4-Bit Differential ECL Bus to TTL Bus Transceiver

Description

The MC10H/100H680 is a dual supply 4-bit differential ECL bus to TTL bus transceiver. It is designed to allow the system designer to no longer be limited in bus speed associated with standard TTL busses. Using a differential ECL Bus will increase the frequency of operation and increase noise immunity.

Both the TTL and the ECL ports are capable of driving a bus. The ECL outputs have the ability to drive 25 Ω , allowing both ends of the bus line to be terminated in the characteristic impedance of 50 Ω . The TTL outputs are specified to source 15 mA and sink 48 mA, allowing the ability to drive highly capacitive loads.

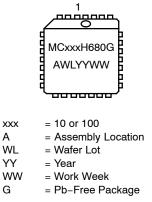
The ECL output levels are V_{OH} approximately equal to -1.0 V and V_{OL} cutoff equal to -2.0 V (VTT). When the ECL ports are disabled both EIOx and EIOxB go to the V_{OL} cutoff level. The ECL input receivers have special circuitry which detects this disabled condition, prevents oscillation, and forces the TTL output to the low state. The noise margin in this disabled state is greater than 600 mV. Multiple ECL V_{CCO} pins are utilized to minimize switching noise.

The TTL ports have standard levels. The TTL input receivers have PNP input devices to significantly reduce loading. Multiple TTL power and ground pins are utilized to minimize switching noise.

The control pins (EDIR and ECEB) of the 10H version is compatible with MECL $10H^{TM}$ ECL logic levels. The control pins of the 100H version are compatible with 100K levels.

Features

- Differential ECL Bus (25 Ω) I/O Ports
- High Drive TTL Bus I/O Ports
- Extra TTL and ECL Power/Ground Pins to Minimize Switching Noise
- Dual Supply
- Direction and Chip Enable Control Pins
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

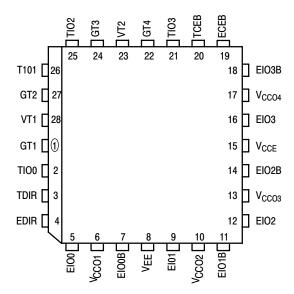


Figure 1. Pinout: PLCC-28 (Top View)

Table 1. PIN DESCRIPTIONS

Pin	Symbol	Function
1	GT1	TTL Ground 1
2	TIO0	TTL I/O Bit 0
3	TDIR	TTL Direction Control
4	EDIR	ECL Direction Control
5	EIO0	ECL I/O Bit 0
6	VCCO1	ECL V _{CC} 1 (0 V) – Outputs
7	EIO0B	ECL I/O Bit 0 Bar
8	V _{EE}	ECL Supply (-5.2/-4.5 V)
9	EIO1	ECL I/O Bit 1
10	VCCO2	ECL V _{CC} 2 (0 V) – Outputs
11	EIO1B	ECL I/O Bit 1 Bar
12	EIO2	ECL I/O Bit 2
13	VCCO3	ECL V _{CC} 3 (0 V) – Outputs
14	EIO2B	ECL I/O Bit 2 Bar
15	V _{CCE}	ECL V _{CC} (0 V)
16	EIO3	ECL I/O Bit 3
17	VCCO4	ECL V _{CC} 4 (0 V) – Outputs
18	EIO3B	ECL I/O Bit 3 Bar
19	ECEB	ECL Chip Enable Bar Control
20	TCEB	TTL Chip Enable Bar Control
21	TIO3	TTL I/O Bit 3
22	GT4	TTL Ground 4
23	VT2	TTL Supply 2 (5.0 V)
24	GT3	TTL Ground 3
25	TIO2	TTL I/O Bit 2
26	TIO1	TTL I/O Bit 1
27	GT2	TTL Ground 2
28	VT1	TTL Supply 1 (5.0 V)

Table 2. TRUTH TABLE

ECEB	TCEB	EDIR	TDIR	EIN	EINB	EOUT	EOUTB	TIN	TOUT	COMMENTS
Н	Х	Х	Х	Х	Х	LC	LC	х	Z	ECL and TTL Outputs Disabled
Х	Н	Х	Х	Х	Х	LC	LC	х	Z	ECL and TTL Outputs Disabled
L	L	Н	Х	Н	LC			NA	Н	ECL to TTL Direction
L	L	Н	Х	LC	Н			NA	L	ECL to TTL Direction
L	L	Н	Х	LC	LC			NA	L	ECL to TTL Direction (L–L Condition)
L	L	Х	Н	Н	LC			NA	Н	ECL to TTL Direction
L	L	Х	Н	LC	Н			NA	L	ECL to TTL Direction
L	L	Х	Н	LC	LC			NA	L	ECL to TTL Direction (L–L Condition)
L	L	L	L	NA	NA	Н	LC	Н		TTL to ECL Direction
L	L	L	L	NA	NA	LC	Н	L		TTL to ECL Direction

TDIR – Direction Control TTL Levels EDIR - Direction Control ECL Levels TCEB – Chip Enable Bar Control TTL Levels

ECEB - Chip Enable Bar Control ECL Levels TIN – TTL Input TOUT – TTL Output

EIN - ECL Input EINB – ECL Input Bar EOUT – ECL Output EOUTB - ECL Output Bar

H – HIGH L – LOW

LC – ECL Low Cutoff (VTT = -2.0 V)

X - Don't Care

Z - High Impedance

Table 3. MAXIMUM RATINGS

Parameter	Symbols	Rating	Unit
Power Supply Voltage	V _{EE} (ECL)	-8.0 to 0	Vdc
Power Supply Voltage	V _{CCT} (TTL)	-0.5 to +7.0	Vdc
Input Voltage	V _I (ECL) V _I (TTL)	0.0 to V _{EE} -0.5 to +7.0	Vdc
Disabled 3-State Output	V _{out} (TTL)	0.0 to V _{CCT}	Vdc
Output Source Current Continuous	I _{out} (ECL)	100	mAdc
Output Source Current Surge	I _{out} (ECL)	200	mAdc
Storage Temperature	T _{stg}	-65 to 150	°C
Operating Temperature	T _{amb}	0.0 to +75	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS, ECL V_{CCT} = +5.0 V \pm 10%, V_{EE} = -5.2 \pm 5% (10H Version);

 $V_{EE} = -4.2 \text{ V to } -5.5 \text{ V}$ (100H Version)

			T _A =	0°C	T _A =	25°C	T _A =	75°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{EE}	Supply Current/ECL			-110		-110		-110	mA
I _{INH}	Input HIGH Current			255		175		175	μA
I _{INL}	Input LOW Current		0.5		0.5		0.3		μA
V _{OH} V _{OL}	Output HIGH Voltage Output LOW Voltage	25 Ω to -2.1 V	-1100 -2.1	-840 -2.03	-1100 -2.1	-810 -2.03	-1100 -2.1	-735 -2.03	mV V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 5. 10H DC CHARACTERISTICS (CONTROL INPUTS ONLY), ECL V_{CCT} = +5.0 \pm 10%, V_{EE} = -5.2 \pm 5%

		T _A = 0°C		T _A = 25°C		T _A = 75°C		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1170 -1950	-840 -1480	-1130 -1950	-810 -1480	-1070 -1950	-735 -1450	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Tuble 0.		ONEI), E		- + 0.0 -	070, VEE -	= - 4 .2 v ic	-0.5 V	
			$T_A = 0^{\circ}C$		T _A = 25°C		T _A = 75°C	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	mV

Table 6. 100H DC CHARACTERISTICS (CONTROL INPUTS ONLY), ECL V_{CCT} = $+5.0 \pm 10\%$, V_{EE} = -4.2 V to -5.5 V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 7. DC CHARACTERISTICS, TTL V_{CCT} = +5.0 V \pm 10%, V_{EE} = -5.2 \pm 5% (10H Version);

 V_{EE} = -4.2 V to -5.5 V (100H Version)

			T _A =	0°C	T _A =	25°C	T _A =	75°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
V _{IH} V _{IL}	Standard Input Standard Input		2.0	0.8	2.0	0.8	2.0	0.8	Vdc
V _{IK}	Input Clamp	I _{IN} = -18 mA		-1.2		-1.2		-1.2	Vdc
V _{OH}	Output HIGH Voltage Output HIGH Voltage	I _{OH} = −3.0 mA I _{OH} = −15 mA	2.5 2.0		2.5 2.0		2.5 2.0		V
V _{OL}	Output LOW Voltage	I _{OL} = 48 mA		0.55		0.55		0.55	V
I _{IH} *	TTL (Input HIGH) TTL (Input HIGH)	V _{in} = 2.7 V V _{in} = 7.0 V		20 100		20 100		20 100	μΑ
I _{IL} *	TTL (Input LOW)	V _{in} = 0.5 V		-0.6		-0.6		-0.6	mA
I _{CCL}	Supply Current			75		75		75	mA
I _{CCH}	Supply Current			70		70		70	mA
I _{CCZ}	Supply Current			70		70		70	mA
I _{OS}	Output Short Circuit Current	V _{OUT} = 0 V	-100	-225	-100	-225	-100	-225	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

*TTL Control Inputs only

Table 8. DC (I/O CHARACTERISTICS ONLY), TTL

			T _A =	0°C	T _A =	25°C	T _A =	75°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{IH/IOZH} I _{IL/IOZL}	Output Disable Current	V _{OUT} = 2.7 V V _{OUT} = 0.5 V		70 200		70 200		70 200	μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

				T _A =	0°C	T _A =	25°C	T _A =	75°C	
Symbol	Parameter	Waveforms	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay to Output	2, 4	C _L = 50 pF	2.7	4.8	2.7	4.8	2.7	4.8	ns
t _{PZH} t _{PZL}	ECEB to Output Enable Time	2, 5, 6	C _L = 50 pF	3.5 3.5	6.5 6.0	3.5 3.5	6.5 6.0	3.7 3.7	6.7 6.4	ns
t _{PHZ} t _{PLZ}	ECEB to Output Disable Time	2, 5, 6	C _L = 50 pF	3.5 3.5	8.6 6.5	3.5 3.5	8.6 6.5	3.7 3.7	8.8 7.3	ns
t _{PZH} t _{PZL}	TCEB to Output Enable Time	2, 5, 6	C _L = 50 pF	5.7 5.4	7.7 6.9	5.7 5.4	7.7 6.9	5.9 5.9	7.9 7.4	ns
t _{PHZ} t _{PLZ}	TCEB to Output Disable Time	2, 5, 6	C _L = 50 pF	4.0 4.0	8.5 5.8	4.1 4.2	8.4 6.0	4.2 4.7	8.3 6.5	ns
t _r /t _f	1.0 to 2.0 Vdc	3	C _L = 50 pF	0.4	1.5	0.4	1.5	0.4	1.5	ns

Table 9. ECL TO TTL DIRECTION / AC TEST

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

				T _A =	0°C	T _A =	25°C	T _A =	75°C	
Symbol	Parameter	Waveforms	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay to Output	1, 4	25 Ω to – 2.0 V	1.8	4.6	1.8	4.6	2.0	4.9	ns
t _{PLH} t _{PHL}	ECEB to Output	1, 4	25 Ω to – 2.0 V	2.9	5.1	3.0	5.2	3.4	5.7	ns
t _{PLH} t _{PHL}	TCEB to Output	1, 4	25 Ω to – 2.0 V	3.4	6.3	3.5	6.6	3.8	7.4	ns
t _r /t _f	Output Rise/Fall Time 20% – 80%	1, 3	25 Ω to – 2.0 V	1.0	3.4	1.0	3.4	1.0	3.4	ns

Table 10. TTL TO ECL DIRECTION / AC TEST

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

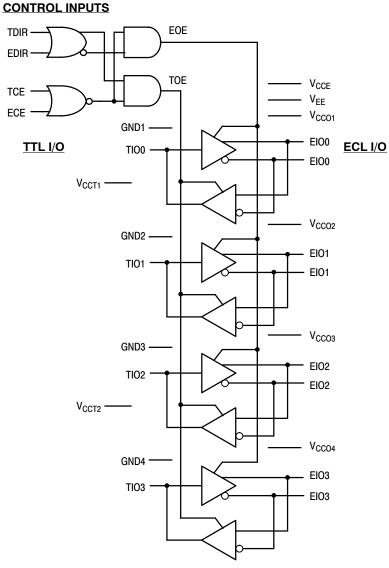


Figure 2. Block Diagram

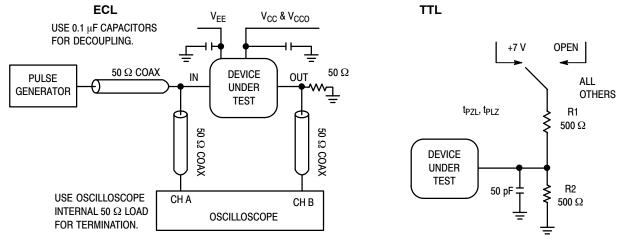
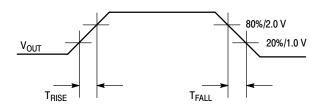
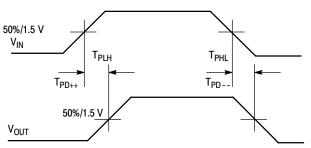


Figure 3. Switching Circuit ECL



WAVEFORMS


TTL

ECL/TTL

TTL VE VE V_{OUT} T_{PZL} T_{PZL} T_{PLZ} T_{PLZ} V_{OUT} T_{OL} T_{OL} V_{OL} V_{OL}

Figure 7. 3–State Output Low Enable and Disable Times

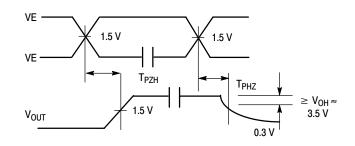
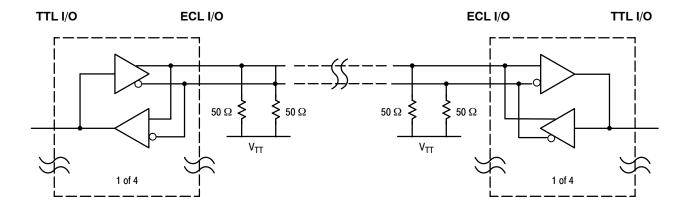
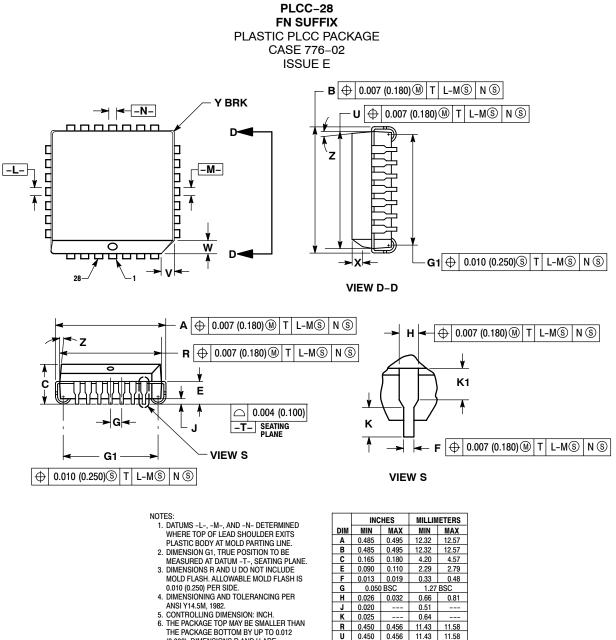



Figure 8. 3–State Output High Enable and Disable Times

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H680FN	PLCC-28	37 Units / Rail
MC10H680FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10H680FNR2	PLCC-28	500 / Tape & Reel
MC10H680FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100H680FN	PLCC-28	37 Units / Rail
MC100H680FNG	PLCC-28 (Pb-Free)	37 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THA THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH.

BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635). V 0.042 0.048

W

z

0.042 0.048

10 °

G1 0.410 0.430 10.42 10.92

 X
 0.042
 0.040

 X
 0.042
 0.056

 Y
 --- 0.020

2 °

K1 0.040

1.07

1 07

1.07

2 °

1.02

1.21

1.21

1.42

0.50

10°

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). MECL 10H is a trademark of Motorola, Inc.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative