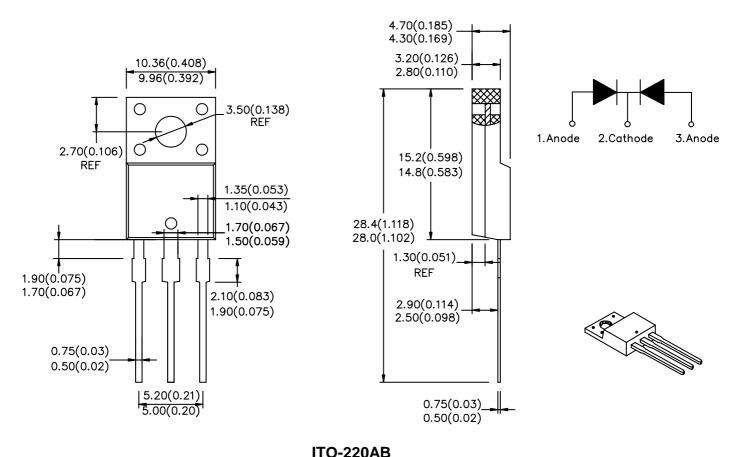
Technical Data Data Sheet 3384, Rev. A

MBRF30200CT SCHOTTKY RECTIFIER


Applications:

• Switching power supply • Converters • Free-Wheeling diodes • Reverse battery protection

Features:

- 150 ℃ T_J operation
- Center tap configuration
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Mechanical Dimensions: In Inches / mm

- 221 West Industry Court Deer Park, NY 11729-4681 (631) 586-7600 FAX (631) 242-9798
 - World Wide Web Site http://www.sensitron.com E-Mail Address sales@sensitron.com •

SENSITRON SEMICONDUCTOR

Technical Data Data Sheet 3384, Rev. A

Maximum Ratings:

Characteristics	Symbol	Condition	Max.	Units
Peak Inverse Voltage	V_{RWM}	-	200	V
Max. Average Forward	I _{F(AV)}	50% duty cycle @T _C =133°C, rectangular wave form	30	Α
Peak Repetitive Forward Current (per leg)	I _{FRM}	Rated V _R square wave 20KHz T _C =133°C	20	Α
Max. Peak One Cycle Non- Repetitive Surge Current (per leg)	I _{FSM}	8.3 ms, half Sine pulse	150	А

Electrical Characteristics:

Characteristics	Symbol	Condition	Max.	Units
Max. Forward Voltage Drop	vard Voltage Drop V_{F1} @ 15A, Pulse, $T_J = 25$ °C		0.90	V
(per leg)*		@ 30A, Pulse, T _J = 25 °C	1.05	
	V_{F2}	@ 15 A, Pulse, T _J = 125 °C	0.70	V
		@ 30 A, Pulse, T _J = 125 °C	0.85	
Max. Reverse Current (per I_{R1} @ V_R = rated V_R		$@V_R = rated V_R$	1.0	mA
leg)*		T _J = 25 °C		
	I_{R2}	$@V_R = rated V_R$	6.0	mA
		T _J = 125 °C		
Max. Junction Capacitance	C _T	$@V_R = 5V, T_C = 25 ^{\circ}C$	400	pF
(per leg)		$f_{SIG} = 1MHz$		
Typical Series Inductance	L _S	Measured lead to lead 5 mm from	8.0	nΗ
(per leg)		package body		
Max. Voltage Rate of Change	dv/dt	-	10,000	V/μs
RSM Isolation Voltage	V_{ISO}	Clip mounting, the epoxy body	4500	V
(t = 1.0 second, R. H. < =30%,		away from the heatsink edge by		
$T_A = 25 ^{\circ}C$		more than 0.110" along the lead		
		direction.		
		Clip mounting, the epoxy body is	3500	
		inside the heatsink.		-
		Screw mounting, the epoxy body is inside the heatsink.	1500	
	ĺ	is inside the neatsink.		1

^{*} Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications:

Characteristics	Symbol	Condition	Specification	Units	
Max. Junction Temperature	T_J	-	-55 to +150	Ô	
Max. Storage Temperature	T _{stg}	-	-55 to +150	°C	
Maximum Thermal Resistance Junction to Case (per leg)	$R_{\theta JC}$	DC operation	3.5	°C/W	
Approximate Weight	wt	-	2	g	
Mounting Torque	T _M	-	6(Min.) 12(Max.)	Kg-cm	
Case Style	ITO-220AB				

^{• 221} West Industry Court ☐ Deer Park, NY 11729-4681 ☐ (631) 586-7600 FAX (631) 242-9798 •

[•] World Wide Web Site - http://www.sensitron.com • E-Mail Address - sales@sensitron.com •

MBRF30200CT

SENSITRON SEMICONDUCTOR

Technical Data Data Sheet 3384, Rev. A

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior not ice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.

 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- from use at a value exceeding the absolute maximum rating.

 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed writ ten permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.