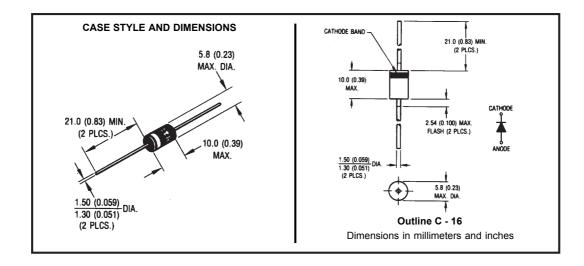
International Rectifier

MBR350 MBR360

SCHOTTKY RECTIFIER

3.0 Amp


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	50/60	V
I _{FSM} @tp=5 µs sine	460	Α
V _F @3 Apk, T _J = 25°C	0.73	V
T _J	-40 to 150	°C

Description/ Features

The MBR350, MBR360 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- · Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free plating

Voltage Ratings

Part number	MBR350	MBR360
V _R Max. DC Reverse Voltage (V)	50	60
V _{RWM} Max. Working Peak Reverse Voltage (V)	30	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current * See Fig. 4	3.0	А	50% duty cycle @ T _L = 50°C, re-	ctangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	460	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	Surge Current * See Fig. 6	80	_ A	10ms Sine or 6ms Rect. pulse		
E _{AS}	Non-Repetitive Avalanche Energy	5.0	mJ	T _J = 25 °C, I _{AS} = 1 Amps, L = 10 mH		
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical		

Electrical Specifications

	Parameters	Value	Units	(Conditions
V _{FM}	Max. Forward Voltage Drop	0.58	V	@ 1.0A	
	* See Fig. 1 (1)	0.73	V	@ 3.0A	T _{,J} = 25 °C
		1.06	V	@ 9.4A	-
		0.49	V	@ 1.0A	
		0.64	V	@ 3.0A	T _{,J} = 125 °C
		0.89	V	@ 9.4A	_
I _{RM}	Max. Reverse Leakage Current	0.6	mA	T _J = 25 °C	
	* See Fig. 2 (1)	8	mA	T _J = 100 °C	V _R = rated V _R
		15	mA	T _J = 125 °C	
C _T	Typical Junction Capacitance	190	pF	V _R = 5V _{DC} (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance	9.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	·			
	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range(*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJL}	Typical Thermal Resistance Junction	30	°C/W	DC operation (* See Fig. 4)
	to Lead (**)			
wt	Approximate Weight	1.2 (0.042)	g (oz.)	
	Case Style	C-16		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}}$ thermal runaway condition for a diode on its own heatsink

 $^{(\}ensuremath{^{\star\star}})$ Mounted 1 inch square PCB, thermal probe connected to lead 2mm from package

Fig. 1 - Max. Forward Voltage Drop Characteristics

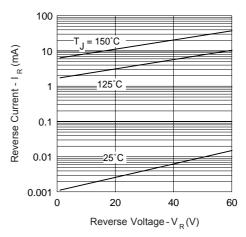


Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage

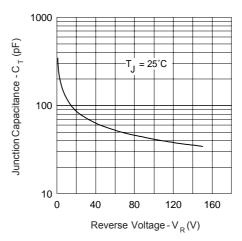


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

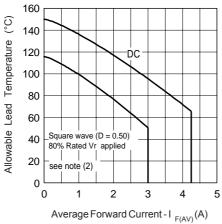


Fig. 4 - Max. Allowable Lead Temperature Vs. Average Forward Current

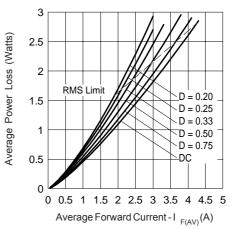


Fig. 5-Forward Power Loss Characteristics

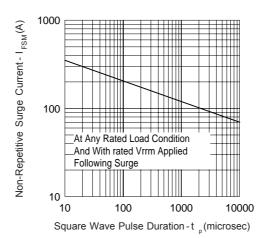
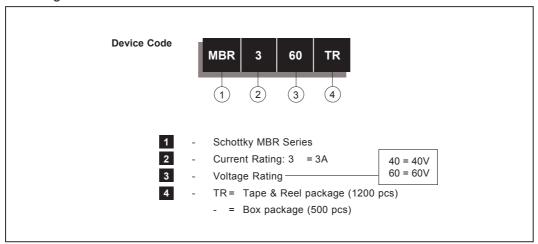



Fig. 6 - Max. Non-Repetitive Surge Current

 $\begin{tabular}{ll} \textbf{(2)} Formula used: $T_C = T_J - (Pd + Pd_{REV})$ x R_{thJC}; \\ Pd = Forward Power Loss = $I_{F(AV)}$ x $V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); \\ Pd_{REV} = Inverse Power Loss = V_{R1} x $I_R(1-D)$; $I_R @ V_{R1} = 80\%$ rated V_R \\ \end{tabular}$

Bulletin PD-20594 rev. C 12/04

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 12/04