

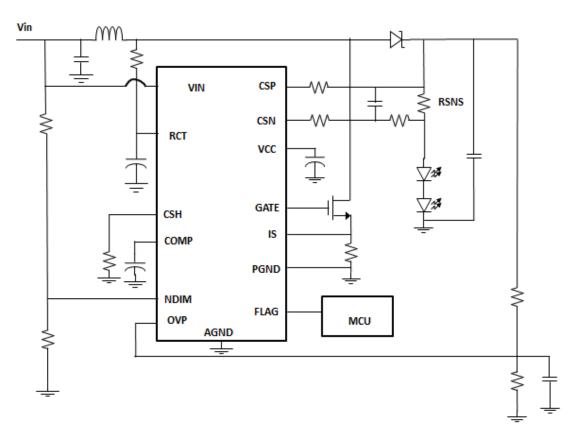
Multi-topology Constant Current Controller

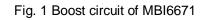
Features

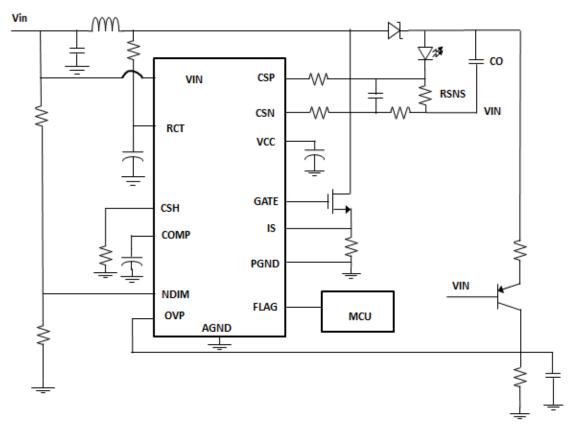
- 4.5~65V wide input voltage range
- Provide high constant current by external power NMOS switch Full protections: UVLO/ OVP/Thermal Shutdown / LED Open-Circuit/ Short Circuit Error Flag
- PWM/DC input for dimming control
- Full protections: Thermal shutdown/ LED Open/ Cycle-by-cycle Current-Limit
- LED short circuit detection flag

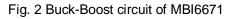
Product Description

MBI6671 is a multi-topology constant-current high-brightness LED controller to provide a reliable design solution for high power automotive illumination applications.

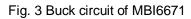

The output current of MBI6671 can be programmed by an external resistor and dimmed via pulse width modulation (PWM) to achieve higher efficiency linear current modulation.

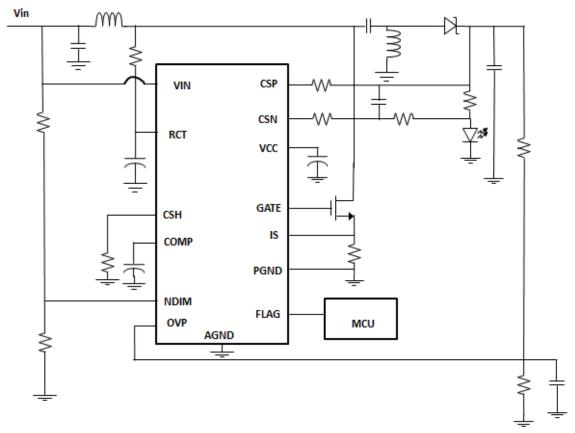

MBI6671 features completed protection design to handle faulty situations. The cycle-by-cycle current limitation function limits the inrush current while the power is switched on. Thermal shutdown guards the system to be robust and keep the driver away from being damaged which results from LED open-circuited, and other abnormal events. With an error flag pin, short circuit condition can be reported to a possible external mechanism for further control decision making. MBI6671 is packaged in the thermal-enhanced TSSOP14 for efficient power dissipation.


Applications


- Automotive Lighting
- High Power LED Lighting
- Constant Current Source


Typical Application Circuit





Functional Diagram

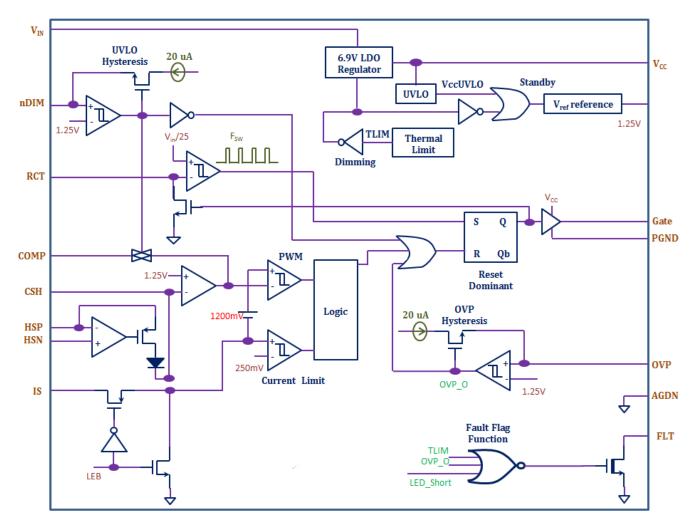
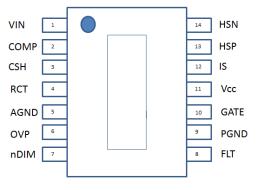



Fig. 5 Function block diagram of MBI6671

Pin Configuration

MBI6671GTS (Top View)

Pin Description

Pin	Pin	Pin Type	Pin	Function
No.	Name		Rating	Function
1	Vin	Р	65V	Input Voltage
2	COMP	I/O	5V	Set Compensation
3	CSH	I/O	5V	Current Sense High
4	RCT	I/O	65V	Resistor Capacitor Timing
5	AGND	Р	0V	Analog Ground
6	OVP	I	65V	Over-voltage Protection
7	nDIM	I/O	65V	UVLO/PWM Dimming
8	FLT	0	65V	Flag OVP
9	PGND	Р	0	Power Ground
10	GATE	0	6.9V	Gate Drive Output
11	Vcc	Р	6.9V	Internal Regulator Output
12	IS	I/O	65V	Main Switch Current Sense
13	HSP		65V	LED Sense Positive
14	HSN		65V	LED Sense Negative
	Thermal		0V	Thermal PAD
	PAD			

Maximum Ratings

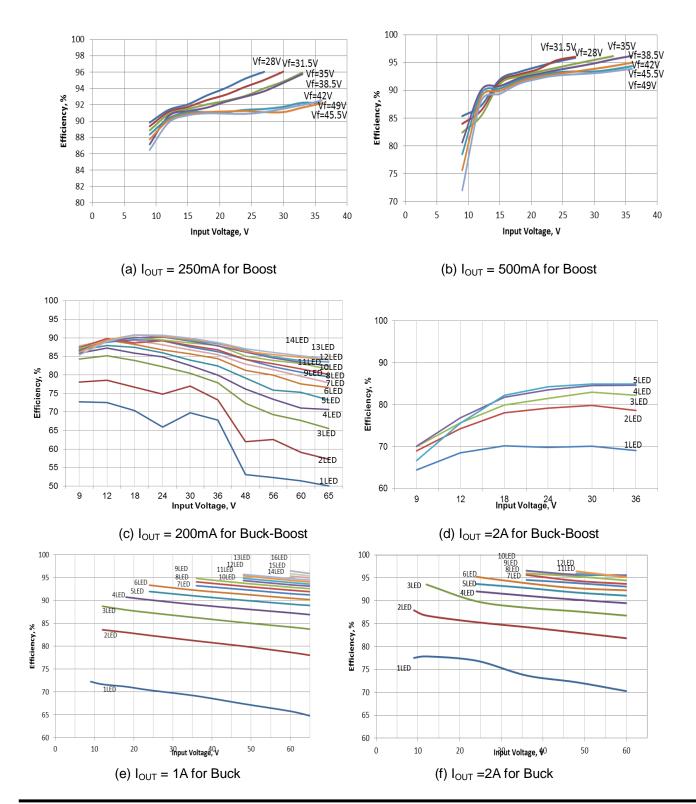
Operation above the maximum ratings may cause device failure. Operation at the extended periods of the maximum ratings may reduce the device reliability.

Character	Symbol	Rating	Unit	
Supply Voltage	V _{IN}	-0.3~71	V	
Sustaining Voltage at DIM pin		Vn _{PWM}	-0.3~71	V
Sustaining Voltage at Flag pin		V _{flag}	-0.3~71	V
Sustaining Voltage at OVP pin	V _{OVP}	-0.3~71	V	
Sustaining Voltage at HSP/HSN	V_{SEN}	-0.3~71	V	
Power Dissipation (On 4-Layer PCB, Ta=25°C)	- GTS Type	P _D	-	W
Empirical Thermal Resistance (On PCB, Ta=25°C)**	GTSType	R _{th(j-a)}	-	°C/W
Junction Temperature		T _j , _{max}	-	°C
Operating Ambient Temperatur	T _{opr}	-40~+125	°C	
Storage Temperature		T _{stg}	-55~+150	°C
ESD Rating	Human Body Mode (MIL-STD-883G Method 3015.8)	HBM	Class 3A (5KV)	-
	Machine Mode (ANSI/ ESD S5.2-2009)	MM	Class M4 (400V)	-

*The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51-7 thermal measurement standard.

**Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.

Electrical Characteristics

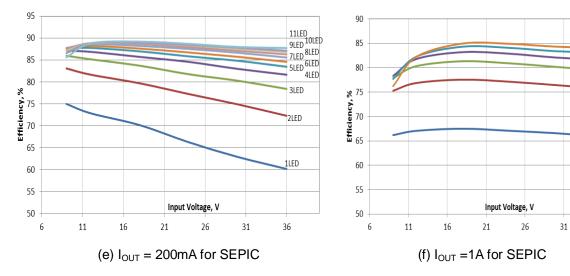

Vin=14V, Tj=25C unless otherwise noted.

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
INPUT						
Supply Voltage	V _{IN}		4.5		65	V
Quiescent Current	Ι _Q	Static		1.6	3	mA
Startup Regulator (Vcc)					
Vcc Regulation	Vcc _{REG}	Icc=0mA	6.3	6.9	7.35	V
Vcc Current Limitt	I _{CC-LIM}	Vcc=0V		27		V
Vcc UVLO Threshold	Vcc _{UVLO}	Vcc Decrease		4.2		V
Vcc Start-Up Threshold	Vcc _{strup}	Vcc Increase		4.3		V
Vcc Hysteresis	V _{CC-HYS}			100		mV
Over Voltage Protectio	n(OVP)					
OVP OVLO Threshold	V _{TH-OVP}	OVP Increasing		1.25		V
OVP Hysteresis		OVP Active (high)	10	20	30	uA
Source Current	I _{HYS-OVP}		10	20		uA
Error Amplifier (EA)	1					
CSH Reference Voltage	V _{CSH}	With Respect to AGND	-2%	1.25	+2%	V
COMP Sink/Source Current				27		uA
Trans-conductance				100		uA/V
OFF Timer(RCT)				100		u Av v
Minimum Off-time	T _{OFF-MIN}	RCT=1V through 1 KΩ		50		nS
RCT Pull down						
resistance	R _{RCT}			50		Ω
RCT Ref Voltage	T _{R,SW}	V _{IN} =14V		565		mV
(Vin/25)	11,000					
PWM Comparator COMP to PWM Offset						
(Level Shift)		V _{IN} =14V		1.2		V
Current Limit (IS)					•	•
Current limit Threshold	V _{LIM}			250		mV
I _{LIM} Delay to Output	ILIM DELAY			35		nS
Minimum On Time	V _{MIN ON}			500		nS
High Side Sense Circu CSH source current	It I _{CSH}	R _{HSN} =1k, (V _{HSP} - V _{HSN})=100mV (V _{HSP} - V _{HSN})/ R _{HSN} =100uA		100		uA
Gate						
Gate Rise Time	T _{Rise}	Cload=1nF 20%~80% Trise Time		30		Ns
Gate Fall Time	T _{Fall}	Cload=1nF 80%~20% Fall Time		20		Ns
UVLO and DIM						
nDIM/UVLO Threshold	$V_{\text{TH-nDIM}}$			1.24		V
nDIM Hysteresis Current	I _{HYS-nDIM}		10	20	30	uA
Thermal Shutdown					-	
Thermal Shutdown Threshold	TSD			155		С

