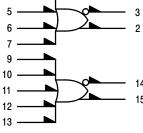
Dual 4-5-Input OR/NOR Gate


The MC10109 is a dual 4-5 input OR/NOR gate.

- $P_D = 30 \text{ mW typ/gate (No Load)}$
- $t_{pd} = 2.0 \text{ ns typ}$
- t_r , $t_f = 2.0$ ns typ (20%–80%)

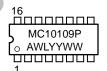
ON Semiconductor

http://onsemi.com

LOGIC DIAGRAM

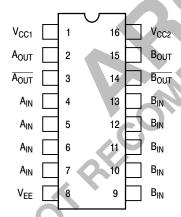
V_{CC1} = PIN 1 V_{CC2} = PIN 16 V_{EE} = PIN 8

MARKING DIAGRAMS



CDIP-16 **L SUFFIX CASE 620**

PDIP-16 P SUFFIX **CASE 648**



PLCC-20 **FN SUFFIX CASE 775**

DIP **PIN ASSIGNMENT**

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

= Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

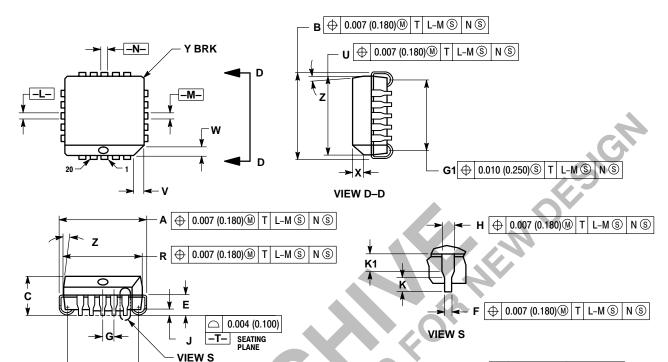
ORDERING INFORMATION

Device	Package	Shipping
MC10109L	CDIP-16	25 Units / Rail
MC10109P	PDIP-16	25 Units / Rail
MC10109FN	PLCC-20	46 Units / Rail

ELECTRICAL CHARACTERISTICS

Power Supply Drain Current IE				Test Limits							
Characteristic Symbol Test Min Max Min Typ Max Min Max Un				-30)°C		+25°C		+85	5°C	
Input Current	Characteristic	Symbol		Min	Max	Min	Тур	Max	Min	Max	Un
I _{inL} 4 0.5 0.5 0.5 0.3 μAx Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 Volume Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Volume Voltage Logic 1 V _{OHA} 2 -1.080 -1.675 -1.850 -1.650 -1.825 -1.615 Volume Voltage Logic 1 V _{OHA} 2 -1.080 -0.980 -0.980 -0.980 -0.910 -0.910 Volume Voltage Logic 0 V _{OLA} 2 -1.080 -1.655 -1.655 -1.630 -1.595 Volume Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.655 -1.630 -1.595 Volume Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.655 -1.630 -1.595 Volume Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.655 -1.630 -1.595 Volume Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.655 -1.630 -1.595 Volume Voltage Logic 0 V _{OLA} 2 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.595 Volume Voltage Logic 0 V _{OLA} 3 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 3.3 1.1 4.0 4	Power Supply Drain Current	Ι _Ε	8		15		11	14		15	mAd
Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 Volume Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Volume Threshold Voltage Logic 0 V _{OLA} 2 -1.080 -0.980 -0.980 -0.910 Volume Volume Volume -1.655 -1.650 -1.650 -1.615 Volume Volume Volume Volume -1.630 -1.630 -1.630 -0.910 Volume Volume Volume -1.630 -1.630 -1.596 Volume Volume -1.630 -1.596 Volume -1.630 -1.630 -1.	Input Current	I _{inH}	4		425			265		265	μΑσ
3		I _{inL}	4	0.5		0.5			0.3		μAd
Output Voltage Logic 0 Vol. 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Vol. Threshold Voltage Logic 1 V _{OHA} 2 -1.080 -0.980 -0.980 -0.910 -0.910 Vol. Threshold Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.630 -1.595 Vol. Switching Times (50Ω Load) Vol. 2 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.595 -1.630 -1.595 No. Switching Times (50Ω Load) Vol. 2 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0 2.9 1.0 3.7 1.0 2.0	Output Voltage Logic 1										Vd
Threshold Voltage Logic 1 V_{OHA} 2 -1.080 -0.980 -0.980 -0.910 0.0910	Output Voltage Logic 0	V _{OL}	2	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vd
Threshold Voltage Logic 0 V_{OLA} 2 -1.655 -1.630 -1.595 V_{OLA} 2 -1.655 -1.630 -1.595 V_{OLA} 2 -1.655 Switching Times (50Ω Load) Propagation Delay V_{OLA} 2 V_{OLA} 2 V_{OLA} 3.7 V_{OLA} 2.0 V_{OLA} 3.7 V_{OLA} 4.0	Threshold Voltage Logic 1	V _{OHA}	2	-1.080	-1.675	-0.980		-1.650	-0.910	-1.015	Vd
Switching Times (50Ω Load) Propagation Delay \begin{array}{c ccccccccccccccccccccccccccccccccccc	Throphold Voltage Logic O	\ <u>'</u>		-1.080	1 655	-0.980		4 620	-0.910	1.505	Va
Propagation Delay $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inresnoid voltage Logic 0	VOLA									Va
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switching Times (50 Ω Load)										ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propagation Delay	t ₄₊₂₊	2	1.0	3.7	1.0		2.9		3.7	
Rise Time (20 to 80%) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· - ·		2	1.0	3.7		2.0	2.9	1.0	3.7	
Rise Time (20 to 80%) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3				2.0	2.9			
Fall Time (20 to 80%) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.0		1.0		2.9		3.7	
Fall Time (20 to 80%) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time (20 to 80%)	t ₂₊	2	1.1	4.0	1.1	2.0	3.3	1.1	4.0	
Fall Time (20 to 80%) t ₂₋ 2 1.1 4.0 1.1 2.0 3.3 1.1 4.0 4.0 1.1 2.0 3.3 1.1 4.0 4.0	(======================================										
t ₃ 3 1.1 4.0 1.1 2.0 3.3 1.1 4.0	Fall Time (20 to 80%)										
	(20 10 00%)		3								
					NO	ED.					
DENICE NOT RECOMME	OENICE. NO										

ELECTRICAL CHARACTERISTICS (continued)


					TEST VOI	TAGE VALU	JES (Volts)		
@ Test Temperature				V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
–30°C				-0.890	-1.890	-1.205	-1.500	-5.2	
	+25°C				-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
			Pin	TEST V	OLTAGE AP	PLIED TO P	INS LISTED	BELOW	
Character	istic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain (Current	Ι _Ε	8					8	1, 16
Input Current		I _{inH}	4	4				8	1, 16
		I _{inL}	4		4			8	1, 16
Output Voltage	Logic 1	V _{OH}	2 3	4				8 8	1, 16 1, 16
Output Voltage	Logic 0	V _{OL}	2 3	4				8	1, 16 1, 16
Threshold Voltage	Logic 1	V _{OHA}	2 3			4	4	8 8	1, 16 1, 16
Threshold Voltage	Logic 0	V _{OLA}	2 3			4	4	8 8	1, 16 1, 16
Switching Times	(50Ω Load)					Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay		t ₄₊₂₊ t ₄₋₂₋ t ₄₊₃₋ t ₄₋₃₊	2 2 3 3			4 4 4 4	2 2 3 3	8 8 8	1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊ t ₃₊	2 3			4 4	2 3	8 8	1, 16 1, 16
Fall Time	(20 to 80%)	t ₂₋ t ₃₋	2 3			4 4	2 3	8 8	1, 16 1, 16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

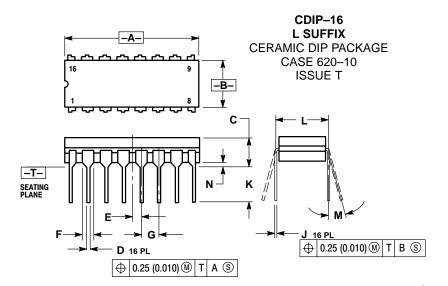
NOTES:

G1 ⊕ 0.010 (0.250)③ T L-M ⑤ N ⑤

OF MICE. NOT PERSON

- OTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.


 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

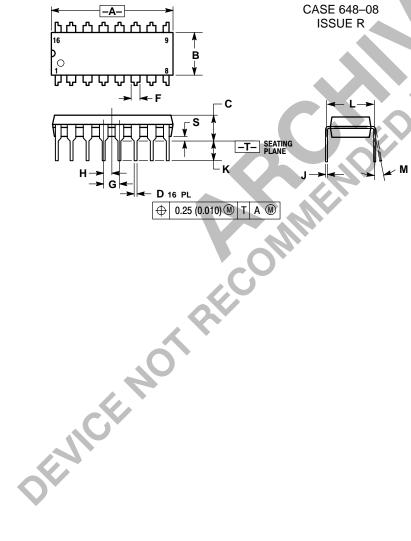
 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI V14 5M 1982
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INCHES		MILLIM	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.385	0.395	9.78	10.03	
В	0.385	0.395	9.78	10.03	
С	0.165	0.180	4.20	4.57	
Ε	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.050	BSC	1.27	BSC	
Н	0.026	0.032	0.66	0.81	
J	0.020		0.51		
K	0.025		0.64		
R	0.350	0.356	8.89	9.04	
U	0.350	0.356	8.89	9.04	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Χ	0.042	0.056	1.07	1.42	
Υ		0.020		0.50	
Z	2°	10°	2°	10 °	
G1	0.310	0.330	7.88	8.38	
K1	0.040		1.02		

PACKAGE DIMENSIONS

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION LTO CENTER OF LEAD WHEN CONTROLLING DIMENSION LTO CENTER OF LEAD WHEN

- FORMED PARALLEL

 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC
 BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
C		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54	BSC	
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62 BSC		
M	0 °	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.