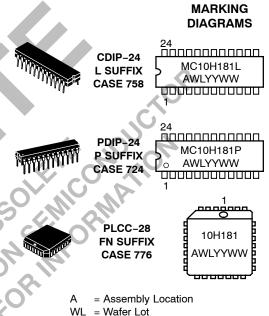
4-Bit Arithmetic Logic Unit/ Function Generator

The MC10H181 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.

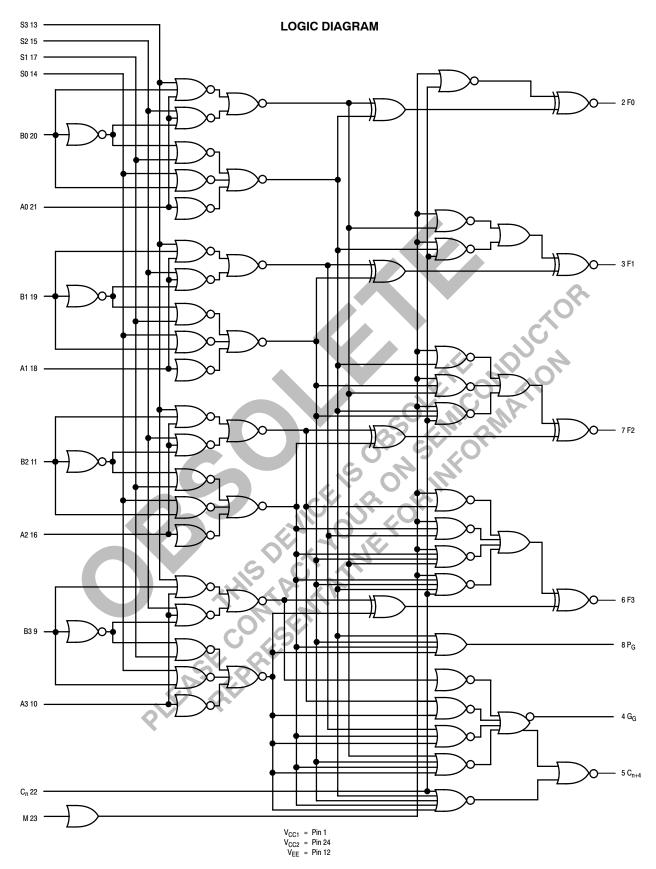
Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (P_G) and carry generate (G_G) are provided to allow fast operations on very long words using a second order look-ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

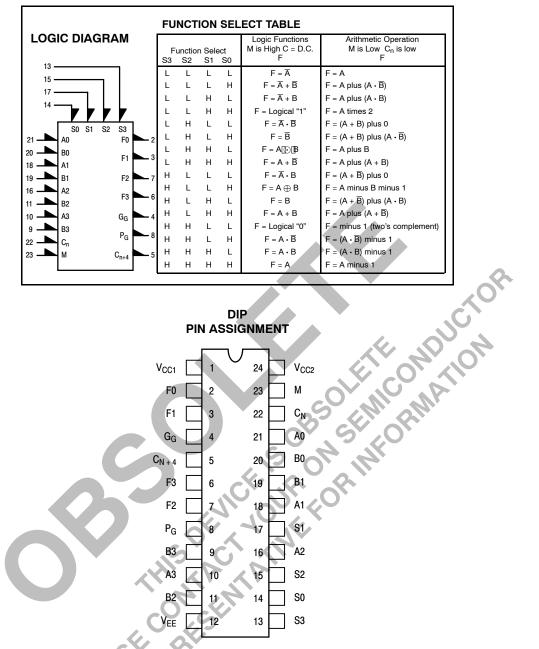
When used with the MC10H179, full-carry look-ahead, as a second order look-ahead block, the MC10H181 provides high-speed arithmetic operations on very long words.


This 10H part is a functional/pinout duplication of the standard MECL 10K family part with 100% improvement in propagation delay and no increase in power supply current.

- Improved Noise Margin, 150 mV (Over Operating Voltage and PIER PERPE Temperature Range)
- Voltage Compensated
- MECL 10K Compatible

ON Semiconductor


http://onsemi.com



YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC10H181L	CDIP-24	15 Units/Rail
MC10H181P	PDIP-24	15 Units/Rail
MC10H181FN	PLCC-28	37 Units/Rail

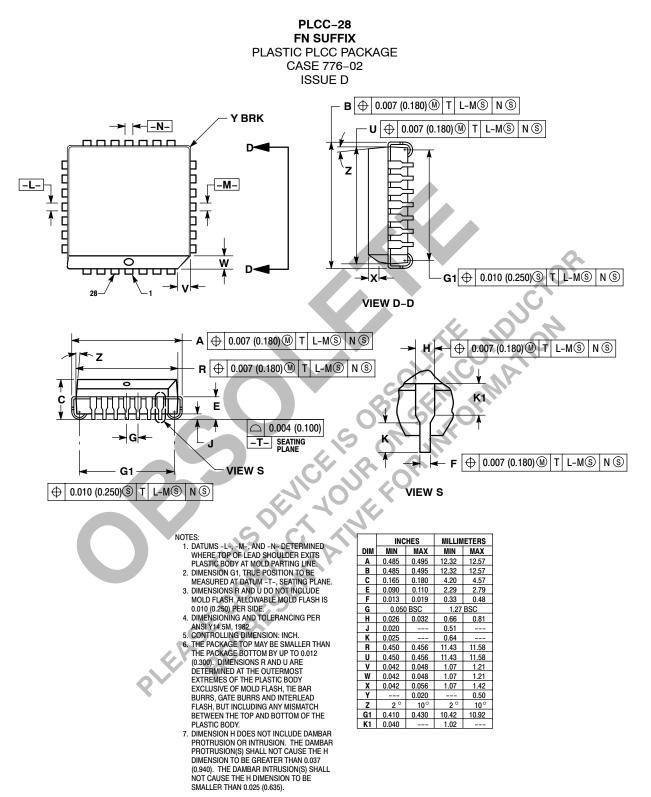
Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

MAXIMUM RATINGS

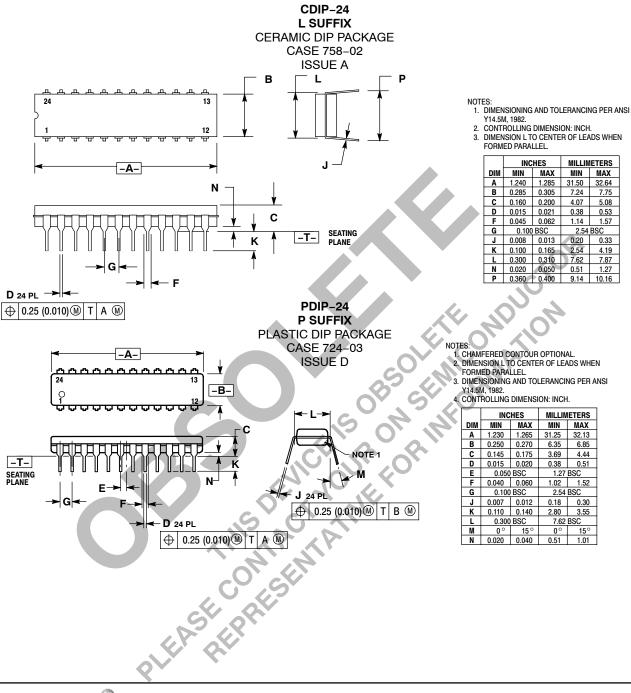
Symbol	Characteristic	Rating	Unit
V _{EE}	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
l _{out}	Output Current – Continuous – Surge	50 100	mA
T _A	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	−55 to +150 −55 to +165	°C ℃

ELECTRICAL CHARACTERISTICS (V_{EE} = -5.2 V ±5.0%) (See Note 1.)

		0 °		+25°		+		
Characteristic	Symbol	Min	Мах	Min	Мах	Min	Мах	Unit
Power Supply Current	ΙE	-	159	-	145	-	159	mA
Input Current High	l _{inH}	1						μA
Pin 22		-	720	-	450	-	450	
Pins 14,23		-	405	-	255	-	255	
Pins 13,15,17		-	515	-	320	-	320	
Pins 10,16,18,21		-	475	-	300	-	300	
Pins 9,11,19,20		-	465	-	275	-	275	
Input Current Low	I _{inL}	0.5	-	0.5	-	0.3	-	μΑ
Pins 9–11, 13–22								
High Output Voltage	V _{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V _{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	VIH	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	VIL	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc


Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

AC PARAMETERS


						AC Switching Characteristics						
					0°C		+25°C		+75°C			
Characteristic	Symbol	Input	Output	Conditions †	Min	Max	Min	Max	Min	Max	Unit	
Propagation Delay	t+ +, t	C _n	C _{n+4}	A0,A1,A2,A3	0.7	2.0	0.7	2.0	0.7	2.2	ns	
Rise Time, Fall Time	t+, t-	C _n	C _{n+4}	A0,A1,A2,A3	0.6	2.0	0.6	2.0	0.7	2.2	ns	
Propagation Delay Rise Time, Fall Time	t+ +, t+ -, t- +, t t+, t-	Cn Cn Cn	F1 F1 F1	AO	1.0 0.7	3.0 2.2	1.0 0.7	3.0 2.2	1.2 0.7	3.3 2.4	ns	
Propagation Delay Rise Time, Fall Time	t+ +, t+ -, t- +, t t+, t-	A1 A1 A1	F1 F1 F1	00	1.5 0.7	3.7 2.0	1.5 0.7	3.7 2.0	1.6 0.7	4.0 2.2	ns	
Propagation Delay	t+ +, t	A1	Pg	S0,S3	1.5	3.7	1.5	3.7	1.6	4.0	ns	
Rise Time, Fall Time	t+, t-	A1	Pg	S0,S3	0.9	2.4	0.9	2.4	0.9	2.6	ns	
Propagation Delay	t+ +, t	A1	G _G	A0,A2,A3,C _n	1.5	3.7	1.5	3.7	1.6	3.9	ns	
Rise Time, Fall Time	t+, t-	A1	G _G	A0,A2,A3,C _n	0.7	2.2	0.7	2.2	0.7	2.4	ns	
Propagation Delay	t+ -, t- +	A1	C _{n+4}	A0,A2,A3,C _n	1.5	3.6	1.5	3.6	1.6	3.9	ns	
Rise Time, Fall Time	t+, t-	A1	C _{n+4}	A0,A2,A3,C _n	0.5	2.0	0.5	2.0	0.5	2.2	ns	
Propagation Delay	t+ +, t- +	B1	F1	S3,C _n	2.0	4.5	2.0	4.5	2.1	4.8	ns	
Rise Time, Fall Time	t+, t-	B1	F	S3,C _n	0.7	2.3	0.7	2.3	0.7	2.5	ns	
Propagation Delay	t+ +, t	B1	P _G	S0,A1	1.5	3.8	1.5	3.8	1.6	4.0	ns	
Rise Time, Fall Time	t+, t-	B1	P _G	S0,A1	0.7	2.2	0.7	2.2	0.7	2.4	ns	
Propagation Delay	t+ +, t	B1	G _G	S3,C _n	1.5	3.7	1.5	3.7	1.6	4.0	ns	
Rise Time, Fall Time	t+, t-	B1	G _G	S3,C _n	0.7	2.2	0.7	2.2	0.7	2.4	ns	
Propagation Delay	t+ -, t- +	B1	C _{n+4}	S3,C _n	2.0	4.0	2.0	4.0	2.1	4.3	ns	
Rise Time, Fall Time	t+, t-	B1	C _{n+4}	S3,C _n	0.5	2.0	0.5	2.2	0.5	2.2	ns	
Propagation Delay	t+ +, t+ -	M	F1		1.5	4.2	1.5	4.2	1.6	4.5	ns	
Rise Time, Fall Time	t+, t-	M	F1		0.8	2.3	0.8	2.3	0.8	2.5	ns	
Propagation Delay	t+ -, t- +	S1	F1	A1,B1	1.5	4.5	1.5	4.5	1.6	4.8	ns	
Rise Time, Fall Time	t+, t-	S1	F1	A1,B1	0.7	2.0	0.7	2.0	0.7	2.2	ns	
Propagation Delay	t- +, t+ -	S1	P _G	A3,B3	1.5	4.0	1.5	4.0	1.6	4.3	ns	
Rise Time, Fall Time	t+, t-	S1	P _G	A3,B3	0.7	2.0	0.7	2.2	0.7	2.4	ns	
Propagation Delay	t+ -, t- +	S1	C _{n+4}	A3,B3	1.5	4.1	1.5	4.1	1.6	4.4	ns	
Rise Time, Fall Time	t+, t-	S1	C _{n+4}	A3,B3	0.7	2.2	0.7	2.2	0.7	2.4	ns	
Propagation Delay	t+ -, t- +	S1	G _G	A3,B3	1.3	4.5	1.3	4.5	1.4	4.8	ns	
Rise Time, Fall Time	t+, t-	S1	G _G	A3,B3	0.5	3.2	0.5	3.2	0.5	3.4	ns	

[†] Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. $V_{CC1} = V_{CC2} = +2.0$ Vdc, $V_{EE} = -3.2$ Vdc

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees andising ormanufacture of the part. SCILLC is an Equal Opportun

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2176 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative