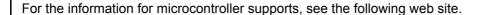
16-bit Proprietary Microcontroller

CMOS

F²MC-16FX MB96620 Series

MB96F622/F623/F625^{*}

DESCRIPTION


MB96620 series is based on Fujitsu's advanced 16FX architecture (16-bit with instruction pipeline for RISC-like performance). The CPU uses the same instruction set as the established 16LX series - thus allowing for easy migration of 16LX Software to the new 16FX products.

16FX improvements compared to the previous generation include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time.

For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz operation frequency from an external 4MHz resonator. The result is a minimum instruction cycle time of 31.2ns going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed.

*: These devices are under development and specification is preliminary. These products under development may change its specification without notice.

Note: F²MC is the abbreviation of Fujitsu Flexible Microcontroller

http://edevice.fujitsu.com/micom/en-support/

■ FEATURES

Technology

· 0.18µm CMOS

CPU

- · F²MC-16FX CPU
- · Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, variety of pointers)
- · 8-byte instruction execution queue
- · Signed multiply (16-bit ×16-bit) and divide (32-bit/16-bit) instructions available

System clock

- · On-chip PLL clock multiplier (×1 to ×8, ×1 when PLL stop)
- 4 MHz to 8 MHz external crystal oscillator clock (maximum frequency when using ceramic resonator depends on Q-factor)
- · Up to 16 MHz external clock for devices with fast clock input feature
- · 32.768 kHz subsystem quartz clock
- · 100kHz/2MHz internal RC clock for quick and safe startup, oscillator stop detection, watchdog
- · Clock source selectable from main- and subclock oscillator and on-chip RC oscillator, independently for CPU and 2 clock domains of peripherals
- · The subclock oscillator is enabled by the Boot ROM program controlled by a configuration marker after a Power or External reset
- · Low Power Consumption 13 operating modes : (different Run, Sleep, Timer modes, Stop mode)

On-chip voltage regulator

· Internal voltage regulator supports reduced internal MCU voltage, offering low EMI and low power consumption figures

Low voltage reset

· Reset is generated when supply voltage is below minimum

Code Security

· Protects Flash Memory content from unintended read-out

DMA

· Automatic transfer function independent of CPU, can be assigned freely to resources

Interrupts

- · Fast Interrupt processing
- · 8 programmable priority levels
- · Non-Maskable Interrupt (NMI)

CAN

- · Supports CAN protocol version 2.0 part A and B
- · ISO16845 certified
- · Bit rates up to 1 Mbit/s
- · 32 message objects
- · Each message object has its own identifier mask
- · Programmable FIFO mode (concatenation of message objects)
- · Maskable interrupt
- · Disabled Automatic Retransmission mode for Time Triggered CAN applications
- · Programmable loop-back mode for self-test operation

USART

- · Full duplex USARTs (SCI/LIN)
- · Wide range of baud rate settings using a dedicated reload timer
- · Special synchronous options for adapting to different synchronous serial protocols
- · LIN functionality working either as master or slave LIN device
- · Extended support for LIN-Protocol to reduce interrupt load

● I²C

- · Up to 400 Kbps
- · Master and Slave functionality, 7-bit and 10-bit addressing

A/D converter

- · SAR-type
- · 8/10-bit resolution
- · Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- · Range Comparator Function

Source Clock Timers

· Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- · Hardware watchdog timer is active after reset
- · Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- · 16-bit wide
- · Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- · Event count function

Free Running Timers

· Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4), Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

- · 16-bit wide
- · Signals an interrupt upon external event
- · Rising edge, falling edge or rising and falling edge sensitive

Output Compare Units

- · 16-bit wide
- · Signals an interrupt when a match with 16-bit I/O Timer occurs
- · A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- · 16-bit down counter, cycle and duty setting registers
- · Can be used as 2×8 -bit PPG
- · Interrupt at trigger, counter borrow and/or duty match
- · PWM operation and one-shot operation
- · Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock and Reload timer underflow as clock input
- · Can be triggered by software or reload timer
- · Can trigger ADC conversion
- · Timing point capture

Quadrature Position/Revolution Counter (QPRC)

- · Edge count mode, Phase count mode, Level count mode
- · 16-bit position counter
- · 16-bit revolution counter
- · Two 16-bit compare registers with interrupt
- · Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

Real Time Clock

- · Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- · Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- · Read/write accessible second/minute/hour registers
- · Can signal interrupts every half second/second/minute/hour/day
- · Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- · Edge or Level sensitive
- · Interrupt mask and pending bit per channel
- · Each available CAN channel RX has an external interrupt for wake-up
- · Selected USART channels SIN have an external interrupt for wake-up

Non Maskable Interrupt

- · Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- · Once enabled, can not be disabled other than by reset
- · High or Low level sensitive
- · Pin shared with external interrupt 0

I/O Ports

- · Most of the external pins can be used as general purpose I/O
- · All push-pull outputs (except when used as I²C SDA/SCL line)
- · Bit-wise programmable as input/output or peripheral signal
- · Bit-wise programmable input enable
- · One input level per GP-IO-pin (either Automotive or CMOS-Schmitt trigger)
- · Bit-wise programmable pull-up resistor

Built-in OCD (On Chip Debugger)

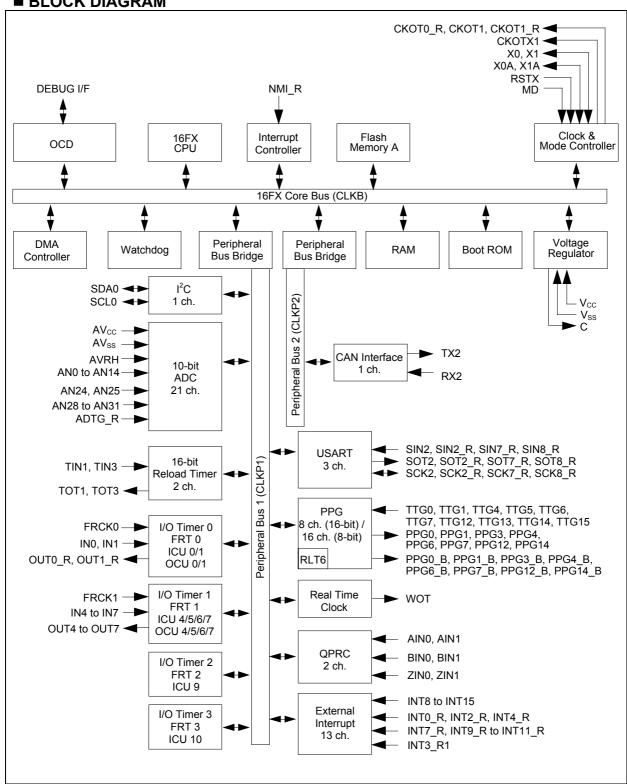
- · One-wire debug tool interface
- · Break function:
 - Hardware break: 6 points (shared with code event)
 - Software break: 4096 points
- · Event function:
 - Code event: 6 points (shared with hardware break)
 - Data event: 6 points
 - Event sequencer: 2 levels
- · Execution time measurement function
- · Trace function: 42 branches
- Security function

Flash Memory

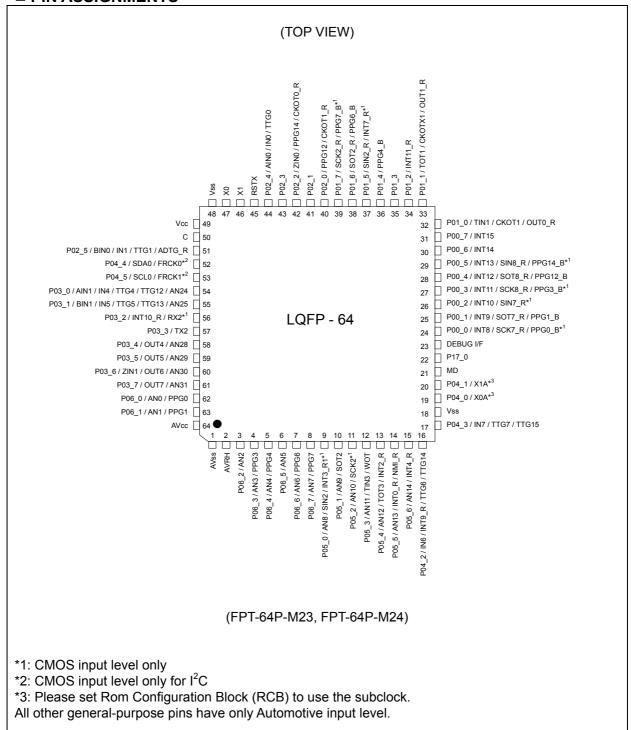
- Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- · Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- · Supports automatic programming, Embedded Algorithm
- · Write/Erase/Erase-Suspend/Resume commands
- · A flag indicating completion of the algorithm
- · Erase can be performed on each sector individually
- · Sector protection
- · Flash Security feature to protect the content of the Flash
- · Low voltage detection during Flash erase

■ PRODUCT LINEUP

Features			MB96F620	Remark
Product type			Flash product: MB96F62x	
Subclock			Subclock can be set by software	
Dual Operation Flash RAM		RAM		
	B + 32KB	4KB	MB96F622	
64.5K	B + 32KB	10KB	MB96F623	
128.5k	XB + 32KB	10KB	MB96F625	
Package			LQFP-64	
			FPT-64P-M23/M24	
DMA			2ch	
USART	·		3ch	LIN-USART 2/7/8
	transmission/	•	Yes (only 1ch)	LIN-USART 2
	with 16 byte	RX- and TX-FIFO	No	
I ² C			1ch	I ² C0
10-bit A/	O Converter		21ch	AN 0 to 14/24/25/28 to 31
	with Data Bu		No	
	with Range C	_	Yes	
	with Scan Dis		No	
	with ADC Pu	lse Detection	No	
16-bit Reload Timer (RLT)		Л)	3ch	RLT 1/3/6 Only RLT6 can be used as PPG clock source
16-bit Fre	ee-Running Tin	ner (FRT)	4ch	FRT 0 to 3 FRT 0/1 with external clock input pin
16-bit Int	out Capture (IC	U)	8ch	ICU 0/1/4/5/6/7/9/10
		·	(2 channels for LIN-USART)	(ICU 9/10 for LIN-USART)
	tput Compare (6ch	OCU 0/1/4/5/6/7
8/16-bit I (PPG)		Pulse Generator	8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14
	with Timing 1		Yes	
	with Start del	ay	No	
	with Ramp		No	
Quadratu (QPRC)	re position/revo	olution counter	2ch	QPRC 0/1
CAN Inte	erface		1ch	CAN 2 32 Message Buffers
External	Interrupts (INT	errupt)	13ch	INT 0/2/3/4/7 to 15
Non-Maskable Interrupt (NMI)			1ch	
Real Time Clock (RTC)			1ch	
I/O Ports			50(Dual clock mode) 52(Single clock mode)	
Clock Ca	ribration Unit (CAL)	1ch	
Clock Output Function		,	2ch	
Low Voltage Reset			Yes	Low voltage reset can be disabled by software
Hardware	Hardware Watchdog Timer		Yes	disasted by bottmare
On-chip RC-oscillator			Yes	
			Yes	
On-chip Debugger			100	


Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the General I/O port according to your function use.

PRELIMINARY


MB96620 Series

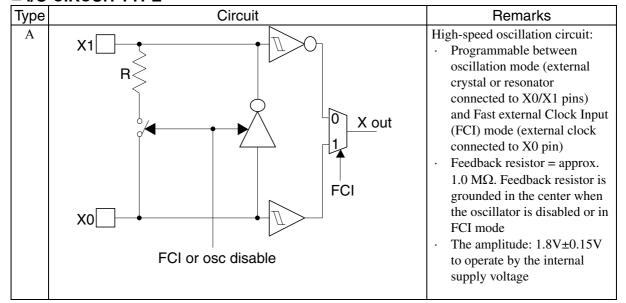
These devices are under development and specification is preliminary. These products under development may change its specification without notice.