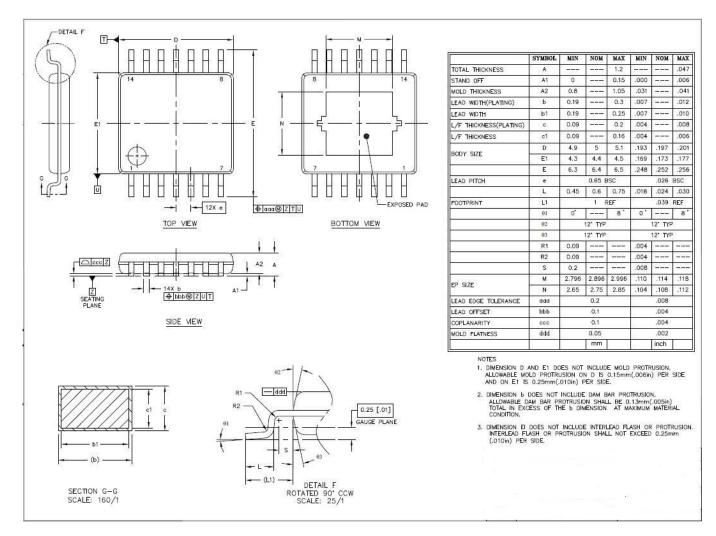
MBI6671		Multi-topology	<u>Cons</u>	stant Cu	urrent (<u>Controlle</u>
Thermal Shutdown Hysteresis	THYS			25		С
PULL-DOWN Resistance						
R _{FLT} Pull-down Resistance	R_{FLT}			145	300	ohm

Typical Performance Characteristic

1. Efficiency vs. Input Voltage at Various LED Cascaded Numbers



6LED 5LED 4LED 3LED

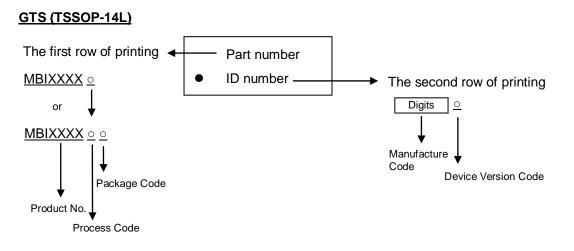

2LED

1LED

36

Outline Drawing

MBI6671GTS Outline Drawing


MBI6671

Application Information

MBI6671 is a simple and high efficient multi-topology converter with capability to drive external MOSFET. The device adopts hysteretic PFM control scheme to regulate loading and input voltage variations. The hysteretic PFM control requires no loop compensation bringing very fast load transient response and simplicity of the design.

The device is well suited for applications requiring a wide input voltage range. The high-side current sensing and an integrated current-setting circuitry minimize the number of external components while delivering an average output current with ±5% accuracy. Featured by PWM dimming and analog dimming capability, MBI6671 offers flexible ways to meet LED dimming related applications.

Product Top Mark Information

Product Revision History

Datasheet Version	Device Version Code
V1.00	A

Product Ordering Information

Product Ordering Number*	RoHS Compliant Package Type	Weight (g)
MBI6671GTS-A	TSSOP14L-150-1.27	0.079

*Please place your order with the "product ordering number" information on your purchase order (PO).

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.