-3.3 V / -5V Triple ECL Input to PECL Output Translator

Description

The MC100EL90 is a triple ECL to PECL translator. The device receives either -3.3 V or -5 V differential ECL signals, determined by the V_{EE} supply level, and translates them to standard +5 V differential PECL output signals.

To accomplish the level translation, the EL90 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins, as expected, are connected to the system ground plane. Both V_{EE} and V_{CC} should be bypassed to ground via 0.01 μ F capacitors.

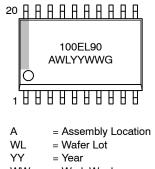
Under open input conditions, the \overline{D} input will be biased at $V_{EE}/2$ and the D input will be pulled to V_{EE} . This condition will force the Q output to a LOW, ensuring stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series Contains Temperature Compensation

Features

- 500 ps Propagation Delays
- Operating Range:
 - V_{CC}= 4.75 V to 5.25 V
 - V_{EE} = -3.0 V to -5.5 V; GND= 0 V
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Internal Input Pulldown Resistors
- ESD Protection:
 - ♦ > 2 kV Human Body Model
 - ♦ > 200 V Machine Model
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note <u>AND8003/D</u>)
- Flammability Rating: UL 94 V-0 @ 1.125 in, Oxygen Index: 28 to 34
- Transistor Count = 261 Devices
- This Device is Pb-Free, Halogen Free and is RoHS Compliant


ON Semiconductor®

www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

MARKING DIAGRAM*

WW = Work Week G = Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device		Package	Shipping
MC100EL90D	VG	SOIC–20 WB (Pb-Free)	38 Units/Tube

Semiconductor Components Industries, LLC, 2016 July, 2016 – Rev. 4

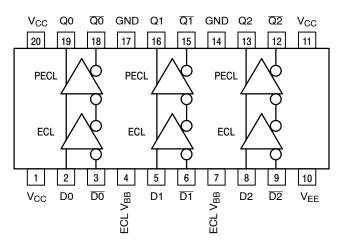


Table 1. PIN DESCRIPTION

PIN	FUNCTION
Dn, Dn	ECL Inputs
Qn, Qn	PECL Outputs
ECL V _{BB}	ECL Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
GND	Ground

 * All V_{CC} pins are tied together on the die. Warning: All V_{CC}, V_{EE}, and GND pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout and Logic Diagram (Top View)

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		–8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 to 0 -6 to 0	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	90 60	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = -5 V; GND = 0 V (Note 1))

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
I _{CC}	V _{CC} Power Supply Current			24		20	24			26	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Output parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.5 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0V.

		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	VEE Power Supply Current			8.0		6.0	8.0			8.0	mA
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
ECL V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 2) Vpp < 500 Mv Vpp ≧ 500 mV	V _{EE} + 1.3 V _{FF} + 1.5		-0.4 -0.4	V _{EE} + 1.2 V _{EE} + 1.4		-0.4 -0.4	V _{EE} + 1.2 V _{EE} + 1.4		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 4. NECL DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = -5 \text{ V}$; GND = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input parameters vary 1:1 with GND. V_{EE} can vary –3.0 V / –5.5 V.

2. VIHCMR min varies 1:1 with VEE. VIHCMR max varies 1:1 with GND.

-40°C 25°C 85°C Max Min Max Symbol Characteristic Min Тур Тур Min Тур Max Unit Maximum Toggle Frequency 560 650 700 MHz fmax **Propagation Delay** Differential 390 590 420 620 460 660 t_{PLH} ps t_{PHL} D to Q S.E 340 640 370 670 410 710 Skew tskew ps 100 Output-to-Output (Note 1) 20 100 20 100 20 Part-to-Part (Differential Configuration) (Note 1) 200 200 200 Duty Cycle (Differential Configuration) (Note 2) 25 25 25 Cycle-to-Cycle Jitter TBD TBD TBD ps **t**JITTER V_{PP} Input Swing (Note 3) 150 1000 150 1000 1000 150 mV tr ps Output Rise/Fall Times Q (20%-80%) 230 500 230 500 230 500 tf

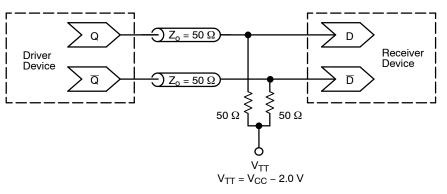
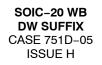
Table 5. AC CHARACTERISTICS (V_{CC} = 4.5 to 5.5 V; V_{EE} = -3.0 to -5.5 V; GND = 0 V)

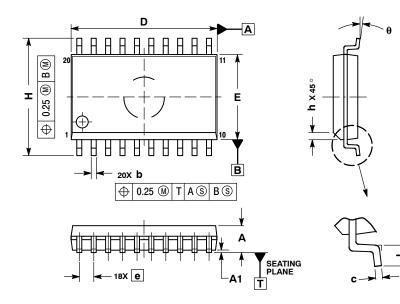
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.

2. Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.

3. VPP(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ~40.

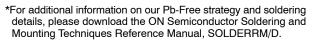




Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS



NOTES:

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAI DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS						
DIM	MIN	MAX					
Α	2.35	2.65					
A1	0.10	0.25					
b	0.35	0.49					
C	0.23	0.32					
D	12.65	12.95					
E	7.40	7.60					
е	1.27	BSC					
Н	10.05	10.55					
h	0.25	0.75					
L	0.50	0.90					
θ	0 °	7 °					

RECOMMENDED SOLDERING FOOTPRINT* 20X 20X 1.30 11.00 10 1.27 PITCH DIMENSIONS: MILLIMETERS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all ways, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries,

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative