 ms) reset and OSC fault monitoring and reset (1100)
	Reset condition	POR (except after a reset caused by a communication timeout or caused by an oscillator fault)
	Description	Odd number of cells in the cluster (useful for open load diagnosis)
NUMB ODD	0	Even configuration
NOMB_ODD	1	Odd configuration
	Reset condition	POR
	Description	Hamming encoders
HAMM ENCOD	0	Decode - the DED Hamming decoders fulfill their job
	1	Encode - the DED hamming decoders generate the redundancy bits
	Reset condition	POR

Table 39. SYS_CFG2...continued

The Go2Reset option should not be disabled after a communication time out For more information, refer to $\underline{\text{Figure 8}}$ [1] [2]

11.6 System diagnostics register – SYS_DIAG

Table 40. SYS_DIAG

SYS_DIA	G																
\$05	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write Read	FAULT_ DIAG	0	0	- I_N	IUX	ISENSE_ OL_ DIAG	ANx_ OL_ DIAG	ANx_ TEMP_ DIAG	DA_DIAG	POL ARITY	CT_ LEAK_ DIAG	CT_OV_ UV	CT_OL_ ODD	CT_OL_ EVEN	CB_OL_ ODD	CB_OL_ EVEN	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Descriptio) n	FAULT pir	l 1 driver cor	nmand											
		0		No FAULI	pin drive,	FAULT pin	is under co	mmand of	the pack co	ontroller							
FAULT_D	IAG	1		FAULT pin is forced to high level													
		Reset cor	ndition	POR													
		Descriptio	scription Allows user to select between various inputs to PGA to be converted by ADC2														
		0 0		(ISENSE+	(ISENSE+, ISENSE-)												
I MUX		0 1		(GPI05, GPI06)													
		10		Calibrated internal reference (VREF_DIAG)													
		11		PGA zero (PGA differential inputs terminated to ground)													
		Reset cor	ndition	POR													
		Descriptio	on	ISENSE open load diagnostic control bit. Enables or disables internal pull-up resistors on the ISENSE input pins.													
ISENSE	OL_DIAG	0		Disabled													
ICENCE_	02_01/10	1		Enabled													
		Reset cor	ndition	POR													
		Descriptio	on	ANx open	load diagr	ostic contro	ol bit. Used	to activate	the pull do	wn on GPI	O input pin	s.					
ANx OL	DIAG	0		Diagnosti	disabled												
		1		Diagnosti	Diagnostic enabled												
		Reset cor	ndition	POR													
ANx_TEM	IP_DIAG	Descriptio	on	Control bi	t to activate	e the OT/UT	diagnosti	on GPIOx	configured	as ANx ra	tiometric o	single end	ed ADC in	put			

MC33771C

Battery cell controller IC

Table 40. SYS	5_DIAG continued
---------------	-------------------------

		Diagnostic inactive
	1	Diagnostic active
	Reset condition	POR
	Description	Cell voltage channel functional verification. Diagnostic mode function only
	0	No check
DA_DIAG	1	Check is enabled (floating Zener conversion, ground Zener measurement added, comparison)
	Reset condition	POR
	Description	Control bit used in terminal leakage detection. Controls the polarity between the level shifter and the ADC1-A and ADC1-B converters
	0	Noninverted
POLARITY	1	Inverted
	Reset condition	POR
	Description	Control bit used in terminal leakage detection. Commands the MUX to route the CTx/CBx pin to ADC1-A,B converters. This bit must be exclusive vs. DA_DIAG.
CT_LEAK_DIAG	0	Normal operation, CTx are MUXed to converter
	1	Δ between CT and CB pins are routed to the analog front end, to be converted
	Reset condition	POR
	Description	OV and UV diagnostic is enabled. This bit must be set to logic 0 when performing CT open load diagnostic.
	0	OV and UV diagnostic disabled
CT_OV_UV	1	OV and UV diagnostic enabled
	Reset condition	POR
	Description	Control bit used to control the odd numbered cell terminal open detect switches
	0	Odd switches are open
CT_OL_ODD	1	Odd switches are closed (may be set only when CT_OL_EVEN is logic 0)
	Reset condition	POR
	Description	Control bit used to control the even numbered cell terminal open detect switches
	0	Even switches are open
CT_OL_EVEN	1	Even switches are closed (may be set only when CT_OL_ODD is logic 0)
	Reset condition	POR
	Description	Control bit used to control the cell balance open load ODD detection switches.
	0	ODD cell balance open load detection switches are open
B_OL_ODD	1	ODD cell balance open load detection switches are closed
	Reset Condition	POR
	Description	Control bit used to control the cell balance open load EVEN detection switches
	0	EVEN cell balance open load detection switches are open
CB_OL_EVEN	1	EVEN cell balance open load detection switches are closed
	Reset condition	POR

11.7 ADC configuration register – ADC_CFG

The ADC_CFG is used to set the conversion parameters of the three ADC converters and command the MC33771C to perform on-demand conversions in both normal and diagnostic modes.

ADC_C	FG															
\$06	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write					SOC	PGA_GAIN			CC_RST	x	4004				1000 055	
Read	AVG				EOC_N	PGA_G	AIN_S		0	x	ADC1_A_DEF		ADC1_B_DEF		ADC2_DEF	
Reset	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1
		Descrip	tion	With ea	ch conver	sion requ	lest, the i	number c	f samples to	be avera	iged can b	e configu	ired	1		
		0000		No ave	aging, the	e result is	taken as	is (comp	atibility mode	e)						
AVG		0001		Averagi	ng of 2 cc	nsecutive	e sample	s								
		0010		Averagi	ng of 4 cc	nsecutive	e sample	s								
/C33771C		L		1					ent is subject to le					@ 2024 N	IXP B.V. All r	

Product data sheet

Battery cell controller IC

Table 41. AD	C_CFGcontin	
	0011	Averaging of 8 consecutive samples
	0100	Averaging of 16 consecutive samples
	0101	Averaging of 32 consecutive samples
	0110	Averaging of 64 consecutive samples
	0111	Averaging of 128 consecutive samples
	1000	Averaging of 256 consecutive samples
	All other Configurations	No averaging, the result is taken as is (compatibility mode)
	Reset condition	POR
	Description	Control bit to command the MC33771C to initiate a conversion sequence
SOC	0	Disabled. Writing SOC to 0 has no effect on an ongoing conversion sequence.
300	1 (active pulse)	Enabled. Initiate a conversion sequence.
	Reset condition	POR
	Description	End of conversion flag
	0	Device has completed the commanded conversion
EOC_N	1	Device is performing the commanded conversion
	Reset condition	POR
	Description	Define the gain of the ADC2 programmable gain amplifier
	000	4
	001	16
PGA_GAIN	010	64
	011	256
	1 x x	Automatic gain selection (internally adjusted)
	Reset condition	POR
	Description (bit 10)	Automatic gain mode status (information available only if SYS_CFG1[I_MEAS_EN] = 1)
	0	Fixed gain
	1	Automatic gain control
	Reset condition	POR
PGA_GAIN_S	Description (bit[9:8])	Report the current gain of the ADC2 programmable gain amplifier (automatically settled or not). (information available only if SYS_CFG1[I_MEAS_EN] = 1)
	0 0	4
	0 1	16
	10	64
	11	256
	Reset condition	POR
	Description	Control bit used to reset the value of the coulomb counter to 0
	0	No action
CC_RST	1 (active pulse)	Reset coulomb counter registers COULOMB_CNT1 and COULOMB_CNT2 and the CC_NB_SAMPLES registers
	Reset condition	
	Description	ADC1 A measurement resolution
	0 0	13 bit
	0 0	14 bit
ADC1_A_DEF	10	15 bit
	11 Poort condition	16 bit
	Reset condition	POR
ADC1_B_DEF	Description	ADC1_B measurement resolution

Table 41. ADC_CFG...continued

MC33771C

0013 bit0114 bit1015 bit1116 bitReset conditionPOR003 bit0113 bit1013 bit1013 bit1013 bit1116 bit1016 bit			
1015 bit1116 bitReset conditionPORAbc2_measurement resolution0013 bit0114 bit1015 bit1116 bit		0 0	13 bit
11 16 bit Reset condition POR 0 ADC2 measurement resolution 0 13 bit 0 14 bit 10 15 bit 11 16 bit		0 1	14 bit
Reset condition POR Description ADC2 measurement resolution 0 0 13 bit 0 1 14 bit 1 0 15 bit 1 1 16 bit		10	15 bit
ADC2_DEF		11	16 bit
ADC2_DEF 0 0 13 bit 0 1 14 bit 1 0 15 bit 1 1 16 bit		Reset condition	POR
ADC2_DEF 0 1 14 bit 1 0 15 bit 1 1 16 bit		Description	ADC2 measurement resolution
ADC2_DEF 1 0 15 bit 1 1 16 bit		0 0	13 bit
10 15 bit 11 16 bit		0 1	14 bit
	ADC2_DEI	10	15 bit
Reset condition POR		11	16 bit
		Reset condition	POR

Table 41. ADC_CFG...continued

11.8 Current measurement chain offset compensation – ADC2_OFFSET_COMP

This register contains an 8-bit signed data (two's complement). The content of the offset compensation register is added directly to the data at the end of the channel measurement, independent on the PGA gain. Even though the current channel is fully offset compensated, the PCB HW introduces an extra offset that can be compensated by means of this data. This register provides several bits that are able to influence the behavior of the coulomb counter.

Table 42. ADC2_OFFSET_COMP

ADC2_C	OFFSET_	COMP															
\$07	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	CC_		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	x						-				
Read	CC_ RST_ CFG	FREE_ CNT	CC_P_ OVF	CC_N_ OVF	SAMP_ OVF	CC_OVT	x	ALLCBOFF_ ON_SHORT	ADC2_OFFSET_COMP								
Reset	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Descripti	ion	Configur	ation of th	e action linke	ed to the	e read of coulom	b count	results							
CC_RST		0		No linked	d action												
UU_R31		1		Reading any CC register (from @ \$2D to @ \$2F) also resets the coulomb counters													
		Reset co	ondition	POR													
		Descripti	ion	Configur	Configuration of the free running coulomb counters												
FREE C	TIM	0	0		unning, co	oulomb coun	ters cla	mp on min/max	values								
FREE_C		1		Free-run	ning mode	e. No clamp	but rollo	ver									
		Reset co	ondition	POR													
		Descripti	ion	Overflow indicator on the COULOMB_CNT1,2[COULOMB_CNT]													
CC_P_C		0		No overflow													
CC_F_C		1		COULOMB_CNT1,2[COULOMB_CNT] went in overflow													
		Reset co	ondition	POR / clear on write 0													
		Descripti	ion	Underflo	w indicato	r on the COl	JLOMB	_CNT1,2[COULO	OMB_C	NT]							
CC N C		0		No unde	rflow												
00_N_0	JVF	1		COULO	MB_CNT1	,2[COULOM	B_CNT] went in underflo	w								
		Reset condition		POR / cl	ear on writ	e O											
		Description		Overflow	indicator	on the CC_N	NB_SAN	IPLES									
SAMP C		0		No unde	rflow												
SAIVIP_C	JVF	1		CC_NB_SAMPLES went in overflow													
			ondition	POR / cl	ear on writ	ie 0											

	Description	Overthreshold indicator on the COULOMB_CNT1,2[COULOMB_CNT]
	0	No over threshold
CC_OVT	1	COULOMB_CNT1,2[COULOMB_CNT] went in over threshold (TH_COULOMB_CNT)
	Reset condition	POR / clear on write 0
	Description	All CB's turn off in case of at least one short
ALLCBOFF_ON_	0	Only shorted CB's are turned off
SHORT	1	If at least one CB is shorted, all CB's are then turned off (CB_DRVEN is reset)
	Reset condition	POR
ADC2_OFFSET_	Description	Offset value, signed (two's complement) with V _{2RES} resolution. It can be used to compensate for a PCB offset.
	Reset condition	POR

Table 42. ADC2_OFFSET_COMP...continued

[1] w0c: write 0 to clear

11.9 Cell select register – OV_UV_EN

The user has the option to select a common overvoltage and undervoltage threshold, or individual thresholds for each cell. To use a common threshold for all cell terminal inputs, the user must program register TH_ALL_CT and enable the common threshold bit. An individual threshold may be programmed for each cell terminal through register TH_CTx. Either threshold selection requires the CTx_OVUV_EN bit be set for the MC33771C to monitor the cell terminal input for over and undervoltage.

Table	43.	OV	UV	EN	
10010		· · · _			

ov_uv_i	EN															
\$08	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	COMMON_ OV_TH	COMMON_ UV_TH	CT14_ OVUV_	CT13_ OVUV_	CT12_ OVUV_	CT11_ OVUV_	CT10_ OVUV_	CT9_ OVUV_	CT8_ OVUV_	CT7_ OVUV_	CT6_ OVUV_	CT5_ OVUV_	CT4_ OVUV_	CT3_ OVUV_	CT2_ OVUV_	CT1_ OVUV_
Read			EN	EN	EN	EN	EN	EN	EN	EN	EN	EN	EN	EN	EN	EN
Reset	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Description		All CTx m	Tx measurement use the common overvoltage threshold register for comparison											
001110		0		Use individual threshold register												
COMMO	N_OV_TH	1		Use comr	mon thresh	old registe	r									
		Reset condit	ion	POR												
		Description		All CTx m	easureme	nt use the	common u	ndervoltage	e threshold	register fo	r comparis	on				
COMMO		0		Use indiv	idual thres	nold registe	er									
COMINIO	N_UV_TH	1		Use comr	mon thresh	old registe	r									
		Reset condit	ion	POR												
		Description		Enable or	disable Al	DC data to	be compa	red with thr	esholds fo	r OV/UV. If	disabled r	io OVUV fa	ault is set.			
		0		OVUV dis	abled											
	x_OVUV_EN 1			OVUV is	enabled											
		Reset condit	ion	POR												

11.10 Cell terminal overvoltage fault register – CELL_OV_FLT

The CELL_OV_FLT register contains the overvoltage fault status of each cell. The CELL_OV_FLT register is updated with each cyclic conversion and each on-demand conversion from the system controller. In normal mode, the CTx_OV_FLT bit may be cleared by writing logic 0 when overvoltage is no longer present at the cell terminal inputs.

Table 44. CELL_OV_FLT

CELL_	OV_FLT															
\$09	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	0	0	CT14_ OV_ FLT	CT13_ OV_ FLT	CT12_ OV_ FLT	CT11_ OV_ FLT	CT10_ OV_ FLT	CT9_ OV_ FLT	CT8_ OV_ FLT	CT7_ OV_ FLT	CT6_ OV_ FLT	CT5_ OV_ FLT	CT4_ OV_ FLT	CT3_ OV_ FLT	CT2_ OV_ FLT	CT1_ OV_ FLT
Reset	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0											
		Descrip	otion													
CTx O		0		No Cell	Termina	l overvo	ltage									
	V_FLI	1	Cell Terminal overvoltage detected on terminal x													
	Reset condition POR/clear on write 0															

[1] w0c: write 0 to clear

11.11 Cell terminal undervoltage fault register – CELL_UV_FLT

The CELL_UV_FLT register contains the undervoltage fault status of each cell. The CELL_UV_FLT register is updated with each cyclic conversion and each on-demand conversion from the system controller. In normal mode, the CTx_UV_FLT bit may be cleared by writing logic 0 when undervoltage is no longer present at the cell terminal inputs.

CELL_	UV_FLT															
\$0A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	0	0	CT14_ UV_ FLT	CT13_ UV_ FLT	CT12_ UV_ FLT	CT11_ UV_ FLT	CT10_ UV_ FLT	CT9_ UV_ FLT	CT8_ UV_ FLT	CT7_ UV_ FLT	CT6_U _FLT	VCT5_ UV_ FLT	CT4_ UV_ FLT	CT3_ UV_ FLT	CT2_ UV_ FLT	CT1_ UV_ FLT
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	·	Descrip	otion								age fault ed conve			minal. Re	egister is	;
CTx U	V FIT	0		No cell	terminal	undervo	oltage									
017_0	•_· Ľ ·	1		Cell terminal undervoltage detected on terminal x												
		Reset conditio	on	POR/clear on write 0												

Table 45. CELL_UV_FLT

[1] w0c: write 0 to clear

11.12 TPL_CFG

TPL_CFG register configures up and down transmitter. It allows the pack controller to configure transmitter drive strength based on capacitive or transformer isolation and selection of differential load termination.

Table 46. TPL_CFG

TPL_C	CFG															
\$0B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write								Danat	ahanga							
Read	1							Do not	change							
Reset	0	1	1	0	0	0	1	0	0	1	1	0	0	0	1	0

Note: The default value TPL_CFG register is set considering a transmission line of 120Ω .

11.13 Cell balance configuration register – CBx_CFG

The cell balance configuration register holds the operating parameters of the cell balance output drivers.

Table	47.	CBX	CFG

CBx_C	FG															
\$0C to \$19	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write							CBx_EN			-						
Read	0	0	0	0	0	0	CBx_STS				Ċ	Bx_TIM	EK			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Cell ba	lance er	hable			,	•	1	·				
		0		Cell ba	lance dr	iver disa	abled									
CBx_E	N	1		Cell ba driver)	·											
		Reset conditio	on	POR												
		Descrip	otion	Cell ba	lance dr	iver stat	us									
		0		Cell ba	lance dr	iver is o	ff									
CBx_S	TS	1		Cell ba	lance dr	iver is o	n									
		Reset conditio	on	POR												
		Descrip	otion	Cell ba	lance tir	ner in m	inutes									
		000000	0000	0.5 mir	nutes											
		000000	0001	1 minu	te											
CBx_T	IMER	000000	0010	2 minu	tes											
_																
		111111	1111	511 mi	nutes											
		Reset conditio	on	POR												

11.14 Cell balance open load fault detection register – CB_OPEN_FLT

Table 48. CB_OPEN_FLT

CB_OF	PEN_FL	Г														
\$1A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	0	0	CB14_ OPEN_ FLT	CB13_ OPEN_ FLT	CB12_ OPEN_ FLT	CB11_ OPEN_ FLT	CB10_ OPEN_ FLT			CB7_ OPEN_ FLT	CB6_ OPEN_ FLT	CB5_ OPEN_ FLT	CB4_ OPEN_ FLT	CB3_ OPEN_ FLT	CB2_ OPEN_ FLT	CB1_ OPEN_ FLT
Reset	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0											
		Descrip	otion		I balancing open load detection – (info) Logic OR of CBx_OPEN_FLT is provided in the FAULT2_ TUS[CB_OPEN_FLT]											
CBx_O	PEN_	0		No ope	n load ce	ell balan	ce fault o	detected								
FLT		1		Off stat	ff state open load detected											
		Reset conditio	on	POR/C	PR/Clear on write 0											

[1] w0c: write 0 to clear

11.15 Cell balance shorted load fault detection register – CB_SHORT_FLT

The cell balance short detection register holds the cell balance shorted load status.

Table 49. CB_SHORT_FLT

CB_SHO	RT_FLT															
\$1B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	0	0	CB14_ SHORT_ FLT	CB13_ SHORT_ FLT	CB12_ SHORT_ FLT	CB11_ SHORT_ FLT	CB10_ SHORT_ FLT	CB9_ SHORT_ FLT	CB8_ SHORT_ FLT	CB7_ SHORT_ FLT	CB6_ SHORT_ FLT	CB5_ SHORT_ FLT	CB4_ SHORT_ FLT	CB3_ SHORT_ FLT	CB2_ SHORT_ FLT	CB1_ SHORT_ FLT
Reset	0	0	0	0												
		Descriptio	on	Cell balan	cing shorte	d load fault	detection	– (info) CB	SHORT_	FLT Ored i	s provided	n the FAUI	T2[CB_SH	IORT_FLT]		
CBx SHC		0		No shorte	lo shorted load fault detected											
	KI_FLI	1		Shorted lo	horted load fault detected											
		Reset cor	ndition	POR/clea	R/clear on write 0											

[1] w0c: write 0 to clear

11.16 Cell balance driver on/off status register – CB_DRV_STS

Table 50.	CB_DRV_STS	
-----------	------------	--

CB_DR	V_STS															
\$1C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	0	0	CB14_ STS	CB13_ STS	CB12_ STS	CB11_ STS	CB10_ STS	CB9_ STS	CB8_ STS	CB7_ STS	CB6_ STS	CB5_ STS	CB4_ STS	CB3_ STS	CB2_ STS	CB1_ STS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Contain	s the sta	te of the	cell bala	ance driv	er	·						
CBx_S	TS	0		Driver C	r CBx is off											
		1		Driver C	r CBx is on											

Table 50. CB_DRV_STS...continued

Reset	POR
condition	

11.17 GPIO configuration register 1 – GPIO_CFG1

The GPIO_CFG1 register programs the individual GPIO port as a ratiometric, single ended, input or output port.

Table \$	51. GP		G1													
GPIO_	CFG1															
\$1D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write			GPIO	6_CFG	GPIO	5_CFG	GPIO4	CFG	GPIO3	3_CFG	GPI02	2_CFG	GPIO ²	1_CFG	GPIO	0_CFG
Read	0	0	1													
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Registe	er contro	ls the co	nfiguratio	on of the	e GPIO p	ort						
		0 0		GPIOx	configur	ed as ar	alog inp	ut for rat	tiometric	measur	ement					
		0 1		GPIOx	configur	ed as ar	alog inp	ut for ab	solute m	easuren	nent					
GPIOx_	GPIOx_CFG	10		GPIOx	configur	ed as di	gital inpu	ıt								
		11		GPIOx	configur	ed as di	gital outp	out								
		Reset conditio	on	POR												

11.18 GPIO configuration register 2 – GPIO_CFG2

Table 52. GPIO_CFG2

GPIO_C	FG2															
\$1E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write							GPIO2_ SOC	GPIO0_ WU	GPIO0_ FLT_	GPIO6_ DR	GPIO5_ DR	GPIO4_ DR	GPIO3_ DR	GPIO2_ DR	GPIO1_ DR	GPIO0_ DR
Read	0	0	0	0	0	0	500	000	ACT	DR	DR	DR	DR	DR	DR	DR
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Description	on	GPIO2 u	sed as ADC	C1_A/ADC1	_B start-of-	conversion	. Requires	GPIO2_CF	G = 10.					
	200	0		GPIO2 p	ort ADC trig	ger is disal	bled									
GPIO2_S	500	1		GPIO2 p	ort ADC trig	iger is enat	oled. A risin	g edge on (GPIO2 trigg	jers an AD0	C1-A and A	DC1-B cor	version – c	only when in	n normal m	ode
		Reset co	ndition	POR												
		Description GPIO0 wake-up capability. Valid only when GPIO0_CFG = 10.														
		0		No wake	up capabil	ity										
GPIO0_\	WU	1		Wake-up	on any edg	ge, transitio	ning the sys	stem from s	sleep to nor	mal						
		Reset co	ndition	POR												
		Description	on	GPIO0 a	ctivate fault	output pin.	Valid only	when GPIC	00_CFG = 1	10.						
00100		0		Does not	activate FA	AULT pin wi	nen GPIO0	is configure	ed as an in	put and is lo	ogic 1					
GPIO0_F	FLT_ACT	1		Activates	the FAULT	pin when (GPIO is cor	figured as	an input an	d is logic 1						
		Reset co	ndition	POR												
		Description GPIOx pin drive. Ignored except when GPIOx_CFG = 11														
		0		Drive GP	IOx to low	level										
GPIOx_E	JK	1		Drive GP	IOx to high	level										
		Reset co	ndition	POR												

11.19 GPIO status register – GPIO_STS

Table 53. GPIO_STS

GPIO_ST	S															
\$1F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write		w0c ^[1]														
Read	0	GPIO6_H	GPIO5_H	GPIO4_H	GPIO3_H	GPIO2_H	GPIO1_H	GPIO0_H	0	GPIO6_ ST	GPIO5_ ST	GPIO4_ ST	GPIO3_ ST	GPIO2_ ST	GPIO1_ ST	GPIO0_ ST
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Description			The GPIO	x_H bits de	tects and la	atches the I	ow to high	transitio	n occurring	on the GPI	Ox input				
GPIOx H		0		No high st	ate detecte	d										
GFIOX_H		1		A high sta	te has beer	detected										
		Reset con	dition	POR/clear	on write 0											
		Descriptio	n	Real time	GPIOx stat	us										
GPIOx S	Ŧ	0		Report GF	PIOx at low	level										
GFIUX_S	1	1		Report GF	PIOx at high	level										
		Reset con	dition	POR												

[1] w0c: write 0 to clear

11.20 Overtemperature/undertemperature fault register – AN_OT_UT_FLT

	· · · · · · · ·															
AN_OT	_UT_FL	T														
\$20	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]		w0c ^[1]										
Read	0	AN6 _OT	AN5 _OT	AN4 _OT	AN3 _OT	AN2 _OT	AN1 _OT	AN0 _OT	0	AN6_ UT	AN5_ UT	AN4_ UT	AN3_ UT	AN2_ UT	AN1_ UT	AN0_ UT
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Description Overtemperature detection for AN n°x – Anx_OT ored is provided in FAULT1_STATUS[AN_OT_FLT]											.T]					
		0		No ove	rtempera	ature fau	It detect	ed								
Anx_O1	Г	1		Overter	nperatur	e fault d	etected	on Anx								
		Reset conditio	on			rite 0 (A e persist	_	s set aga	ain on ne	ext cyclic	convers	ion or o	n-demar	nd conve	rsion if	
		Descrip	otion	Underte	emperatu	ure deteo	ction for	AN n°x -	- Anx_U	T ored is	s provide	d in FAL	JLT1_ST	ATUS[A	N_UT_F	LT]
		0		No und	ertempe	rature fa	ult deteo	cted								
Anx_UT	Г	1		Underte	emperatu	ure fault	detected	l on Anx								
	F	Reset conditio	on			rite 0 (A ire persis	_	s set aga	ain on ne	ext cyclic	convers	ion or oi	n-deman	id conve	rsion if	

Table 54. AN_OT_UT_FLT

[1] w0c: write 0 to clear

11.21 GPIO open short register – GPIO_SHORT_ANx_OPEN_STS

Table 55. GPIO_SHORT_ANx_OPEN_STS

GPIO_SH	IORT_ANx	_OPEN_S1	rs													
\$21	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write		w0c ^[1]		w0c ^[1]												
Read	0	GPIO6_ SH	GPIO5_ SH	GPIO4_ SH	GPIO3_ SH	GPIO2_ SH	GPIO1_ SH	GPIO0_ SH	0	AN6_ OPEN	AN5_ OPEN	AN4_ OPEN	AN3_ OPEN	AN2_ OPEN	AN1_ OPEN	AN0_ OPEN
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GPIOx_S			n	GPIOx sh	ort detectio	n GPIOx_S	SH ored is p	provided in	FAULT2_S	TATUS[GP	IO_SHORT	[_FLT]				

MC33771C

0	No short detected
1	Short detected, pad sense is different from pad command
Reset condition	POR/clear on write 0
Description	Analog inputs open load detection. ANx_OPEN ored is provided in FAULT2_STATUS[AN_OPEN_FLT]
0	No open load detected
1	Open load detected on Anx
Reset condition	POR/Clear On Write 0 (ANx_OPEN is set again with open load detect switch closed and open load persists)
	0 1 Reset condition Description 0 1

Table 55. GPIO SHORT ANx OPEN STS...continued

[1] w0c: write 0 to clear

11.22 Current measurement status register – I_STATUS

Table 56. I_STATUS

I_STAT	บร															
\$22	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read PGA_DAC 0													0	0		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	DAC co	ode											
		0000	0000	DAC co	ode is ini	tially all	zeros									
PGA_D	AC	1111	1111	DAC co	ode to be	e provide	ed to the	PGA (fo	or offset	cancella	tion), cal	culated	through	an autoz	zero pha	se
		Reset conditio	on	POR												

11.23 Communication status register – COM_STATUS

Table 57. COM_STATUS

COM_S	STATUS															
\$23	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write				w0	c ^[1]											
Read			C	OM_ERF	R_COU	NТ			0	0	0	0	0	0	0	0
Reset								0	0	0	0	0	0	0	0	0
		Descrip	otion	Numbe	r of com	municati	on error	s detecte	əd							
		0000	0000	0 comn	nunicatio	n errors	have be	en dete	cted							
сом е	ERR															
COUNT	Г	1111	1111	1						Overflow ared by o			FAULT1	_STATU	S[COMN	۸_
		Reset condition	on	POR/cl	ear on w	rite 0										

[1] w0c: write 0 to clear

11.24 Fault status register 1 – FAULT1_STATUS

Table 58. FAULT1_STATUS

	58. FAU		14103													
\$24	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]										
Read	POR	RESET FLT			VPWR LV_ FLT		COM_ ERR_ FLT	CSB_ WUP_ FLT	GPIO0 WUP_ FLT		IS_ OL_ FLT	IS_ OC_ FLT	AN_ OT_ FLT	AN_ UT_ FLT	CT_ OV_ FLT	CT_ UV_ FLT
Reset	1	0**	0*	0*	0*	0**	0*	0	0	0	0	0	0	0	0	0
flip	epending oped.							s at the I cause (se				value of	bits ma	rked by	an * maj	/ be
		Descrip	otion	Power	on reset	indicatic	n (POR)								
		0		No PO	२											
POR		1		Device	has PO	Red										
		Reset conditio	on	POR/cl	ear on w	rite 0										
		Descrip	otion	RESET	Indicati	on (nonr	naskable	e)								
		0		No rese	et											
RESET	_FLT	1						the RESI is or an o					tting the	SYS_C	FG1[SC	FT_
		Reset condition	on	POR/cl	ear on w	rite 0										
		Descrip	otion	Overflo	w indica	tor on th	e COM_	STATUS		ERR_CO	DUNT]					
0014		0		No erro	r											
COM_E OVR_F		1		COM_S	STATUS	COM_E	RR_CO	UNT] we	ent in ove	erflow						
_		Reset conditio	on	POR/cl	ear on w	rite 0										
		Descrip	otion	VPWR	overvolt	age notif	ication									
	O 14	0		No ove	rvoltage	(VPWR	< VPWF	R(OV_FL	.AG)) de	tected						
VPWR_ FLT	_0V_	1		Overvo	ltage de	tected (\	/PWR >	VPWR(OV_FLA	G), timir	ng filtered	d)				
		Reset conditio	on	POR/cl	ear on w	rite 0										
		Descrip	otion	VPWR	low-volta	age notif	ication									
	117	0		No low-	voltage	(VPWR	> VPWF	R(LV_FL/	AG)) det	ected						
VPWR_ FLT	_LV_	1		Low-vo	ltage de	tected (\	/PWR <	VPWR(I	_V_FLAG	G), timin	g filtered)				
		Reset conditio	on	POR/cl	ear on w	rite 0										
		Descrip	otion	1	al mode .OSS_FI			rice must	receive	a local	message	e within t	he prog	rammed	period	or
COM_L	_OSS_	0		No erro	r											
FLT	_	1		Commu	unication	loss de	tected at	fter a res	et due to	o a comi	nunicatio	on loss				
		Reset condition	on	POR/cl	ear on w	rite 0 (bi	it is not o	cleared if	f reset w	as caus	ed by a d	commun	ication l	oss)		

Battery cell controller IC

	Description	Communication error detected
0014 555	0	No error
COM_ERR_ FLT	1	An error has been detected during a communication
	Reset condition	POR/clear on write 0
	Description	CSB wake-up notification
	0	No wake-up
CSB_WUP_ FLT	1	CSB wake-up detected
	Reset condition	POR/clear on write 0
	Description	GPIO0_wake-up notification
GPIO0_WUP_	0	No wake-up
FLT	1	GPIO0 wake-up detected
	Reset condition	POR/clear on write 0
	Description	I ² C communication error during the transfer from EEPROM to the IC
	0	No Error
I2C_ERR_FLT	1	Error detected
	Reset condition	POR/clear on write 0
	Description	ISENSE pins open load detected
	0	No open load detected
IS_OL_FLT	1	Open load detected in one or both ISENSE pins
	Reset Condition	POR/ clear on write 0
	Description	ISENSE overcurrent detected (sleep mode only)
	0	No overcurrent detected
IS_OC_FLT	1	Overcurrent detected from ISENSE inputs
	Reset condition	POR/Clear On write 0
	Description	Analog input overtemperature detection
	0	No overtemperature detected
AN_OT_FLT	1	Overtemperature detected in one or more of the Anx analog inputs
	Reset condition	POR/Clear On Write 0 all AN_OT_UT[Anx_OT] bits
	Description	Analog inputs undertemperature detection
	0	No undertemperature detected
AN_UT_FLT	1	Undertemperature detected in at least one of the seven analog inputs
	Reset condition	POR/Clear On Write 0 all AN_OT_UT[ANx_UT] bits
	Description	Cell terminal overvoltage detection
CT_OV_FLT	0	No overvoltage detected
	1	Overvoltage detected in one or more of the 14 cell terminals

Table 58. FAULT1_STATUS...continued

Battery cell controller IC

Table 58. FAU	ULI1_SIAIUS	continued
	Reset condition	POR/clear on write 0 all CELL_OV[CTx_OV] bits
	Description	Cell terminal undervoltage detection
	0	No undervoltage detected
CT_UV_FLT	1	Undervoltage detection in at least one of the 14 cell terminals
	Reset condition	POR/clear on write 0 all CELL_UV[CTx_UV] bits

Table 58. FAULT1_STATUS...continued

[1] w0c: write 0 to clear

11.25 Fault status register 2 – FAULT2_STATUS

Table 59. FAULT2_STATUS

FAULT2_	STATUS															
\$25	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]					w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	VCOM_ OV_FLT	VCOM_ UV_FLT	VANA_ OV_FLT	VANA_ UV_FLT	ADC1_ B_FLT	ADC1_ A_FLT	GND_ LOSS_ FLT	IC_ TSD_ FLT	IDLE_ MODE_ FLT	AN_ OPEN_ FLT	GPIO_ SHORT_ FLT	CB_ SHORT_ FLT	CB_ OPEN_ FLT	OSC_ ERR_ FLT	DED_ ERR_ FLT	FUSE_ ERR_ FLT
Reset	0*	0*	0*	0*	0	0	0*	0	0	0	0	0	0	0*	0*	0**
	-	-		s occurring reset, depe					ial value of	bits marked	l by an * ma	ay be flippe	d.		1	
		Descriptic	on	VCOM ov	ervoltage i	notification										
VCOM O	VELT	0		No overvo	ltage dete	cted										
10011-0	·	1		Overvolta	ge has bee	en detected	l on VCON	l supply								
		Reset cor	ndition	POR/clea	r on write ()										
		Descriptic	on	VCOM un	dervoltage	notificatio	n									
VCOM_U	V FIT	0		No under	oltage del	ected										
10011-0	·	1		Undervolt	age has be	en detecte	ed on VCO	M supply								
		Reset Co	bet Condition POR/clear on write 0 cription VANA overvoltage notification													
		Descriptic	on	VANA ove	rvoltage n	otification										
VANA OV	/ FLT	0		No overvo	ltage dete	cted										
wwwov		1		Overvolta	ge has bee	en detected	I on the VA	NA supply								
		Reset cor	ndition	POR/clea	r on write ()										
		Descriptio	on	VANA und	lervoltage	notification										
VANA_UV	/ FLT	0		No under	oltage del	ected										
		1		Undervolt	age has be	en detecte	ed on the V	ANA suppl	у							
		Reset cor	ndition	POR/clea	r on write ()										
		Descriptio	on	ADC1_B1	ault notific	ation										
ADC1 B	FLT	0		No fault d	etected											
1.000_	. 2.	1		ADC1_B1	ault (over	or undervo	ltage has b	een detect	ed on MEA	S_VBG_DI	AG_ADC1B	5)				
		Reset cor	ndition	POR/clea	r on write ()										
		Descriptic	on	ADC1_A	ault notific	ation										
ADC1_A_	FLT	0		No fault d	etected											
//201_/(_		1		ADC1_A	ault (over	or undervo	ltage has b	een detect	ed on MEA	S_VBG_DI	AG_ADC1A	r)				
		Reset cor	ndition	POR/clea	r on write ()										
		Descriptio	on	Loss of gr	ound has	peen detec	ted on DG	ND or AGN	ID							
GND_LOS	SS FLT	0		No error												
0.00_000		1		Loss of gr	ound dete	cted										
		Reset cor	ndition	POR/clea	r on write ()										
IC_TSD_F	- т	Descriptio	on	IC therma	l limitation	notificatior	1									
10_100_1		0		No therma	al limitatior	detected										

MC33771C

Battery cell controller IC

Table 59. FAL	1	Thermal limitation detected
	Reset condition	POR/clear on write 0
		IDLE mode notification
	Description	
IDLE_MODE_FLT	0	
	1	The system has transitioned through idle mode
	Reset condition	POR/clear on write 0
	Description	Analog inputs open load detection
AN_OPEN_FLT	0	No open load detected
	1	Open load detected in one of the seven analog inputs
	Reset condition	POR/clear on write 0 all GPIO_SHORT_ANx_OPEN_STS[ANx_OPEN] bits
	Description	GPIO short detection
GPIO_SHORT_FLT	0	No short detected
GFIO_SHORT_TET	1	Short detected in one or more of the seven GPIOs, pad sense is different from pad command
	Reset condition	POR/clear on write 0 all GPIO_SHORT_ANx_OPEN_STS (GPIOx_SH) bits
	Description	Cell balance short-circuit detection
	0	No short-circuit detected
CB_SHORT_FLT	1	On state short-circuit detected in one or more of the 14 cell balancing switches
	Reset condition	POR/clear on write 0 all CB_SHORT_FLT[CBx_SHORT] bits
	Description	Cell balancing open load detection
CB_OPEN_FLT	0	No cell balance open load detected
CB_OFEN_FLI	1	Off state open load detected in one or more of the 14 cell balancing switches
	Reset condition	POR/clear on write 0 all CB_OPEN_FLT[CBx_OPEN] bits
	Description	Low-power oscillator error
OSC_ERR_FLT	0	No error
	1	The low-power oscillator frequency is out of range after a reset due to an oscillator monitoring fault
	Reset condition	POR/clear on write 0 (bit is not cleared if reset was caused by an oscillator monitoring fault)
	Description	ECC error, double error detection
	0	No error
DED_ERR_FLT	1	A double error has been detected (and only one corrected) in the fuses
	Reset condition	POR/clear on write 0
	Description	Error in the loading of fuses
	0	No error
FUSE_ERR_FLT	1	The lock bit was not set after loading, meaning transfer of the fuse values is aborted
	Reset condition	POR/clear on write 0

Table 59. FAULT2_STATUS...continued

[1] w0c: write 0 to clear

11.26 Fault status register 3 – FAULT3_STATUS

Table 60. FAULT3_STATUS

FAULT	3_STAT	US														
\$26	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]
Read	CC_ OVR_ FLT	DIAG_ TO_ FLT	EOT_ CB14	EOT_ CB13	EOT_ CB12	EOT_ CB11	EOT_ CB10	EOT_ CB9	EOT_ CB8	EOT_ CB7	EOT_ CB6	EOT_ CB5	EOT_ CB4	EOT_ CB3	EOT_ CB2	EOT_ CB1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CC_OV	/R_FLT	Descrip	otion	Overflo	w indica	tor on th	e COUL	OMB_CI	NT1,2[C	OULOM	B_CNT]	or CC_I	NB_SAM	IPLES		
		0		No erro	r											
		1		COULC	COULOMB_CNT1,2[COULOMB_CNT] or CC_NB_SAMPLES went in overflow											
		Reset conditio	eset POR /Clear On Write 0 CC_P_OVF,CC_N_OVF, SAMP_OVF and CC_OVT													
DIAG_1	го_	Descrip	otion	Timeou	t of diag	nostic st	ate									
FLT		0		No time	out											
		1		The sys	stem has	exited i	tself fror	n diagno	stic stat	e after ti	neout					
		Reset conditio	on	POR/cl	ear on w	rite 0										
EOT_C	Bx	Descrip	otion	End of been st		balancir	ng notific	ation – i	ndicates	when a	cell bala	ance time	er has e	xpired ar	nd driver	has
		0		Cell ba	ance tim	ner has r	not timed	out								
		1		Cell ba	ance tim	ner has t	imed out	t								
		Reset conditio	on	POR/cl	ear on w	rite 0										

[1] w0c: write 0 to clear

11.27 Fault mask register 1 – FAULT_MASK1

The FAULT_MASK1 register allows the user to selectively mask fault bits associated to the FAULT1_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

Table 6	1. FAULT	MASK1

IASK1															
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
			MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_
									1_F	0_F					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Descriptio	n	Prevent th												
-	0		The flag ir	n position ()	<) activates	the FAULT	pin								
MASK_x_F 1 No activation															
	Reset cor	ndition	POR												
	bit 15 0 0	bit 15 bit 14 0 0 0 0 0 0 F 1	bit 15 bit 14 bit 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	bit 15 bit 14 bit 13 bit 12 MASK_ 0 0 0 12_F 0 0 0 0 0 Description Prevent tr 0 The flag ir 1 No activat	bit 15 bit 14 bit 13 bit 12 bit 11 0 0 0 MASK_11_F MASK_11_F 0 0 0 12_F MASK_11_F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The flag in position (x) 1	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 0 0 0 12_F MASK_11_F MASK_10_F 0 0 0 12_F MASK_11_F MASK_10_F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F Description Prevent the corresponding flags 0 The flag in position (x) activates 1 No activation 1 No activation 1	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F Description Prevent the corresponding flags in FAULT1 0 The flag in position (x) activates the FAULT1 1 1 No activation No No	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_9_F MASK_8_F 0	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 0 0 0 12_F MASK_11_F MASK_10_F MASK_19_F MASK_8_F MASK_7_7_F 0	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_7 MASK_7 MASK_7 MASK_7 MASK_9_F MASK_7 MASK MA	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 Image: Mark 10 MASK 11 MASK 11 MASK 10_F MASK 9_F MASK 8_F MASK 7_F MASK 6_F MASK 5_F 0 <td>bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_8_F MASK_7_F MASK_6_F MASK_7_F MASK_6_F MASK_4_F MASK_4_F 0</td> <td>bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_9_F MASK_7_7_F MASK_6_F MASK_6_F MASK_4_F MASK_3_F MASK_3_F MASK_3_F MASK_6_F MASK</td> <td>bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 3 bit 2 10 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_9_F MASK_7_F MASK_6_F MASK_6_F</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_8_F MASK_7_F MASK_6_F MASK_7_F MASK_6_F MASK_4_F MASK_4_F 0	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_9_F MASK_7_7_F MASK_6_F MASK_6_F MASK_4_F MASK_3_F MASK_3_F MASK_3_F MASK_6_F MASK	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 3 bit 2 10 0 0 0 12_F MASK_11_F MASK_10_F MASK_9_F MASK_9_F MASK_7_F MASK_6_F MASK_6_F	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

11.28 Fault mask register 2 – FAULT_MASK2

The FAULT_MASK2 register allows the user to selectively mask fault bits associated to the FAULT2_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

FAULT	_MASK2	2														
\$28	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	MASK	MASK	MASK	MASK	MASK	MASK	MASK			MASK	MASK	MASK	MASK	MASK	MASK	MASK
Read	15_F	14_F	13_F	12_F	11_F	10_F	9_F	0	0	6_F	5_F	4_F	3_F	2_F	1_F	0_F
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Preven	the corr	respond	ing flags	in FAUL	T2_STA	TUS to a	activate t	he FAUI	_T pin			
		0		The flag	g in posit	tion (x) a	activates	the FAU	JLT pin							
MASK_	x_F	1		No activ	/ation											
		Reset conditio	on	POR												

Table 62. FAULT_MASK2

11.29 Fault mask register 3 – FAULT_MASK3

The FAULT_MASK3 register allows the user to selectively mask fault bits associated to the FAULT3_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

Table 6	63. FAI	JLT_M	ASK3													
FAULT_N	IASK3															
\$29	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_
Read	15_F 14_F 13_F 12_F 11_F 10_F 9_F 8_F 7_F 6_F 5_F 4_F 3_F 2_F 1_F 0_F															
Reset	· ·															
		Descriptio	on	Prevent th	ne correspo	nding flags	in FAULTS	STATUS	to activate	the FAULT	pin				•	
MACK				The flag i	n position (x) activates	the FAUL1	pin								
MASK_X_	/ASK_X_F	1		No activa	tion											
			ndition	POR												

11.30 Wake-up mask register 1 – WAKEUP MASK1

The WAKEUP_MASK1 register enables wake-up events related to several FAULT1_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

Table 64.	WAKEUP	MASK1

WAKEUP	_MASK1															
\$2A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write				MASK_	MASK_				MASK_			MASK_	MASK_	MASK_	MASK_	MASK_
									3_F	2_F	1_F	0_F				
Reset	0	0	0	1	1	0	0	0	1	0	0	1	1	1	1	1
		Descriptio	n	Prevent th	e correspo	nding flags	in FAULT1	_STATUS	to wake-up	the device						
MARKY	-	0		The flag ir	position (>	<) wakes th	e device up	, when act	ive							
WASK_X_	IASK_x_F	1		No wake-	up is possit	ole by this s	source									
		Reset cor	ndition	POR												

11.31 Wake-up mask register 2 – WAKEUP_MASK2

The WAKEUP_MASK2 register enables wake-up events related to several FAULT2_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

Table 65. WAKEUP_MASK2

WAKEUP	_MASK2															
\$2B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_	MASK_			MASK_	MASK_		Mask_	MASK_	
										2_F	1_F	0				
Reset	1	1	1	1	1	1	1	1	0	0	1	1	0	1	1	0
		Descriptio	on	Prevent th	e correspo	nding flags	in FAULT2	2_STATUS	to wake-up	the device						
MACK				The flag in	n position (2	<) wakes th	e device, w	/hen active								
WASK_X_	MASK_X_F 1	1		No wake-	up is possil	ole by this s	source									
		Reset cor	ndition	POR												

11.32 Wake-up mask register 3 – WAKEUP_MASK3

The WAKEUP_MASK3 register enables wake-up events related to several FAULT3_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

WAKEUP	_MASK3															
\$2C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	MASK_ 15_F		MASK_ 13_F		MASK_ 11_FK	MASK_ 10_F	MASK_ 9_F	MASK_ 8_F	MASK_ 7_F	MASK_ 6_F	MASK_ 5_F	MASK_ 4_F	MASK_ 3_F	MASK_ 2_F	MASK_ 1_F	MASK_ 0_F
Read		0		·												
Reset	1	0	1	1	1 1										1	
		Descriptio	n	Prevent the corresponding flags in FAULT3_STATUS to wake-up the device												
MASK x	-	0		The flag ir	position (>	<) wakes th	e device, w	hen active								
WIASK_X_	ŗ	1		No wake-u	up is possit	ole by this s	ource									
		Reset cor	ndition	POR												

Table 66. WAKEUP_MASK3

11.33 Coulomb count number of samples register – CC_NB_SAMPLES

The CC_NB_SAMPLES register contains the 16-bit value, which represents the number of samples accumulated in the coulomb counter at the moment of copying its value to the COULOMB_CNT registers.

	<u></u>															
CC_NE	CC_NB_SAMPLES															
\$2D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	CC_NB_SAMPLES															
Reset	0															
	Description Number of samples accumulated for the coulomb count value															
CC_NE SAMPL		Reset conditio	on	POR / /	ADC_CF	G[CC_F	RST]									

Table 67. CC_NB_SAMPLES

11.34 Coulomb count register – COULOMB_CNT

The COULOMB_CNT register contains the current 32-bit value of the accumulated current samples. Data representation is signed two's complement, with V_{2RES} resolution. Division of Δ COULOMB_CNT by Δ CC_NB_SAMPLES provides the average current, where the operator Δ denotes the variation over two different readings of a state. Subsequent multiplication by the corresponding elapsed time Δ t provides the charge flowed out/in of the battery.

Battery cell controller IC

Table 68. COULOMB_CNT1

COULC	DMB_CM	NT1														
\$2E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write															·	
Read							CC	ULOMB	_CNT_I	MSB						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COULC		Descrip	otion	Coulor	nb count	ing accu	mulator									
CNT_M	_	Reset conditio	on	POR/A	DC_CF	G[CC_R	ST]									

Table 69. COULOMB_CNT2

COUL	омв_с	NT2														
\$2F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read							COL	JLOMB	_CNT_	LSB						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COUL		Descri	ption	Coulor	nb cour	nting ac	cumula	tor								
CNT_L	_	Reset conditi	on	POR /	ADC_C	FG[CC	_RST]									

11.35 Current measurement registers – MEAS_ISENSE1 and MEAS_ISENSE2

The MEAS_ISENSEx registers contain the signed two's complement value of the battery current measured on demand.

Table 70. MEAS_ISENSE1

MEAS	ISENSE	1														
\$30	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	DATA_ RDY							ME	AS_I_N	ISB						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			otion					ion is co eived ei	•		0	•		_	DY bit is	cleared
		0		A new s	sequenc	e of con	versions	is curre	ntly runr	ning						
		1		A data	is availa	ble in M	EAS_ISE	ENSE1								
	MEAS_I_MSB	Reset conditio	on	POR												
		Descrip	otion	ISENSI	E value,	compen	sated in	gain and	d temp, s	signed						
MEAS_		Reset conditio	on	POR												

Battery cell controller IC

Table 71. MEAS_ISEN	SE2
---------------------	-----

MEAS_IS	ENSE2															
\$31	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write									w0c ^[1]	w0c ^[1]						
Read	DATA_ RDY	0	0	0	0	0	PGA_	GAIN	ADC2_ SAT	PGA_ GCHANG	0 E	0		MEA	S_I_LSB	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descriptio	on		set when t either throu					s updated.	The DATA	_RDY bit is	cleared w	hen a requ	est to conve	ert is
DATA_RD	Y	0		A new see	quence of c	onversions	is currently	y running								
		1		Data is av	ailable in N	IEAS_ISE	NSE2									
		Reset cor	ndition	POR												
		Descriptio														
		0 0		4												
	N	0 1		16												
FGA_GAI	PGA_GAIN	10		64												
		11		256												
		Reset cor	ndition	POR												
		Descriptio	on	ADC2 sat	uration info	rmation										
ADC2 SA	т	0		No satura	tion reporte	ed										
ADUZ_3P	AI .	1		ADC2 has	s saturated	during the	ISENSE or	n-demand o	onversion							
		Reset cor	ndition	POR/clea	r on write 0											
		Descriptio	on	PGA gain	change inf	ormation d	uring ISEN	SE on-dem	and conve	rsion						
PGA GCI		0		No gain c	hange durii	ng ISENSE	on-deman	d measure	ment; resul	It is accurate	e					
FGA_GCI	ANGE	1		The PGA	gain has cl	nanged bet	ween the ty	vo chopped	d measurer	ments						
		Reset cor	ndition	POR/clea	r on write 0											
MEAS I	I SB	Descriptio	on	ISENSE V	value, comp	ensated in	gain and te	emp, signe	d							
		Reset cor	ndition	POR												

[1] w0c: write 0 to clear

11.36 Measurement registers – MEAS_xxxx

The MEAS_xxxx registers contain the measured values as a result of on-demand conversions. Note that the cyclic conversions leave no trace in these registers, as they are only used to update the OV/UV/OT/UT flags and other status information.

Table	72.	MEAS	XXXX

MEAS_	xxxx															
\$32 to \$4A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	DATA_ RDY							М	EAS_xx	xx						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion								egister is SOC or (_ ,	bit is cle	ared
DATA I	סחע	0		A new s	sequenc	e of con	versions	is curre	ntly runn	ning						
		1		A data	s availa	ble in MI	EAS_xxx	x								
		Reset conditio	on	POR												

	Description	Value is unsigned, resolution is $V_{CT_ANx_RES}$ independently on the selected resolution of ADC_CFG
MEAS_xxxx	Reset condition	POR

Table 72. MEAS_xxxx...continued

11.37 Overvoltage undervoltage threshold register – TH_ALL_CT

Resolution for OV threshold and UV threshold are, respectively, $V_{CTOV(TH)}$ and $V_{CTUV(TH)}$.

Table	73.	TH	ALL	СТ

TH_AL	L_CT															
\$4B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write													- IN/ TI			
Read				ALL_CT	_0v_1	1						ALL_C1	_0v_1	7		
Reset	1	1 0 1 0 1 1 1 0 0 0 0 0 0 Description Overvoltage threshold setting for all cell terminals. Enabled through register OV UV EN														
	1	Descrip	otion	Overvo	Itage thr	eshold s	setting fo	or all cell	termina	ls. Enab	led throu	igh regis	ter OV_	UV_EN		_
	T_OV_	110101	11	Default	overvol	tage thre	eshold se	et to 4.2	V							
ALL_CT_ TH		Reset condition	on	POR												
		Descrip	otion	Underv	oltage th	nreshold	setting	for all ce	ll termin	als. Ena	bled thro	ough regi	ster OV	UV_EN	I	
ALL_C	T_UV_	100000	000	Default	undervo	oltage th	reshold	set to 2.	5 V							
TH		Reset conditio	on	POR												

11.38 Overvoltage undervoltage threshold register – TH_CTx

Table 74. TH_CTX

тн_ст	x															
\$4C to \$59	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	-			CTx_C	DV_TH			·			•	CTx_	JV_TH			
Read								_								_
Reset	1	1	0	1	0	1	1	1	1	0	0	0	0	0	0	0
		Descrip	otion							erminals st be log						
CTx_O	V_TH	110101	11	Default	overvol	age thre	shold se	et to 4.2	V							
		Reset conditio	on	POR												
		Descrip	otion							terminal st be log						
CTx_U	V_TH	100000	00	Default	undervo	ltage th	reshold	set to 2.	5 V							
		Reset conditio	on	POR												

11.39 Overtemperature, undertemperature threshold registers - TH_Anx_OT, TH_Anx_UT

Registers TH Anx OT and TH Anx UT contain the individually programmed overtemperature and undertemperature value for each analog input.

lable /	5. TH	_ANX_															
TH_An	x_OT																
\$5A to \$60	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write												от ти	1				
Read	0	0	0	0	0	0	ANx_OT_TH										
Reset	0	0	0	0	0	0	0	0	1	1	1	0	1	1	0	1	
		Descrip	otion	Overte	mperatu	re thresh	nold sett	ng for a	nalog inp	out x							
Anx O	т тн	001110	01101	Overte	mperatu	re defau	lt set to	1.16 V									
	_	Reset conditio	on	POR													

Table 75 TH ANY OT

Table 76. TH ANX UT

TH_Ar	אר_UT																
\$61 to \$67	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write															•		
Read	0	0	0	0	0	0	ANx_UT_TH										
Reset	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	0	
		Descri	ption	Undert	empera	ature th	reshold	setting	for ana	alog inp	ut x				-	_	
Anx U	-	11000	01110	Undert	empera	ature de	efault se	et to 3.8	2 V								
		Reset conditi	on	POR													

11.40 Overcurrent threshold register – TH_ISENSE_OC

Registers TH ISENSE OC contains the programmed overcurrent threshold in sleep mode.

Table 77. TH_ISENSE_OC

TH_ISE	ENSE_O	C														
\$68	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write										TH ISE		<u>,</u>				
Read	0	0	0	0						III_IOL						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Sleep n	node ISE	ENSE ov	ercurrer	t thresh	old, unsi	igned. R	esolutior	n is 1.2 µ	V/LSB.			
TH_ISENSE_ OC Reset POR condition																

11.41 Over coulomb counter threshold registers – TH_COULOMB_CNT

The coulomb counter threshold in sleep mode is given by the following two registers.

Table 78. TH_COULOMB_CNT_MSB

тн_со	OULOME	B_CNT_I	MSB													
\$69	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	TH_COULOMB_CNT_MSB															
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH_		Descrip	otion				Over	coulomb	countin	g accum	ulator th	reshold	(MSB)			
COULOMB_ CNT_MSB POR condition																

Table 79. TH_COULOMB_CNT_LSB

TH_CO	OULON	IB_CN1	LSB													
\$6A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	TH COULOMB CNT LSB															
Read		TH_COULOMB_CNT_LSB														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH_		Descri	ption	Over c	oulomb	countir	ng accu	imulato	r thresh	nold (LS	B). Res	olution	is V _{2RE}	s		
COUL	TH_ Description Over coulomb counting accumulator threshold (LSB). Resolution is V _{2RES} . COULOMB_ Reset condition POR															

11.42 Silicon revision register – SILICON_REV

Table 80. SILICON_REV

SILICO	N_REV															
\$6B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write												_			_	
Read	0	0	0	0	0	0	0	0	0	0		FREV			MREV	
Reset	0	0	0	0	0	0	0	0	0	0	F	F	F	М	М	М
	1	Descrip	otion	Full ma	sk revis	ion			-1			_	1			
		001		Pass 1	.x											
FREV		010		Pass 2	.x											
		Reset condition	on	POR												
		Descrip	otion	Metal r	nask rev	vision										
		000		Pass y	.0											
MREV		001		Pass y	.1											
		Reset condition	on	POR												

11.43 EEPROM communication register EEPROM_CTRL

Table 81. EEPROM_CTRL

EEPRO	ОМ_СТР	 RL														
\$6C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	R/W		l	EEPRO	M_ADD)					. [DATA_T	O_WRI	ΓE	1	
Read	BUSY	ERROR	EE_ PRESENT	0	0	0	0	0				READ	D_DATA			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Description	n	Read/v	vrite bit,	directs	the 337	71 to re	ad or w	rite from	EEPR	OM		·		
R/W		0		Write												
FK/ V V		1		Read												
		Reset con	dition	POR												
EEPRO	DM_	Description	n	EEPRO	OM add	ress to r	ead or	write								
ADD		Reset con	dition	POR												
DATA		Description	n	Data to	be writ	ten into	the EE	PROM								
WRITE		Reset con	dition	POR												
		Description	n	Busy b	it											
BUSY		0		Indicat	es the l	C has co	omplete	ed the El	EPRON	l read or	write o	peration	1			
0031		1		Indicat	es the l	C is in th	ne proc	ess of p	erformir	ng the E	EPROM	l read or	r write o	peratior	ı.	
		Reset con	dition	POR												
		Description	n	EEPRO	OM com	municat	tion err	or bit.								
ERRO	D	0		No erro	or occur	red duri	ng the	commur	nication	to EEPF	ROM					
LINIO	N	1		An erro	or occur	red durii	ng the o	commun	ication	to EEPF	ROM					
		Reset con	dition	POR												
		Description	n	EEPRO	OM dete	ection										
EE_		0		No EE	PROM	detected										
PRESE	ENT	1		EEPRO	OM has	been de	etected	and pre	sent							
		Reset con	dition	POR												
READ_	ΠΑΤΑ	Description	า	Data re	ead in th	ne EEPF	ROM at	address	s given l	by EEPF	ROM_A	DD				
NEAD_		Reset con	dition	POR												

11.44 ECC signature 1 register

Table 82. DED_ENCODE1

DED_E	NCODE	1														
\$6D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write											,					
Read	DED_HAMMING_COUT1_31_16															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED_		Descrip	otion	Reports	s the 16	MSBits 1	to encod	e in the	fuse ma	trix (ECC	;)	-				
HAMM COUT1 16	_	Reset conditio	on	POR												

11.45 ECC signature 2 register

Table 83. DED_ENCODE2

DED_E	NCODE	2														
\$6E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read							DED_HA	AMMING	_COUT	_1_15_()					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED_		Descrip	otion	Report	the 16 L	SBits to	encode	in the fu	se matri	x (ECC)						
HAMMING_ COUT_1_15_ 0 POR condition																

11.46 FUSE mirror and data control

Table 84. FUSE_MIRROR_DATA

FUSE_	MIRRO	R_DATA														
\$6F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write				•					DATA							
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	Fuse m	irror dat	a to read	d or write)								
FMR_C	DATA	Reset conditio	on	POR												

Table 85. FUSE_MIRROR_CNTL

FUSE_	MIRROF	R_CNTL														
\$70	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]												FSTM		FST	
Read	SEC_ ERR_ FLT	0	0		FI	MR_ADI	DR		0	0	0	0	0		FST_ST	Г
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Descrip	otion	ECC error, single error correction												
SEC E	DD	0		No erro	or											
FLT	.NN_	1		A single	e error h	as been	detecte	d and co	orrected	The IC	is usable	e, must r	not be cor	nsidered	d defectiv	/e.
		Reset conditio	on	POR/cl	ear on w	rite 0										
		Descrip	otion	Fuse m	irror reg	ister ado	lress									
FMR_A	DDR	Reset conditio	on	POR												
		Descrip	otion	Fuse st	ate write	e mask. [·]	This bit o	controls	the write	e access	to the F	ST[2:0]	bits.			
		0		Writing	in FST b	oits has	no effect	t								
FSTM		1		FST bit	s are un	locked f	or writing	9								
		Reset conditio	on	POR												_

MC33771C

	Description	Fuse state control. write to this register controls the switching of the fuse state machine. Read in this register enables tracing the current state.
FST	000	Refer to Section 9.13 for bit description.
	Reset condition	POR
	Description	Fuse state control. Read in this register enables to trace the current state
FST ST	000	Refer to Section 9.13 for bit description.
	Reset condition	POR

Table 85. FUSE_MIRROR_CNTL...continued

[1] w0c: write 0 to clear

11.47 Reserved

Table 86. RESERVED

Reserv	ed															
\$71 to \$FF	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read		Do not change														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.48 Fuse bank

Table 87. FUSE_BANK

Bank address								Da	ata												
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0					
\$00		. (GCF_c	old_c1	3					Ģ	GCF_ro	om_c1	3								
\$01		(GCF_c	old_c1	1					C	GCF_rc	om_c1	1								
\$02			GCF_c	cold_c9)					(GCF_r	com_c	9								
\$03			GCF_c	cold_c7	,					(GCF_r	com_c	7								
\$04			GCF_c	cold_c5	5					(GCF_r	com_c	5								
\$05			GCF_c	cold_c3	1					(GCF_r	com_c	3								
\$06			cold_	c2vs1						(GCF_r	c	1								
\$07			GCF_h	not_c13	3			GCI	F_hot_	i256			GCF	_cold	_i256						
\$08			GCF_ł	not_c11				GC	F_hot	_i64			GC	F_cold							
\$09			GCF_	hot_c9				GC	F_hot	_i16			GC	F_cold							
\$0A			GCF_	hot_c7				GC	CF_hot	_i4			GC	F_col	d_i4						
\$0B			GCF_	hot_c5				GCF	_ANx_	ratio		roc c14	om_ vs13	hc	_cold_i256 _cold_i64 _cold_i16 ^z _cold_i4 hot_c14vs1						
\$0C			GCF_	hot_c3				h	ot_c2v	s1		roc c12	om_ vs11	hc	_cold_i256 cold_i64 cold_i16 =_cold_i4 hot_c14vs13 hot_c12vs17						
\$0D	Single Side	c2_c	offset	co c14v	ld_ /s13	co c12v	_		ld_ lvs9	cold_	c6vs5	roc c10	om_)vs9	h	ot_c10v	vs9					

Battery cell controller IC

Bank address	Data														
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1
\$0E	GCF_hot_c1							cold_c8vs7 cold_c4vs3			room_ c8vs7		ł	hot_c8vs7	
\$0F	GCF_stack							room_c2vs1			room_ c6vs5		ł	hot_c6vs5	
\$10	GCF_cold_c1							GCF_IcTemp			room_ c4vs3		ł	hot_c4vs3	
\$11	cold_Vbgp2vs1							GCF_i256							
\$12	cold_Vbgp1vs1							GCF_i64							
\$13	hot_Vbgp2vs1							GCF_i16							
\$14	hot_Vbgp1vs1						GCF_i4								
\$15	room_Vbgp2vs1						1	room_Vbgp1vs1							
\$16	DED_ENCODE 2														
\$17	DED_ENCODE 1														
\$18	Traceability														
\$19	Traceability														
\$1A	Reserved											Traceability			

Table 87. FUSE_BANK...continued

12 Safety

12.1 Safety features

MC33771C was developed as a Safety Element out of Context (SEooC). All the assumptions of use taken into account are described in the Safety manual.

MC33771C has been developed to be ASILC Qualified. Nevertheless, the MC33771C can be employed within systems performing ASIL D functions, since the MC33771C can achieve the corresponding ISO 26262 architectural metrics. This holds true only if the system integrator uses all safety mechanisms recommended in the safety manual, under the stated conditions of use and the fulfillment of the assumed general and specific requirements stated therein.

Diagnostics and safety features of the device are not described in the present document. To know about them, the user is referred to the MC33771C Safety Manual, whose information content is essential for any safety related application.

13 Typical applications

13.1 Introduction

NXP Semiconductors has developed a battery cell controller IC supporting both centralized and distributed battery management architectures. Centralized battery monitoring systems contain a controller module sensing individual differential cell voltages through a wiring harness. Distributed systems locate monitoring devices close to the lithium-ion batteries and use a communication interface to transfer data to the main controller MCU.

There are significant advantages to using transformers for isolation and communication. The most obvious benefit of the pulse transformers is the high degree of voltage isolation. Transformers specified in this document

are automotive qualified and rated at 3750 Vrms. Using pulse transformers allow the NXP battery management system to achieve communication rates of 2.0 Mbps with very low radiated emissions.

An added benefit to the transformer daisy chain network is the ability to loop the network back to the pack controller. This feature allows the user to verify communication to each node in the daisy chain.

13.1.1 Centralized battery management system

A centralized system is comprised of a single transformer driver with a transformer or capacitive isolation between each battery cell controller IC.

PACK CONTROLLER ΕN Ì battery cells MC33771C **CLUSTER 1** SPI TX RDTX+ MC33664 MCU RDTX-SPI_RX TRANSCEIVER ISOLATION INTB cells MC33771C battery (**CLUSTER 2** -----ISOLATION battery cells MC33771C **CLUSTER 3** ISOLATION cells MC33771C battery CLUSTER 4 UP to 63 ISOLATION aaa-032627

The centralized battery monitoring system using capacitive isolation is shown in Figure 34.

Figure 34. Centralized battery monitoring system with capacitive isolation

The centralized battery monitoring system using transformer isolation is shown in Figure 35

Battery cell controller IC

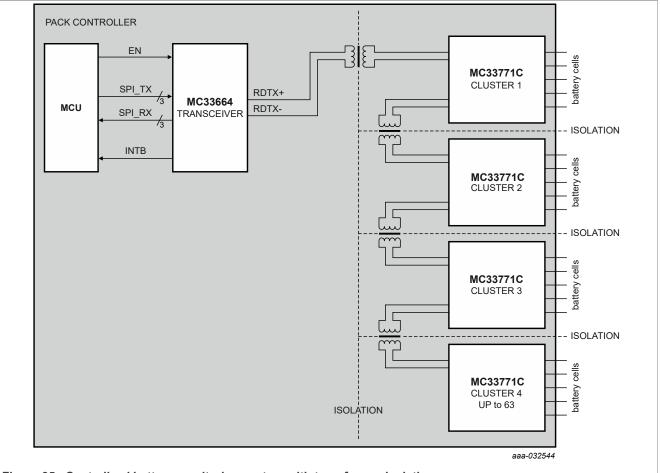
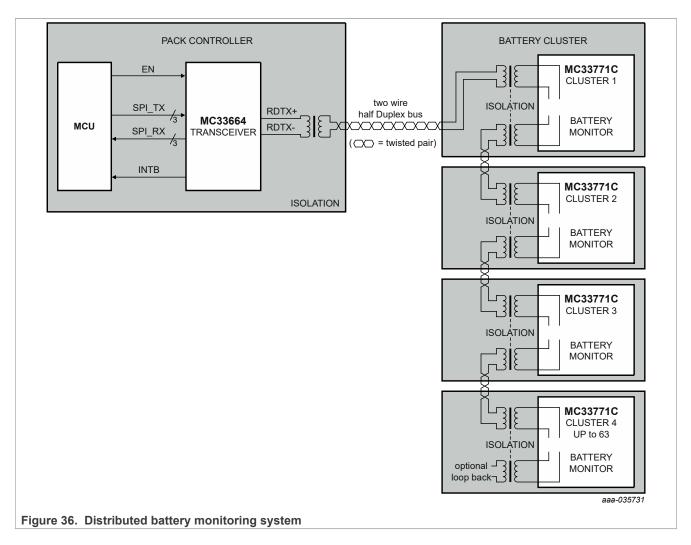
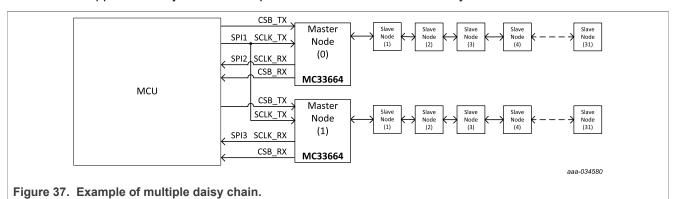
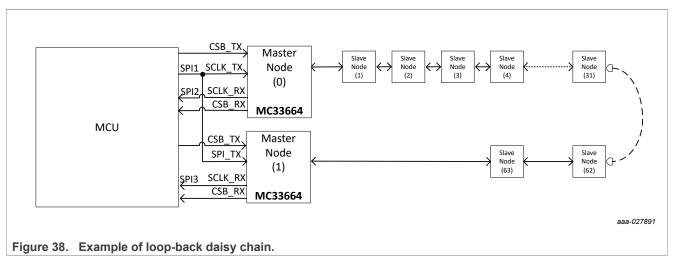



Figure 35. Centralized battery monitoring system with transformer isolation

13.1.2 Distributed battery management system


The distributed battery management solution is identical to the centralized system with an additional transformer and daisy chain cable in the pack controller and between each node.

Battery cell controller IC


13.1.3 Multiple daisy chain

In a distributed system, the MC33771C ICs can be connected in multiple daisy chains. The number of daisy chains supported by the MC33771C IC is configurable with the MSB of the INIT[CID] register. Using one bit MSB of CID supports two daisy chains with up to 31 slave devices in each daisy chain. Similarly, using two bit MSB of CID supports 4 daisy chains with up to 15 slave devices in each daisy chain.

13.1.4 Loop-Back Daisy chain

In a distributed system, the MC33771C IC can also support a loop-back daisy chain with two master nodes connected at two SPI ports of the MCU. The slave devices are connected at each end of the master nodes as shown in the figure.

Note: In the case of a loop-back daisy chain configuration, the MCU shall use only one master node at a time for communicating with the MC33771C IC.

Note: If multiple daisy chains are used in case of loop-back daisy chain communication, then two master nodes forming one complete loop are to be assigned with one daisy chain address.

13.2 MC33771C External Components

This section provides information about recommended external components and how to select them.

13.2.1 Cell terminal filters

Figure 39 and Figure 44 show the recommended second order low-pass filters for cell voltages.

Battery cell controller IC

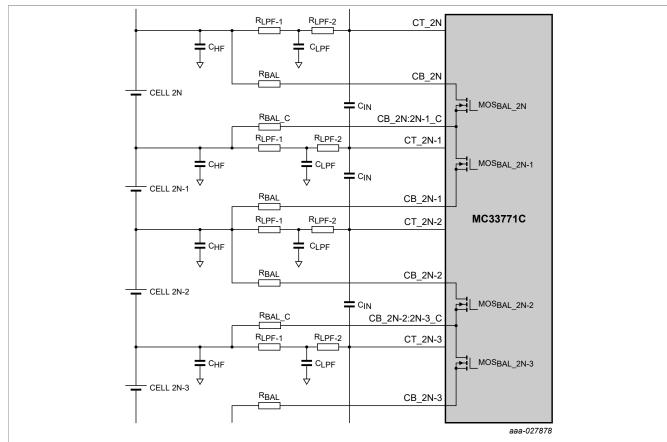


Figure 39. Second order cell terminal filters and cell balancing resistors (internal cell balancing MOSFETs are shown for clarity)

ID	Value	Units	Comments
C _{HF}	0.047	μF	Value used and tested at NXP Semiconductors to withstand ESD gun and hot plug
R _{LPF-1}	3	kΩ	Value used and tested to withstand hot plug at NXP. Low-pass filter resistor $R_{\text{LPF-1}}$ together with C_{LPF} determine the filter cut-off frequency. This value must not be changed. Component tolerance depends on the wanted accuracy for the bandwidth. See Equation (1) and Equation (2).
C _{LPF}	0.1	μF	This capacitance value together with R_{LPF-1} provides 530 Hz cut-off frequency. Value used and tested to withstand hot plug at NXP. Component tolerance depends on the wanted accuracy for the bandwidth. See Equation (1) and Equation (2).
R _{LPF-2}	2	kΩ	Value used and tested to withstand hot plug at NXP. This value must not be changed. No special requirement for the tolerance of this component.
C _{IN}	0.01	μF	Value used and tested to withstand hot plug at NXP. This value must not be changed. No special requirement for the tolerance of this component.
R _{BAL}	Х	Ω	Any value is possible, as long as the cell balance current does not exceed 300 mA
R _{BAL_C}	R _{BAL} /5	Ω	Maximum value

Table 88. CT filter components

Using the arrangement shown in Figure 39, the filter cut-off frequency in Hz, depending on the measurement time constant τ , is given by the following formula.

$$f_{cut = 1/(2\pi\tau)}$$

$$\tau = R_{LPF-1}C_{LPF}$$

For noisy applications if the customer cannot guarantee to keep CTREF voltage within the limits described in <u>Table 8</u> footnote <u>6</u>, a setup of dual anti-parallel Schottky diodes can be added between CTREF battery connector pin and module ground to limit the voltage drop amplitude in transient. These diodes should be placed close to the corresponding Rlpf-1 resistor (CT_REF pin low pass filter).

13.2.2 Unused cells

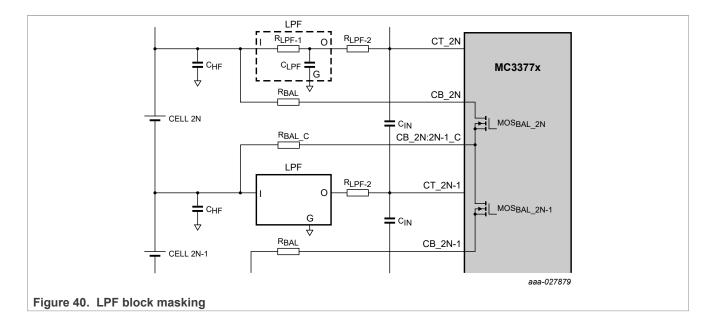
If the cluster has less than the maximum number of cells, the usage of cell terminal pins CTx and cell balancing pins CBx has to satisfy some constraints. Each external LPF block is masked, as shown in Figure 40, to simplify the diagrams. As a convention, cell numbering is exactly the same as the associated CTx. For example, cell 12 is the one whose positive terminal is connected to CT12, even though it is the 5th cell in a seven cell system, see Figure 41. A minimum of seven cells must be used. At least cell 1 through cell 4 and cell 12 through cell 14 must be used. Unused cells must start with CT5. Stacked cells arrangements from 7 to 14 cells are described in Table 89.

stacked cells										
Cell	14	13	12	11	10	9	8	7		
1	CT_REF/CT1									
2	CT1/CT2									
3	CT2/CT3									
4	CT3/CT4									
5	CT4/CT5	CT5/CT6	CT6/CT7	CT7/CT8	СТ8/СТ9	CT9/CT10	CT10/CT11	CT11/CT12		
6	CT5/CT6	CT6/CT7	CT7/CT8	СТ8/СТ9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13		
7	CT6/CT7	CT7/CT8	СТ8/СТ9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14		
8	CT7/CT8	СТ8/СТ9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14			
9	СТ8/СТ9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14				
10	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14					
11	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14						
12	CT11/CT12	CT12/CT13	CT13/CT14							
13	CT12/CT13	CT13/CT14								
14	CT13/CT14									

Table 89. Stacked cells arrangements

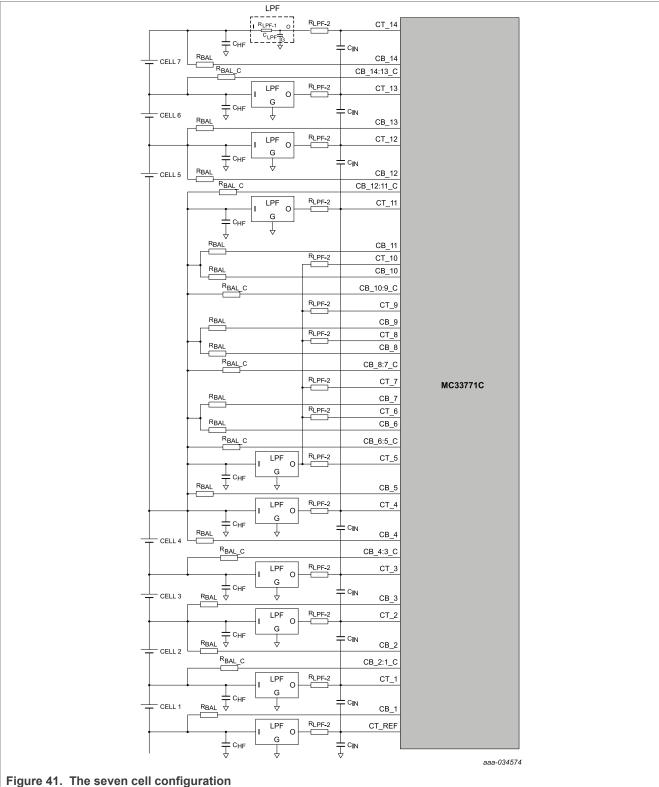
Notes:

- CT5 is always populated with the full low-pass filter.
- Other not used pins are shorted directly to CT5.


As a general rule, unused CTx have to be terminated to the positive terminal of cell 4 (this is also valid for the 7 to 8 channels version). As shown, several external components may be removed. Cell balancing resistors (R_{BAL}) of unused cells are to be mounted and terminated at the positive terminal of cell 4. Resistors for hot plug protection R_{LPF-2} must also be mounted.

A different number of missing cells leads to an application diagram analogous to Figure 41. In general, if the cluster has N missing cells, it is possible to save N-2 times C_{HF} , N-2 times R_{LPF} -1, N-2 times C_{LPF} and N times C_{IN} mentioned in Table 88.

(1)


(2)

Battery cell controller IC

NXP Semiconductors

MC33771C

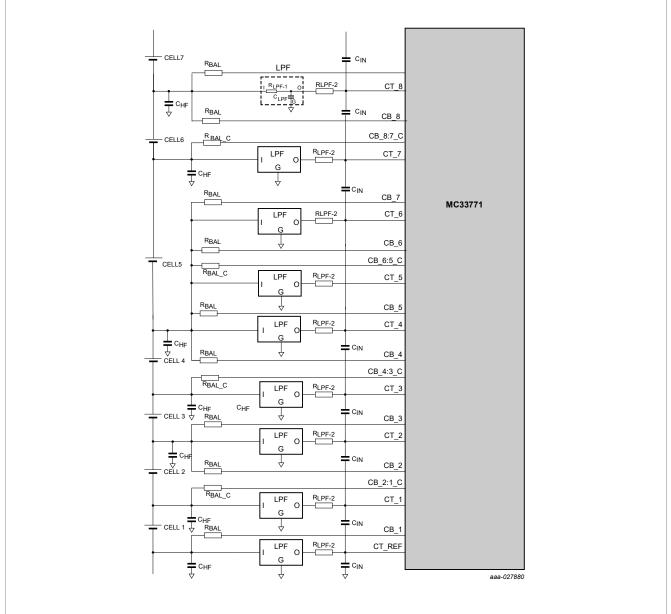
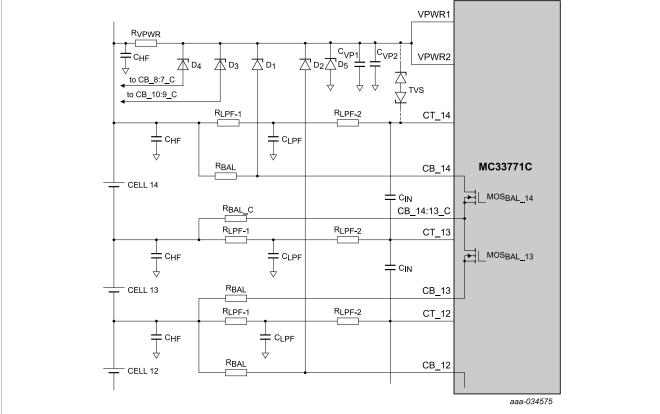


Figure 42. The twelve cell configuration

13.2.3 Hot plug protection


The VPWR line, shown in Figure 43, must be protected by a serial resistor in order to limit the inrush current and a parallel capacitor to filter fast voltage variation. A higher value of R_{VPWR} provides better protection. The drawback of higher R_{VPWR} is higher voltage drop. The minimum battery voltage (V_{BAT}) supplying the device through the R_{vpwr} resistor is then equal to Equation (12). As the stack voltage is measured across VPWR1, 2 pins and ground, stack measurement is affected by such voltage drop. Furthermore, voltage drops higher than $V_{VPWR,CT}$ have a negative impact on cell measurement accuracy.

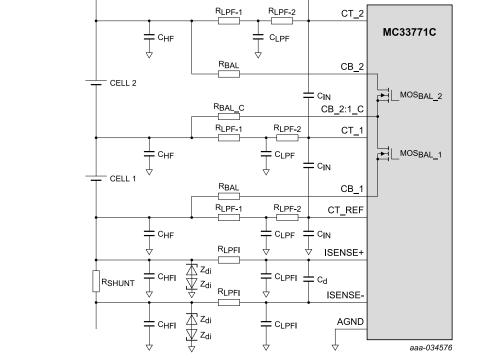
$\min(V_{\text{BAT}}) = \max(V_{\text{PWR(UV POR)}} + R_{\text{VPWR}} * \left[\max(I_{\text{VPWR(TPL TX)}}) + \max(I_{\text{LIM VCOM(OC)}}) + \max(I_{\text{LIM VANA(OC)}})\right] \right)$ (12)

In order to withstand hot plug, it is mandatory to use Zener diodes as shown in Figure 43 close to the VPWR line. In general, all components, whose values are given in Table 90, are mandatory to protect the IC when a connection is made to the battery pack. Changing the value of any external components listed in Table 90 may result in serious IC damage during the connection to the battery pack. Capability of the device to sustain random connection to live voltage for pins VPWRx, CT_x, CB_x, CTREF, GND, ISENSE+ and ISENSE– has been extensively evaluated. Nevertheless, the total number of random combinations related to those pins cannot be entirely tested. Therefore, despite all engineering efforts performed by NXP, it is the responsibility of the system provider to ensure safe connection to the battery pack.

Furthermore, it is the responsibility of the system provider to manage the risk of short circuits on any external components connected to the IC, including external low-pass filters. A short-circuit on the pins connected to the battery can lead to high current flowing through the IC, causing a thermal event on the PCB. The system provider must employ common practices, such as fuse protection on the VPWR line, series of capacitors on the CT pins, appropriate power rating for external resistors, or any other appropriate measure capable to mitigate hazards.

Zener diodes D1 to D4 are required to protect internal ESD structures between VPWR and CB_x pins, when VPWR is connected before cells. The energy to charge the C_{HF} capacitors on CB_x pins exceeds the capability of the internal ESD devices for VPWR max operating range. Zener diodes D1 to D4 are placed on CB_14, CB_12, CB_10:9_C and CB_8:7_C pins according to the internal ESD protection network. The joint presence of these Zener diodes and the set of internal cell balancing transistors, which are highly robust due to their large size, guarantee hot plug protection of the following pins: CB_14:13_C, CB_13, CB_12:11_C, CB_11, CB_10, CB_9, CB_8, and CB_7. All other CB_x pins do not need external Zener diodes, because the internal ESD clamping voltage is higher than the VPWR max operating value. Clamping voltages of Zener diodes D1 to D4 are defined to be higher than the maximum rating between VPWR and CB_x, and lower than the clamping voltage of the internal ESD devices between these pins.

ID	Value	Units	Comments
D ₅	75	V	To protect the IC against transient overvoltage, use the specified Zener voltage. For example, use MMSZ5267BT1G (75V) or BZX384-B75
D ₄	43	V	D4 is rated 43 V because max operating voltage between VPWR and CB_8:7_C is 35 V and typical internal ESD clamping voltage between VPWR and CB_8:7_C is 60 V. For example, use MMSZ5260BT1G (43v) or BZX384-B43.
D ₃	27	V	D3 is rated in the range 26.5 V to 29.5 V, because max operating voltage between VPWR and CB_10:9_C is 25 V and typical internal ESD clamping voltage between VPWR and CB_10:9 is 50 V. The diode voltage rating is limited because the typical internal ESD clamping voltage between VPWR and CT9 is 33v. For example, use MMSZ5255BT1G (28v) or BZX384-B27.
D ₂	20	V	D2 is rated 20 V, because max operating voltage between VPWR and CB_12 is 10 V and typical internal ESD clamping voltage between VPWR and CB_12 is 50 V. For example, use MMSZ5250BT1G (20v) or BZX384-B20.
D ₁	2 x 8.2	V	D1 is rated 16.4 V, because max operating voltage between VPWR and CB_14 is 10 V and typical internal ESD clamping voltage between VPWR and CB_14 is 50 V. Implementation may be done by using two diodes in series, each of which having half Zener voltage. For example, use two MMSZ5237BT1G (8.2v) or two BZX384-B8V2.
R _{VPWR}	10	Ω	Reducing resistance value may jeopardize hot plug capability. Power rating is 0.1 W.
C _{VP1}	220	nF	To withstand hot plug, this value must not be changed
C _{VP2}	1	nF	Ceramic capacitor


Table 90.	Components to avoid hot plug issues
14010 00.	componente te avera net plag lecace

	able of components to avoid not plag issuescomminded				
ID	Value	Units	Comments		
TVS (optional)	8		If V_{PWR} > 55 V during hot plug then a TVS (PESD5V0V1BB or equivalent) should be added between CT14 and VPWR. The indicated voltage is the nominal breakdown voltage.		

Table 90. Components to avoid hot plug issues...continued

13.2.4 Current channel filter

The current channel may be filtered as shown in Figure 44. Example component values are given in Table 91.

Table 91. ISENSE filter components					
ID	Value	Units	Comments		
C _{HFI}	47	nF	This component serves to withstand ESD gun and its value must not be changed		
R _{LPFI}	127	Ω	Warning: do not exceed 200 Ω . Use 5 % tolerance. Used value is to get both f _{CUTI} = 91.8 Hz and f _{ICM} = 26.67 kHz. See Equation (13), Equation (14), Equation (16), and Equation (17).		
C _d	6.8	μF	This example value has been chosen to get f_{CUTI} = 91.8 Hz and $t_{DIAG} \le 31.7$ ms. See Equation (13), Equation (14), and Equation (15). Use 5 % tolerance.		
C _{LPFI}	47	nF	Value is chosen in order to get: 91.8 Hz, $t_{DIAG} \le 31.7$ ms and $f_{ICM} = 26.67$ kHz. See Equation (13), Equation (14), Equation (15), Equation (16) and Equation (17). Use 5 % tolerance.		
ZDI	2.0	V	To protect during hot plug in case one of the ISENSE± pin is connected before GND of the device. Recommended MMSZ4679T1G.		

The signal cutoff frequency (in Hz) arrangement shown in <u>Figure 44</u> of the current channel external filter depends on the measurement time constant τ_1 given by <u>Equation (14)</u>.

Battery cell controller IC

$$f_{cutI = 1/(2\pi\tau_I)}$$

$$\tau_I = R_{LPFI}(C_{LPFI} + 2C_d)$$
(13)
(14)

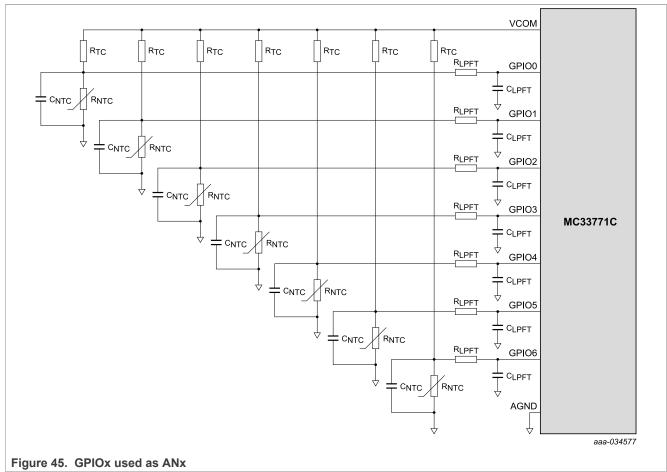
The diagnostic time to detect an open from the shunt to the current filter arrangement shown in Figure 44, is given by:

$$t_{diag} = (C_{LPFI} + C_d) \frac{V_{ISENSE-OL} + |R_{shunt}I_{max}|}{I_{SENSE-OL}}$$
(15)

The current channel external filter arrangement shown in <u>Figure 44</u> of the common mode cutoff frequency in Hz, depends on the measurement time constant τ_{lcm} , given by the following formula, whose numeric result should be selected one detected above the signal cutoff frequency.

$$f_{Icm = 1/(2\pi\tau_{Icm})} \tag{16}$$

$$\tau_{Icm} = R_{LPFI} C_{LPFI} \tag{17}$$


Above equations must be taken into account when considering the procedure described in <u>Current</u> <u>measurement diagnostics</u> to detect an open connection between ISENSE± and the input filter. Values for V_{ISENSE_OL} and I_{ISENSE_OL} are given in <u>Table 8</u>, values for the shunt resistance R_{SHUNT} and the maximum current I_{MAX} through it are application specific, while example values for the filter capacitors and resistors can be found in <u>Table 91</u>.

13.2.5 Temperature channels

Figure 45 shows usage of GPIOx as analog inputs (ANx) for temperature measurements. If not used, each GPIOx may be shorted to GND.

MC33771C

Battery cell controller IC

Table 92 ANy filter components

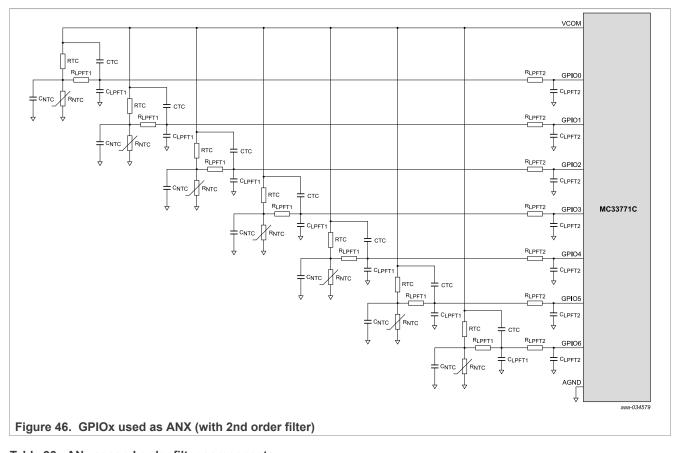
Table 92.	ANX filter c	omponents	
ID	Value	Units	Comments
R _{TC}	6.8	kΩ	Component with 1 % tolerance, for accurate temperature measurement. Proposed value, together with all other proposed values, gives approximately f _{CUTT} = 10 kHz. See Equation (18), Equation (19), Equation (20), and Equation (21).
R _{NTC}	10	kΩ	Nominal resistance value is given at 25 °C, tolerance must be 5 % or better
C _{NTC}	1.2	nF	This component is for ESD protection
R _{LPFT}	3.3	kΩ	Influences the channel bandwidth. See <u>Equation (18)</u> , <u>Equation (19)</u> , <u>Equation (20)</u> , and <u>Equation (21)</u> .
C _{LPFT}	1.2	nF	5 % tolerance or better. Influences the channel bandwidth. See <u>Equation (18)</u> , <u>Equation (19)</u> , <u>Equation (20)</u> , and <u>Equation (21)</u> .

The signal cutoff frequency (in Hz) for the arrangement shown in Figure 45 of GPIOx used as radiometric analog inputs, depends on the measurement time constant τ_T , given by the following formula. Ideally, the current channel should have the same bandwidth as cell voltage channels.

 $f_{cutT} = 1 / (2\pi\tau_T)$

where,

(18)


(21)

Battery cell controller IC

$$\tau_{T} = \max(\tau_{1}, \tau_{2})$$
(19)
$$\tau_{1} = (R_{LPFT} + (R_{TC}R_{NTC}) / (R_{TC} + R_{NTC}))C_{LPFT}$$
(20)

 $\tau_{2} = C_{NTC}(R_{TC}R_{NTC}) / (R_{TC} + R_{NTC})$

In case the NTC resistor is located outside of the board and can be submitted to large EMC and ESD Gun constraints, the recommended filter for temperature is 2nd order as shown in <u>Figure 46</u>.

Table 93. ANx second order filter components							
ID	Value	Units	Comments				
R _{TC}	6.8	kΩ	Component with 1 % tolerance, for accurate temperature measurement				
C _{TC}	1.2	nF					
R _{NTC}	10	kΩ	Nominal resistance value is given at 25 °C, tolerance must be 5 % or better				
C _{NTC}	1.2	nF	This component is for ESD protection				
C _{LPFT1}	1.2	nF	5 % tolerance or better				
R _{LPFT1}	3.3	kΩ					

MC33771C Product data sheet

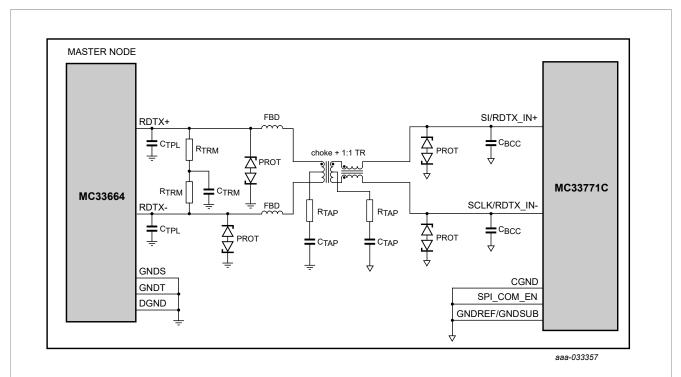

ID	Value	Units	omments					
C _{LPFT2}	1.2	nF	5 % tolerance or better					
R _{LPFT2}	3.3	kΩ						

Table 93. ANx second order filter components...continued

13.2.6 Centralized applications

13.2.6.1 Centralized applications - Transformer or capacitive isolation - Master node

For capacitive isolation in a centralized system the schematic is split into two segments. The first segment displays the external component of master node as shown in <u>Figure 47</u>. The second segment displays the external components between two MC33771C ICs as shown in <u>Figure 48</u>. In high voltage system applications, a high voltage isolation transformer is recommended between master node and first slave node.

Figure 47. Master node in a centralized application with transformer isolation

ID	Value	Units	Comments
C _{TPL}	68	pF	Ceramic capacitor
C _{TRM}	4.7	nF	Ceramic capacitor for split termnination of MC33664
R _{TRM}	75	Ω	Split termination resistor for MC33664
PROT	8	V	ESD protection. Use PESD5VOV1BB or equivalent. The indicated voltage is the nominal breakdown voltage.
R _{TAP}	150	Ω	Center tap resistor
C _{TAP}	10	nF	Center tap capacitor

Table 94. Master node components for a centralized application with transformer or capacitive isolation

MC33771C Product data sheet

ID	Value	Units	Comments		
C _{BCC}	220	pF	Ceramic capacitor		
Choke +1:1 TR	Pulse Electronic HM2103	NA	Single channel transformer with common mode choke		
FBD	120	Ω	Ferrite Bead (optional). Use MMZ1608Y121BTD25 or equivalent.		

 Table 94. Master node components for a centralized application with transformer or capacitive isolation...continued

13.2.6.2 Centralized applications - Capacitive isolation - Slave node

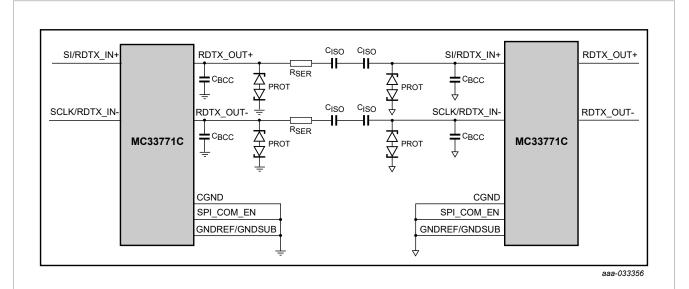
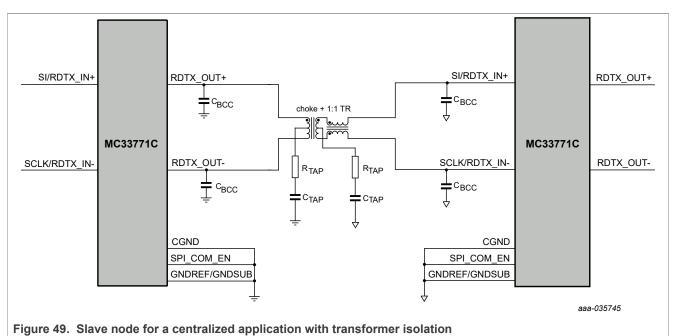



Figure 48. Slave node for a centralized application with capacitive isolation

Table 95. Slave node components for a centralized application with capacitive isolation

ID	Value	Units	Comments
C _{BCC}	22	pF	Ceramic capacitor
R _{SER}	62	Ω	Series resistance
C _{ISO}	10	nF	Isolation capacitor
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.

13.2.6.3 Centralized applications - Transformer isolation - Slave node

Table 06	Clave node comm	ononto for o	oontrolined o	maliostica wit	tranafarmar	inclation
Table 90.	Slave node comp	bonents for a	centralized a	ipplication with	i transformer	isolation

ID	Value	Units	Comments
C _{BCC}	220	pF	Ceramic capacitor
C _{TAP}	10	nF	Center tap capacitor
R _{TAP}	150	Ω	Center tap resistor

13.2.7 Distributed applications

13.2.7.1 Distributed systems - Master node

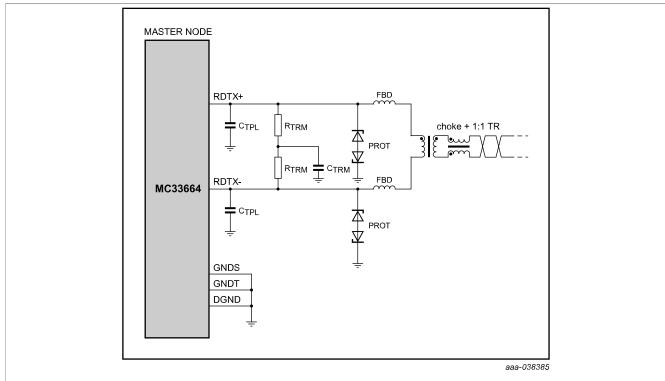
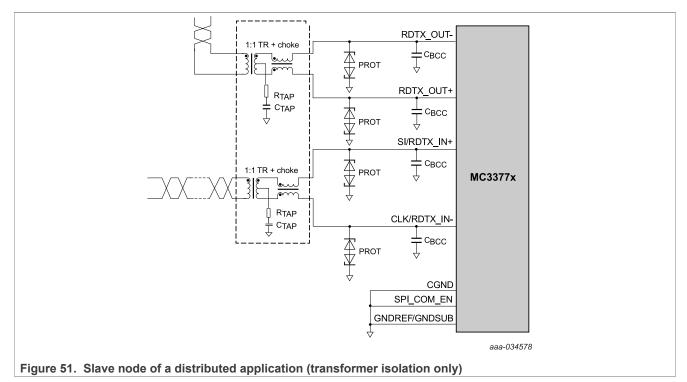



Figure 50. Master node in a distributed system (transformer isolation only)

ID	Value	Units	Comments
C _{TPL}	68	pF	Ceramic capacitor
C _{TRM}	4.7	nF	Ceramic capacitor for split termination of MC33664
R _{TRM}	75	Ω	Split termination resistor for MC33664
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.
Choke + 1:1 TR	Pulse Electronic HM2103	NA	Single channel transformer with common mode choke
FBD	470	Ω	Ferrite Bead (optional).Use MMZ1608Q471BTD25 or equivalent

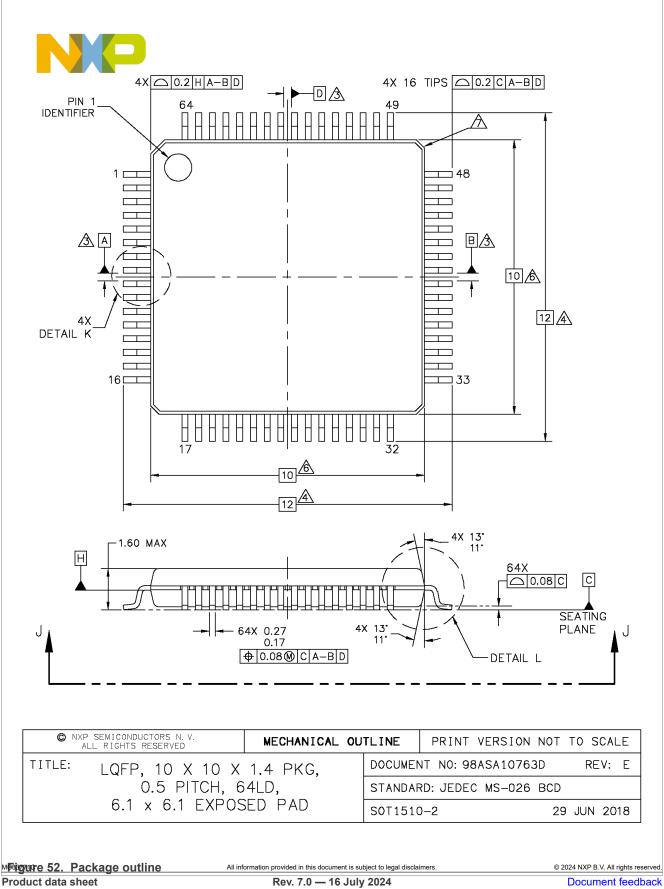
Table 97. Master node components in a distributed system

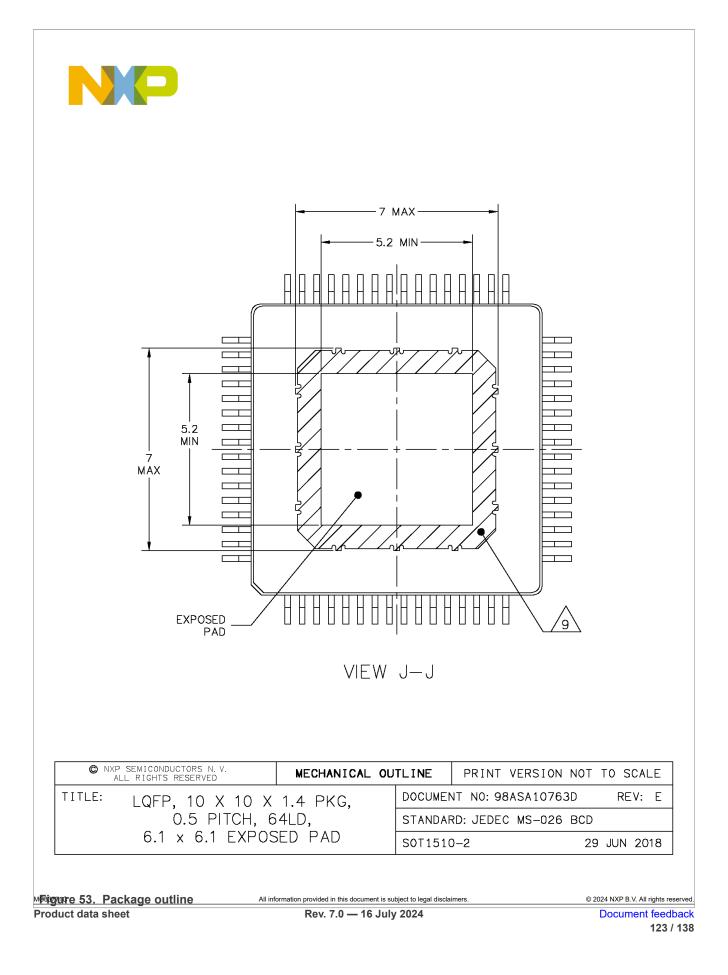
Battery cell controller IC

13.2.7.2 Distributed applications - Slave node

Table 98.	Slave node components in a distributed application	

Table 36. Slave hode components in a distributed application				
ID	Value	Units	Comments	
C _{BCC}	220	pF	Ceramic capacitor	
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.	
C _{TAP}	10	nF	Center tap capacitor	
R _{TAP}	150	Ω	Center tap resistor	
1:1 TR + choke	PULSE Electronic HM2102		Dual channel transformer with common mode choke	


14 Packaging


14.1 Package mechanical dimensions

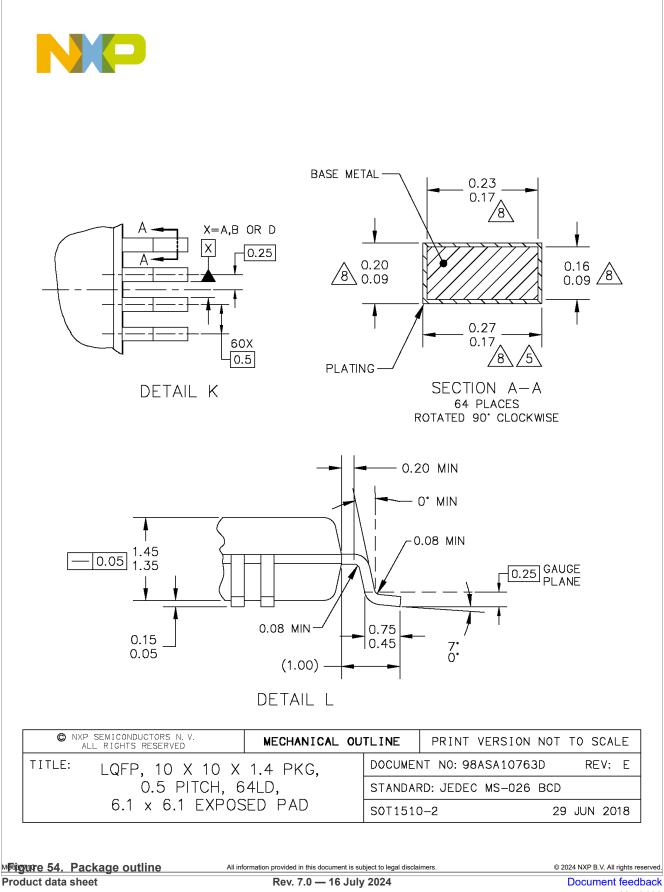
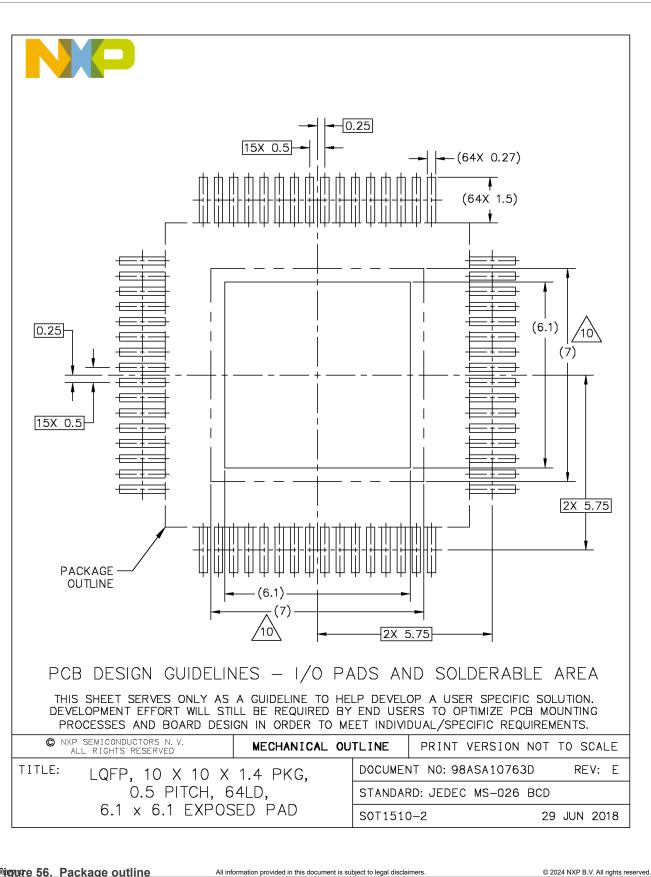
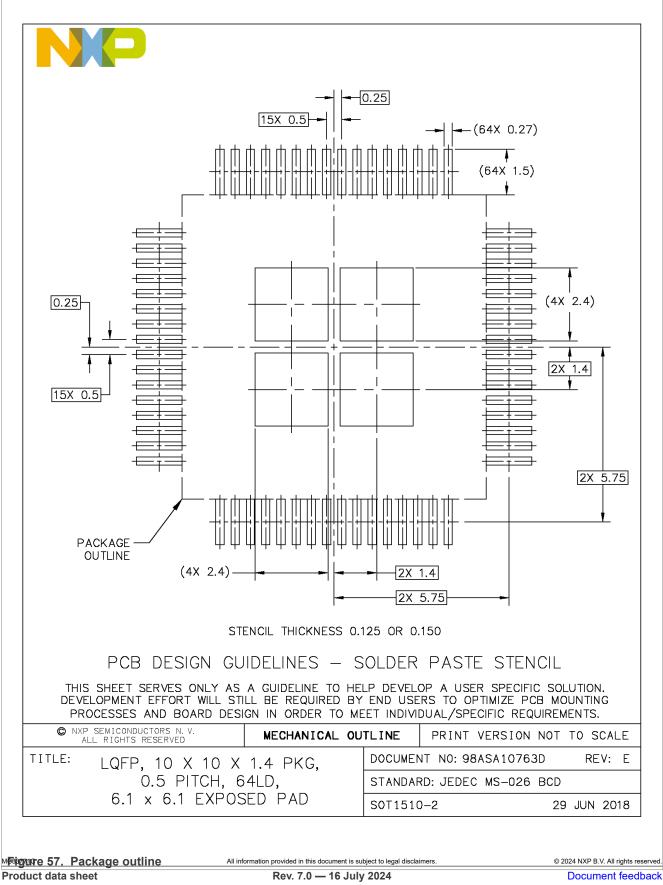

Package dimensions are provided in package drawings. To find the most current package outline drawing, go to <u>www.nxp.com</u> and perform a keyword search for the drawing's document number.

Table 99. Package outline

Package	Suffix	Package outline drawing number
64-pin LQFP-EP	AE	98ASA10763D





0.25 15X 0.5 -(64X 0.37) (64X 1.6) (6.2)0.25 15X 0.5 2X 5.75 PACKAGE OUTLINE -(6.2) 2X 5.75 PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS. O NXP SEMICONDUCTORS N. V. MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE ALL RIGHTS RESERVED REV: E TITLE: DOCUMENT NO: 98ASA10763D LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, STANDARD: JEDEC MS-026 BCD 6.1 x 6.1 EXPOSED PAD S0T1510-2 29 JUN 2018

NO	TES:				
1.	DIMENSIONS ARE IN MILLIME	TERS.			
2. ^	INTERPRET DIMENSIONS AND				
3	DATUMS A, B AND D TO BI	E DETERMINED AT DA	TUM PLAN	NE H.	
<u>/4</u> ,	DIMENSIONS TO BE DETERM	INED AT SEATING PLA	ANE C.		
<u>/5</u> ,	DIMENSION DOES NOT INCLU SHALL NOT CAUSE THE LE THAN 0.08 MM. DAMBAR C MINIMUM SPACE BETWEEN I	AD WIDTH TO EXCEED ANNOT BE LOCATED	OTHE MAX	KIMUM DIMENSION B .OWER RADIUS OR 1	SY MORE THE FOOT.
<u>A</u>	DIMENSIONS DO NOT INCLUE PER SIDE. DIMENSIONS ARE MISMATCH.				
\triangle	EXACT SHAPE OF EACH CO	RNER IS OPTIONAL.			
<u>/8.</u>	THESE DIMENSIONS APPLY 0.25 MM FROM THE LEAD		N OF THE	LEAD BETWEEN 0.1	O MM AND
A	HATCHED AREA REPRESENT	S POSSIBLE MOLD FL	ASH ON E	EXPOSED PAD.	
	BAR/EXPOSED PAD.				
©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION	NOT TO SCALE
TITLE:	LQFP, 10 X 10 X			NT ND: 98ASA10763	
	0.5 PITCH, 6	54LD,	STANDAR	D: JEDEC MS-026	BCD
	6.1 x 6.1 EXPO	SED PAD	S0T1510-	-2	29 JUN 2018

15 Contact information

For more information, please visit: <u>http://www.nxp.com</u> For sales office addresses, please send an email to: <u>salesaddresses@nxp.com</u>

16 Revision history

Document ID	Release date	Description
MC33771C v.7.0	16 July 2024	 Product data sheet Supersedes MC33771C v.6.0 Updated status from confidential to public Updated Revision history and <u>Legal information</u> to conform with updated NXP standards
MC33771C v.6.0		 Product data sheet Supersedes MC33771C v.5.0 Updated per CIN 2021030311 Changed the maximum normal operating voltage from 61.6 V to 63 V throughout the document Section 8.4, Table 8 Changed VPWR(OV_FLAG) VPWR overvoltage fault threshold (flag) minimum value from 62 V to 63 V Changed VANx_RATIO_RES typical value from VCOM(30. 51851) to VCOM*30.51758 Added footnote 16 to parameters V_{IH}, V_{IL} and V_{HYS} regarding use of GPI00 as wake-up Added parameter t_{NOWUP} Changed t_{WAVE_DC_BIT00} minimum and maximum values, from 476 µs to 450 µs and 537 µs to 550 µs Changed t_{WAVE_DC_BIT01} minimum and maximum values, from 9.53 ms to 9 ms and 1.06 ms to 1.1 ms Changed t_{WAVE_DC_BIT10} minimum and maximum values, from 95.25 ms to 90 ms and 10.52 ms to 110 ms Changed t_{WAVE_DC_BIT10} minimum and maximum values, from 476 µs to 450 µs and 537 µs to 550 µs Changed t_{WAVE_DC_BIT11} minimum and maximum values, from 95.25 ms to 90 ms and 105.25 ms to 110 ms Changed t_{WAVE_DC_ON} minimum and maximum values, from 476 µs to 450 µs and 537 µs to 550 µs Updated HTOL duration in footnote 9 from 1000 h to 3000 h Modified footnote 14 to reference Safety Manual for safety margin, removed footnote from parameter V_{REF_ZD} and adder it to parameter t_{SPL_TD}, added reference to footnote 18 Changed t_{TPL_TD} minimum value, from 4.0 µs to 3.8 µs Added tootnote 23 to t_{TPL_TD} Added footnote 23 to t_{TPL_TD} Added footnote 21 and 25 to t_{RES} Section 9.3, Table 11: Corrected system states and corresponding power supply modes Section 9.8.1: Detailed bits name in paragraph Section 9.8.3: Reworded several sentences in the section Section 9.8.3: Reworded several sentences in the section

Table 100. Revision history

Full revision history available on request

Table 100.	Revision historycontinued	
Full revision	n history available on request	

 Section 9.9: Added precisions in the fourth sentence paragraph Section 9.11: Modified list item number 2 as well as 1 paragraph of the section Section 9.12, Table 14: Changed references to CTx, with correct CT number Section 10.1, Figure 20: Reworded descriptive sente Section 10.2.1: Updated Figure 22 Section 10.2.5, Figure 29: Added signals name to th Section 10.2.6.2 Added precision on the device mode at the beginn second paragraph Added the four first notes, and added precisions in sentence of the fifth note Figure 31: Updated figure with a second behaviou (TPL wake-up sequence incomplete) Section 10.4.1: Removed part of a sentence concerr of the data field described in Table 23 Section 11 Made cosmetic changes to bring Write rows into c with stylistic standards Corrected blank bit fields in Read row to contain the Fixed typos in bit field names Removed empty rows from tables Changed Write cells from "0" to "Write 0 to Clear" bit fields Section 11.1, Table 34: Corrected description of CON register from "Number of CRC error counted" to "Nu COM error counted" to "Nu COM error counted" Section 11.4, Table 38 Bit 0: Changed to contain "x" in both Read and Wr – Bit 8 - Changed to "Do not change" 	third _OV_TH ence e diagram ning of the n the second r description ning content
 Section 11.5, Table 39, bits 15, 14, 13, 3 and 2: Char contain "x" in both Read and Write cells Section 11.7, Table 41, bit 6: Changed to contain "x" Read and Write cells Section 11.8, Table 42, bit 9: Changed to contain "x" Read and Write cells Section 11.18: Modified description of GPIOx_DR Section 11.24 and Section 11.28 Modified list of bits marked * Added new mark ** Section 11.1 and Section 11.47: Exchanged DED_El and DED_ENCODE 2 Section 13.2.1: Modified paragraph regarding CTRE 	ne value 0 for relevant M_STATUS mber of ite cells inged to in both in both in both
(optional diodes)	F variations
MC33771C v.5.0 21 November 2019 Product data sheet	F variations
MC33771C v.4.0 30 October 2019 Product data sheet	F variations

 Table 100. Revision history...continued

 Full revision history available on request

Document ID	Release date	Description
MC33771C v.3.0	11 July 2019	Objective data sheet
MC33771C v.2.0	06 March 2019	Product preview
MC33771C v.1.0	14 December 2018	Product preview

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>https://www.nxp.com</u>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Battery cell controller IC

Suitability for use in automotive applications - This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace{\mathsf{B.V.}}$ — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

Tables

Tab. 1. Part number breakdown 4 Tab. 2. Advanced orderable part table 5 Tab. 3. Premium orderable part table 5 Tab. 4. Pin definitions 7 Tab. 5. Ratings vs. operating requirements 10 Tab. 5. Ratings vs. operating requirements 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Characteristics 12 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of mat operations 51 Tab. 17. SPI cesponse format 52 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples		
Tab. 3. Premium orderable part table 5 Tab. 4. Pin definitions 7 Tab. 5. Ratings vs. operating requirements 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of read operations 50 Tab. 17. SPI command format 52 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Read command table 62 62 Tab. 23. Read command table 63 63 64 63 Tab. 24. Reed response tables 63 63	Tab. 1.	
Tab. 3. Premium orderable part table 5 Tab. 4. Pin definitions 7 Tab. 5. Ratings vs. operating requirements 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of read operations 50 Tab. 17. SPI command format 52 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Read command table 62 62 Tab. 23. Read command table 63 63 64 63 Tab. 24. Reed response tables 63 63	Tab. 2.	Advanced orderable part table5
Tab. 4. Pin definitions 7 Tab. 5. Ratings vs. operating requirements 10 Tab. 6. Maximum ratings 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read response table 62 62 Tab. 24. Read command tabl	Tab. 3.	
Tab. 5. Ratings vs. operating requirements 10 Tab. 7. Thermal ratings 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read response table 62 Tab. 24. Read response table 62 Tab. 25. Legend for wite command table	Tab. 4	
Tab. 6. Maximum ratings 10 Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of write operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read response table 62 Tab. 24. Read response table 62 Tab. 25. Legend for write command table 64 Tab. 30. No operation command table		
Tab. 7. Thermal ratings 12 Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response table 62 62 Tab. 23. Read command table 63 64 Tab. 24. Read response tables 63 63 Tab. 25. Legend for write command table 64 64 Tab. 26. Write command table 64 64		
Tab. 8. Static and dynamic electrical characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response table 62 Tab. 23. Read command table 63 Tab. 24. Read response table 62 Tab. 25. Legend for wite command and write response tables 63 Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64 Tab. 30. No op		
characteristics 12 Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of a operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for write command table 63 Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64		
Tab. 9. Working mode versus measurements 24 Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 61 Tab. 20. Data preparation for CRC encoding 61 Tab. 21. Response CRC calculation examples 61 Tab. 22. Response table 62 62 Tab. 24. Read response table 62 63 Tab. 27. Legend for read command table 64 63 Tab. 28. Global write command table 64 63 Tab. 29. Legend for no operation command table 64 Tab. 30. No operation command table 64	Tab. 8.	
Tab. 10. Recommended capacitor values for power supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for no operation command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab		
supply decoupling 25 Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables<		
Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summ	Tab. 10.	
Tab. 11. Power supply mode operation 27 Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summ		supply decoupling25
Tab. 12. GPIO port configurations 40 Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables 63 Tab. 27. Legend for write command table 63 Tab. 28. Global write command table 64 Tab. 30. No operation command table 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 65	Tab. 11.	Power supply mode operation27
Tab. 13. Gain format 47 Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 64 Tab. 33. Response summary table 65 65 Tab. 33.	Tab. 12.	
Tab. 14. Gain compensation 47 Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 61 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 64 64 Tab. 30. No operation command table 64 64 Tab. 32. Command summary table 65 65 Tab. 33. Response summary table 66 66 Tab. 34. Register table 66 66	Tab. 13.	
Tab. 15. Sequence of read operations 50 Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35.		
Tab. 16. Sequence of write operations 50 Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 62 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT		
Tab. 17. SPI command format 52 Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 61 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables response tables 63 7ab. 28. Global write command table 64 Tab. 30. No operation command table 64 7ab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 7ab. 33. Response summary table 65 Tab. 33. Response summary table 70 70 71 72 73b. 38. SYS_CFG_GLOBAL 72 Tab. 33. SYS_CFG_GLOBAL 72 73 73 <td>-</td> <td></td>	-	
Tab. 18. SPI response format 53 Tab. 19. TPL encoding 54 Tab. 20. Data preparation for CRC encoding 60 Tab. 21. Command CRC calculation examples 61 Tab. 22. Response CRC calculation examples 61 Tab. 23. Read command table 61 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Respister table 66 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SY		
Tab. 19.TPL encoding54Tab. 20.Data preparation for CRC encoding60Tab. 21.Command CRC calculation examples61Tab. 22.Response CRC calculation examples61Tab. 23.Read command table61Tab. 24.Read response table62Tab. 25.Legend for read command, read response62Tab. 26.Write command table63Tab. 27.Legend for write command and write63Tab. 28.Global write command table63Tab. 29.Legend for global write command table64Tab. 30.No operation command table64Tab. 31.Legend for no operation command and no operation response tables64Tab. 32.Command summary table65Tab. 33.Response summary table65Tab. 34.Register table66Tab. 35.Mirror memory70Tab. 36.INIT72Tab. 37.SYS_CFG_GLOBAL72Tab. 38.SYS_CFG274Tab. 40.SYS_DIAG75Tab. 41.ADC_CFG76Tab. 43.OV_UV_EN79Tab. 44.CELL_OV_FLT80Tab. 45.CELL_OV_FLT80Tab. 44.CB_OPEN_FLT82Tab. 45.CELL_OV_FLT82Tab. 46.TPL_CFG81Tab. 47.CBX_CFG81Tab. 48.CB_OPEN_FLT82Tab. 49.CB_SHORT_FLT82Tab. 49.<		
Tab. 20.Data preparation for CRC encoding60Tab. 21.Command CRC calculation examples61Tab. 22.Response CRC calculation examples61Tab. 23.Read command table61Tab. 24.Read response table62Tab. 25.Legend for read command, read response tables62Tab. 26.Write command table63Tab. 27.Legend for write command and write response tables63Tab. 28.Global write command table63Tab. 29.Legend for global write command table64Tab. 30.No operation command table64Tab. 31.Legend for no operation command and no operation response tables64Tab. 32.Command summary table65Tab. 33.Response summary table65Tab. 34.Register table66Tab. 35.Mirror memory70Tab. 36.INIT72Tab. 37.SYS_CFG_GLOBAL72Tab. 38.SYS_CFG274Tab. 40.SYS_DIAG75Tab. 41.ADC_CFG76Tab. 43.OV_UV_EN79Tab. 44.CELL_OV_FLT80Tab. 43.CELL_UV_FLT80Tab. 44.CELL_OV_FLT80Tab. 43.GPEN_FLT82Tab. 44.CB_OPEN_FLT82Tab. 45.CELL_UV_FLT80Tab. 44.CB_OPEN_FLT82Tab. 44.CB_OPEN_FLT82Tab. 45.CELL_UV_FLT <td></td> <td></td>		
Tab. 21.Command CRC calculation examples61Tab. 22.Response CRC calculation examples61Tab. 23.Read command table61Tab. 24.Read response table62Tab. 25.Legend for read command, read response63Tab. 26.Write command table63Tab. 27.Legend for write command and write63Tab. 28.Global write command table63Tab. 29.Legend for global write command table64Tab. 30.No operation command table64Tab. 31.Legend for no operation command and no operation response tables64Tab. 32.Command summary table65Tab. 33.Response summary table65Tab. 34.Register table66Tab. 35.Mirror memory70Tab. 36.INIT72Tab. 37.SYS_CFG274Tab. 40.SYS_DIAG75Tab. 41.ADC_CFG76Tab. 42.ADC2_OFFSET_COMP78Tab. 43.OV_UV_EN79Tab. 44.CELL_OV_FLT80Tab. 45.CELL_UV_FLT80Tab. 44.CB_OPEN_FLT82Tab. 43.GOPEN_FLT82Tab. 44.CB_OPEN_FLT82Tab. 45.CB_DRV_STS82Tab. 46.TPL_CFG183Tab. 51.GPIO_CFG183		
Tab. 22.Response CRC calculation examples61Tab. 23.Read command table61Tab. 24.Read response table62Tab. 25.Legend for read command, read response tables62Tab. 26.Write command table63Tab. 27.Legend for write command and write response tables63Tab. 28.Global write command table63Tab. 29.Legend for global write command table64Tab. 30.No operation command table64Tab. 31.Legend for no operation command and no operation response tables64Tab. 32.Command summary table65Tab. 33.Response summary table65Tab. 34.Register table66Tab. 35.Mirror memory70Tab. 36.INIT72Tab. 37.SYS_CFG_GLOBAL72Tab. 38.SYS_CFG173Tab. 40.SYS_DIAG75Tab. 41.ADC_CFG76Tab. 42.ADC2_OFFSET_COMP78Tab. 43.OV_UV_EN79Tab. 44.CELL_OV_FLT80Tab. 45.CELL_UV_FLT80Tab. 46.TPL_CFG81Tab. 47.CBX_CFG81Tab. 48.CB_OPEN_FLT82Tab. 49.CB_SHORT_FLT82Tab. 49.CB_SHORT_FLT82Tab. 49.CB_SHORT_FLT82Tab. 51.GPIO_CFG183	Tab. 20.	
Tab. 23. Read command table 61 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN	Tab. 21.	Command CRC calculation examples61
Tab. 23. Read command table 61 Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN	Tab. 22.	Response CRC calculation examples
Tab. 24. Read response table 62 Tab. 25. Legend for read command, read response tables 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_C_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_FLT 80 Tab. 43. OV_UV_FLT	Tab. 23.	
Tab. 25. Legend for read command, read response tables 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command table 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_G 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79		
tables 62 Tab. 26. Write command table 63 Tab. 27. Legend for write command and write 63 Tab. 28. Global write command table 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_FLT 80 Tab. 43. OV_UV_FLT 80 Tab. 44. CELL_OV_FLT 80 </td <td></td> <td></td>		
Tab. 26. Write command table 63 Tab. 27. Legend for write command and write 63 Tab. 28. Global write command table 63 Tab. 28. Global write command table 64 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_FLT 80 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46.	100.20.	•
Tab. 27. Legend for write command and write response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no 64 Tab. 32. Command summary table 65 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_EN 79 Tab. 43. OV_UV_FLT 80 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80	Tab DC	
response tables 63 Tab. 28. Global write command table 63 Tab. 29. Legend for global write command table 64 Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG1 81 Tab. 48. CB_OPEN_FLT 82		
Tab. 28. Global write command table	Tab. 27.	
Tab. 29. Legend for global write command table		
Tab. 30. No operation command table 64 Tab. 31. Legend for no operation command and no operation response tables 64 Tab. 32. Command summary table 65 Tab. 32. Command summary table 65 Tab. 32. Response summary table 65 Tab. 33. Response summary table 66 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 <t< td=""><td>-</td><td></td></t<>	-	
Tab. 31. Legend for no operation command and no operation response tables	Tab. 29.	
operation response tables 64 Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 33. Register table 66 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG2 74 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS	Tab. 30.	No operation command table64
Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 33. Register table 66 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 31.	Legend for no operation command and no
Tab. 32. Command summary table 65 Tab. 33. Response summary table 65 Tab. 33. Register table 66 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		operation response tables64
Tab. 33. Response summary table 65 Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 32.	
Tab. 34. Register table 66 Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 35. Mirror memory 70 Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 36. INIT 72 Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 37. SYS_CFG_GLOBAL 72 Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 38. SYS_CFG1 73 Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 39. SYS_CFG2 74 Tab. 40. SYS_DIAG 75 Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		— —
Tab. 40. SYS_DIAG		
Tab. 41. ADC_CFG 76 Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		—
Tab. 42. ADC2_OFFSET_COMP 78 Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 43. OV_UV_EN 79 Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 41.	
Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 42.	ADC2_OFFSET_COMP78
Tab. 44. CELL_OV_FLT 80 Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 43.	
Tab. 45. CELL_UV_FLT 80 Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	Tab. 44.	
Tab. 46. TPL_CFG 81 Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 47. CBX_CFG 81 Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	-	
Tab. 48. CB_OPEN_FLT 82 Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 49. CB_SHORT_FLT 82 Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83		
Tab. 50. CB_DRV_STS 82 Tab. 51. GPIO_CFG1 83	-	
Tab. 51. GPIO_CFG183		
-		
MC33771C All information provided in this doc	Tab. 51.	GPIO_CFG183
	MC33771C	All information provided in this doc

Tab 50	
Tab. 52.	GPIO_CFG2
Tab. 53.	GPIO_STS
Tab. 54.	AN_OT_UT_FLT
Tab. 55. Tab. 56.	GPIO_SHORT_ANX_OPEN_STS
	I_STATUS
Tab. 57.	COM_STATUS
Tab. 58.	FAULT1_STATUS
Tab. 59.	FAULT2_STATUS
Tab. 60.	FAULT3_STATUS
Tab. 61.	FAULT_MASK1
Tab. 62.	FAULT_MASK2
Tab. 63.	FAULT_MASK3
Tab. 64.	WAKEUP_MASK1
Tab. 65.	WAKEUP_MASK2
Tab. 66.	WAKEUP_MASK3
Tab. 67.	CC_NB_SAMPLES
Tab. 68.	COULOMB_CNT1
Tab. 69.	COULOMB_CNT2
Tab. 70.	MEAS_ISENSE1
Tab. 71.	MEAS_ISENSE2
Tab. 72.	MEAS_xxxx
Tab. 73.	TH_ALL_CT95
Tab. 74.	TH_CTX
Tab. 75.	TH_ANX_OT
Tab. 76.	TH_ANX_UT96
Tab. 77.	TH_ISENSE_OC96
Tab. 78.	TH_COULOMB_CNT_MSB
Tab. 79.	TH_COULOMB_CNT_LSB
Tab. 80.	SILICON_REV
Tab. 81.	EEPROM_CTRL
Tab. 82.	DED_ENCODE1
Tab. 83.	DED_ENCODE2
Tab. 84.	FUSE_MIRROR_DATA
Tab. 85.	FUSE_MIRROR_CNTL
Tab. 86.	RESERVED
Tab. 87.	FUSE_BANK
Tab. 88.	CT filter components
Tab. 89.	Stacked cells arrangements 107
Tab. 90.	Components to avoid hot plug issues 112
Tab. 91.	ISENSE filter components113
Tab. 92.	ANx filter components115
Tab. 93.	ANx second order filter components 116
Tab. 94.	Master node components for a centralized
	application with transformer or capacitive
	isolation 117
Tab. 95.	Slave node components for a centralized
	application with capacitive isolation118
Tab. 96.	Slave node components for a centralized
	application with transformer isolation 119
Tab. 97.	Master node components in a distributed
	system 120
Tab. 98.	Slave node components in a distributed
	application 121
Tab. 99.	Package outline121
Tab. 100.	Revision history130

MC33771C Battery cell controller IC

Figures

Fig. 1.	Simplified application diagram, SPI use case2
Fig. 2.	Simplified application diagram, TPL use case
Fig. 3.	Simplified internal block diagram 6
Fig. 4.	Pinout diagram7
Fig. 5.	Low-voltage SPI interface timing23
Fig. 6.	Transformer communication signaling23
Fig. 7.	Recommended decoupling of power supplies
Fig. 8.	Operating mode state diagram
Fig. 9.	ADC converter: incremental phase (left)
i ig. 0.	and cyclic phase (right)
Fig. 10.	ADC conversion sequence in normal mode 31
Fig. 11.	ADC1-B voltage measurement chain
Fig. 12.	ADC1-A voltage measurement chain
Fig. 13.	Current measurement channel
Fig. 14.	Current measurement channel (gain vs.
0	input signal amplitude)
Fig. 15.	Coulomb counter different behaviors
Fig. 16.	GPIO internal input structure41
Fig. 17.	Heartbeat daisy chain43
Fig. 18.	Memories46
Fig. 19.	Mirror memory control50
Fig. 20.	SPI interface termination51
Fig. 21.	SPI transmission53
Fig. 22.	TPL Pulses54
Fig. 23.	SOM54
Fig. 24.	EOM55
Fig. 25.	Logic 1
Fig. 26.	Logic 0
Fig. 27.	Bus traffic example
Fig. 28.	Bus traffic with receive error and recovery 56
Fig. 29.	Transformer communication waveforms
Fig. 30.	MC33771C system wake-up
Fig. 31.	Pack controller system wake-up
Fig. 32.	Command and response mode – example
	CRC encoder60

Fig. 33.	MC33771C calibration registers66
Fig. 34.	Centralized battery monitoring system with
g. e	capacitive isolation
Fig. 35.	Centralized battery monitoring system with
Ũ	transformer isolation103
Fig. 36.	Distributed battery monitoring system 104
Fig. 37.	Example of multiple daisy chain
Fig. 38.	Example of loop-back daisy chain105
Fig. 39.	Second order cell terminal filters and cell
	balancing resistors (internal cell balancing
	MOSFETs are shown for clarity) 106
Fig. 40.	LPF block masking
Fig. 41.	The seven cell configuration
Fig. 42.	The twelve cell configuration110 Top cell terminal filters and balancing
Fig. 43.	resistors, VPWR1, 2 components to
	withstand hot plug
Fig. 44.	Bottom cell terminal filters, cell balancing
т ig. тт.	components and current channel filter 113
Fig. 45.	GPIOx used as ANx
Fig. 46.	GPIOx used as ANX (with 2nd order filter) 116
Fig. 47.	Master node in a centralized application
Ũ	with transformer isolation
Fig. 48.	Slave node for a centralized application
	with capacitive isolation118
Fig. 49.	Slave node for a centralized application
	with transformer isolation119
Fig. 50.	Master node in a distributed system
	(transformer isolation only)120
Fig. 51.	Slave node of a distributed application
	(transformer isolation only)
Fig. 52. Fig. 53.	Package outline
Fig. 53. Fig. 54.	Package outline
Fig. 55.	Package outline
Fig. 56.	Package outline
Fig. 57.	Package outline
Fig. 58.	Package outline
	5

Battery cell controller IC

Contents

1	General description	1	9.13	Mirror r
2	General description Features		9.13 10	Comm
2 3	Simplified application diagram		10.1	SPI cor
4	Applications		10.1	TPL co
5	Ordering information		10.2.1	TPL Er
5 .1	Part numbers definition		10.2.1	Comma
5.2	Part numbers list		10.2.2	Respor
			10.2.3	Transfo
6 7	Internal block diagram Pinning information		10.2.4	Transfo
7.1	Pinout diagram		10.2.5	Transfo
7.1	Pin definitions		10.2.6.1	MC337
7.Z 8	General product characteristics		10.2.6.1	Pack co
o 8.1		. 10	10.2.0.2	CRC g
0.1	Ratings and operating requirements	10	10.3	. 0
8.2	relationship		10.4	Comma Read c
-	Maximum ratings			
8.3 8.4	Thermal characteristics Electrical characteristics		10.4.2	Local w
o.4 8.5			10.4.3	Global
	Timing diagrams		10.4.4 10.4.5	No ope
9	Functional description			Comma
9.1 9.2	Introduction Power supplies and reset		10.5 11	I2C cor
9.2 9.2.1				Registe
	Decoupling of power supplies		11.1	Registe
9.2.2	VPWR overvoltage, low-voltage		11.2	Initializa
9.2.3 9.2.4	VCOM supply		11.3	System
-	VANA supply		44 4	CFG_G
9.2.5	Power on reset (POR)		11.4	System
9.2.6	Hardware and software reset		44 E	CFG1
9.3	Modes of operation		11.5	System
9.3.1	Reset mode		44.0	CFG2
9.3.2	Idle mode		11.6	System
9.3.3	Init mode		11.7	ADC co
9.3.4	Normal mode	-	11.8	Current
9.3.5	Sleep mode		11.0	comper
9.3.6	Diagnostic mode	.29	11.9	Cell sel
9.4	Analog to digital converters ADC1-A,	20	11.10	Cell ter
0.4.4	ADC1-B, ADC2			CELL_
9.4.1	High precision voltage reference		11.11	Cell ter
9.4.2	Measurement sequence		44.40	CELL_U
9.4.2.1	Voltage averaging		11.12	TPL_C
9.5	Cell terminal voltage measurement		11.13	Cell bal
9.6	Current measurement		44 44	CFG
9.7	Coulomb counting		11.14	Cell bal
9.8	GPIOx port control and diagnostics		44.45	register
9.8.1	GPIOx used as digital I/O	.42	11.15	Cell ba
9.8.2	GPIO0 used as wake-up input or fault pin	40	44.40	register
0 0 0	activation input		11.16	Cell bal
9.8.3	FAULT pin daisy chain operation		44 47	CB_DR
9.8.4	GPIO2 used as ADC trigger		11.17	GPIO c
9.8.5	GPIOx used as analog		44.40	CFG1
9.8.6	GPIO5, GPIO6 used as ISENSE		11.18	GPIO c
9.9	Cell balance control		44.40	CFG2
9.10	Internal IC temperature		11.19	GPIO s
9.11	Internal temperature fault	45	11.20	Overter
9.12	Storage of parameters in an optional	45	44.04	register
0 40 4	EEPROM		11.21	GPIO o
9.12.1	Gain correction of the current channel	.48		ANx_O
MC33771C	All information provided in	this docume	ent is subject to leg	al disclaimers.

.13	Mirror memory access	.49
0	Communication	
0.1	SPI communication	
0.2	TPL communication	
0.2.1	TPL Encoding	. 54
0.2.2	Command message bit order	
0.2.3	Response message bit order	
0.2.4	Transformer communication format	
0.2.5	Transformer communication timing	
0.2.6	Transformer communication wake-up	57
0.2.6.1	MC33771C System wake-up	
0.2.6.2	Pack controller system wake-up	
0.3	CRC generation	
0.4 0.4.1	Commands Read command and response	
0.4.1 0.4.2	Local write command	
0.4.2 0.4.3	Global write command	
0.4.4	No operation command	
0.4.5	Command and response summary	
0.4.0 0.5	I2C communication interface	
1	Registers	
1.1	Register map	
1.2	Initialization register – INIT	
1.3	System configuration global register SYS_	
	CFG GLOBAL	.72
1.4	System configuration register 1 – SYS_	
	CFG1	. 73
1.5	System configuration register 2 – SYS_ CFG2	74
1.6	System diagnostics register – SYS_DIAG	. 74
1.7	ADC configuration register – ADC_CFG	76
1.8	Current measurement chain offset	
	compensation – ADC2_OFFSET_COMP	. 78
1.9	Cell select register – OV_UV_EN	
1.10	Cell terminal overvoltage fault register –	
	CELL_OV_FLT	79
1.11	Cell terminal undervoltage fault register –	
	CELL_UV_FLT	
1.12	TPL_CFG	.80
1.13	Cell balance configuration register – CBx_	
	CFG	. 81
1.14	Cell balance open load fault detection	
	register – CB_OPEN_FLT	. 82
1.15	Cell balance shorted load fault detection	
	register – CB_SHORT_FLT	. 82
1.16	Cell balance driver on/off status register –	~ ~
	CB_DRV_STS	. 82
1.17	GPIO configuration register 1 – GPIO_	~~
4.40	CFG1	. 83
1.18	GPIO configuration register 2 – GPIO_	00
1 10	CFG2	
1.19	GPIO status register – GPIO_STS	. 84
1.20	Overtemperature/undertemperature fault	Q٨
1.21	register – AN_OT_UT_FLT GPIO open short register – GPIO_SHORT_	04
1.21	ANX_OPEN_STS	81
		. 04
s subject to lega	al disclaimers. © 2024 NXP B.V. All rights res	erved.

Battery cell controller IC

11.22	Current measurement status register – I_ STATUS
11.23	Communication status register – COM_ STATUS
11.04	
11.24	Fault status register 1 – FAULT1_STATUS86
11.25	Fault status register 2 – FAULT2_STATUS88
11.26	Fault status register 3 – FAULT3_STATUS90
11.27	Fault mask register 1 – FAULT_MASK1
11.28	Fault mask register 2 – FAULT_MASK2 90
11.29	Fault mask register 3 – FAULT_MASK3
11.30	Wake-up mask register 1 – WAKEUP_ MASK191
11.31	Wake-up mask register 2 – WAKEUP_ MASK291
11.32	Wake-up mask register 3 – WAKEUP_ MASK392
11.33	Coulomb count number of samples register
	- CC NB SAMPLES
11.34	Coulomb count register – COULOMB CNT 92
11.35	Current measurement registers – MEAS_
11.55	
44.00	ISENSE1 and MEAS_ISENSE2
11.36	Measurement registers – MEAS_xxxx94
11.37	Overvoltage undervoltage threshold
	register – TH_ALL_CT95
11.38	Overvoltage undervoltage threshold register – TH CTx95
11.39	
11.59	Overtemperature, undertemperature
	threshold registers – TH_Anx_OT, TH_
	Anx_UT
11.40	Overcurrent threshold register – TH_ ISENSE_OC
11.41	Over coulomb counter threshold registers –
	TH_COULOMB_CNT97
11.42	Silicon revision register – SILICON_REV 97
11.43	EEPROM communication register EEPROM_CTRL98
11.44	ECC signature 1 register98
11.45	ECC signature 2 register
11.46	FUSE mirror and data control
11.47	Reserved100
11.48	Fuse bank
12	Safety
12.1	Safety features
13	Typical applications101
13.1	Introduction
13.1.1	Centralized battery management system102
13.1.2	Distributed battery management system103
13.1.3	Multiple daisy chain104
13.1.4	Loop-Back Daisy chain105
13.2	MC33771C External Components 105
13.2.1	Cell terminal filters105
13.2.2	Unused cells107
13.2.3	Hot plug protection111
13.2.4	Current channel filter 113
13.2.5	Temperature channels 114
13.2.6	Centralized applications117

13.2.6.1	Centralized applications - Transformer o	r
	capacitive isolation - Master node	117
13.2.6.2	Centralized applications - Capacitive	
	isolation - Slave node	118
13.2.6.3	Centralized applications - Transformer	
	isolation - Slave node	119
13.2.7	Distributed applications	120
13.2.7.1	Distributed systems - Master node	120
13.2.7.2	Distributed applications - Slave node	121
14	Packaging	121
14.1	Package mechanical dimensions	121
15	Contact information	129
16	Revision history	130
	Legal information	133

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com