■ BLOCK DIAGRAM

■ PIN ASSIGNMENTS

■ PIN FUNCTION DESCRIPTION

PIN FUNC	■ PIN FUNCTION DESCRIPTION				
Pin name	name Feature Description				
ADTG_R	ADC	Relocated A/D converter trigger input			
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input			
ANn	ADC	A/D converter channel n input			
AVcc	Supply	Analog circuits power supply			
AVRH	ADC	A/D converter high reference voltage input			
AVss	Supply	Analog circuits power supply			
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input			
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin			
CKOTn	Clock output function	Clock Output function n output			
CKOTn_R	Clock output function	Relocated Clock Output function n output			
CKOTXn	Clock output function	Clock Output function n inverted output			
FRCKn	Free Running Timer	Free Running Timer n input			
INn	ICU	Input Capture Unit n input			
INTn	External Interrupt	External Interrupt n input			
INTn_R	External Interrupt	Relocated External Interrupt n input			
INTn_R1	External Interrupt	Relocated External Interrupt n input			
MD	Core	Input pins for specifying the operating mode			
NMI_R	External Interrupt	Relocated Non-Maskable Interrupt input			
OUTn	OCU OCU	Output Compare Unit n output			
OUTn_R	OCU	Relocated Output Compare Unit n output			
Pnn_m	GPIO	General purpose I/O			
PPGn	PPG	Programmable Pulse Generator n output (16bit/8bit)			
PPGn_B	PPG	Programmable Pulse Generator n output (8bit)			
RSTX	Core	Reset input			
RXn	CAN	CAN interface n RX input			
SCKn	USART	USART n serial clock input/output			
SCKn_R	USART	Relocated USART n serial clock input/output			
SCLn	I ² C	I ² C interface n clock I/O input/output			
SDAn	I ² C	I ² C interface n serial data I/O input/output			
SINn	USART	USART n serial data input			
SINn_R	USART	Relocated USART n serial data input			
SOTn	USART	USART n serial data output			
SOTn_R	USART	Relocated USART n serial data output			
TINn	Reload Timer	Reload Timer n event input			
TOTn	Reload Timer	Reload Timer n output			
TTGn	PPG	Programmable Pulse Generator n trigger input			
TXn	CAN	CAN interface n TX output			
Vcc	Supply	Power supply			
Vss	Supply	Power supply			
WOT	RTC	Real Time clock output			
X0	Clock	Oscillator input			
X0A	Clock	Subclock Oscillator input			
X1	Clock	Oscillator output			
X1 X1A	Clock	•			
ZINn		Subclock Oscillator output Overlature Position/Povolution Counter Unit n input			
	QPRC	Quadrature Position/Revolution Counter Unit n input			
DEBUG I/F	OCD	On Chip Debugger input/output			


■ PIN CIRCUIT TYPE

Pin no.	Circuit type*	Pin name	
1	Supply	$\mathrm{AV}_{\mathrm{ss}}$	
2	G	AVRH	
3	K	P06_2 / AN2	
4	K	P06_3 / AN3 / PPG3	
5	K	P06_4 / AN4 / PPG4	
6	K	P06_5 / AN5	
7	K	P06_6 / AN6 / PPG6	
8	K	P06_7 / AN7 / PPG7	
9	I	P05_0 / AN8 / SIN2 / INT3_R1	
10	K	P05_1 / AN9 / SOT2	
11	I	P05_2 / AN10 / SCK2	
12	K	P05_3 / AN11 / TIN3 / WOT	
13	K	P05_4 / AN12 / TOT3 / INT2_R	
14	K	P05_5 / AN13 / INT0_R / NMI_R	
15	K	P05_6 / AN14 / INT4_R	
16	Н	P04_2 / IN6 / INT9_R / TTG6 / TTG14	
17	Н	P04_3 / IN7 / TTG7 / TTG15	
18	Supply	${f V}_{ m ss}$	
19	В	P04_0 / X0A	
20	В	P04_1 / X1A	
21	С	MD	
22	Н	P17_0	
23	0	DEBUG I/F	
24	M	P00_0 / INT8 / SCK7_R / PPG0_B	
25	Н	P00_1 / INT9 / SOT7_R / PPG1_B	
26	M	P00_2 / INT10 / SIN7_R	
27	M	P00_3 / INT11 / SCK8_R / PPG3_B	
28	Н	P00_4 / INT12 / SOT8_R / PPG12_B	
29	M	P00_5 / INT13 / SIN8_R / PPG14_B	
30	Н	P00_6 / INT14	
31	Н	P00_7 / INT15	
32	Н	P01_0 / TIN1 / CKOT1 / OUT0_R	

Pin no.	Circuit type*	Function
33	Н	P01_1 / TOT1 / CKOTX1 / OUT1_R
34	Н	P01_2 / INT11_R
35	Н	P01_3
36	Н	P01_4 / PPG4_B
37	M	P01_5 / SIN2_R / INT7_R
38	Н	P01_6 / SOT2_R / PPG6_B
39	M	P01_7 / SCK2_R / PPG7_B
40	Н	P02_0 / PPG12 / CKOT1_R
41	Н	P02_1
42	Н	P02_2 / ZIN0 / PPG14 / CKOT0_R
43	Н	P02_3
44	Н	P02_4 / AIN0 / IN0 / TTG0
45	С	RSTX
46	A	X1
47	A	X0
48	Supply	Vss
49	Supply	Vcc
50	F	С
51	Н	P02_5 / BIN0 / IN1 / TTG1 / ADTG_R
52	N	P04_4 / SDA0 / FRCK0
53	N	P04_5 / SCL0 / FRCK1
54	K	P03_0 / AIN1 / IN4 / TTG4 / TTG12 / AN24
55	K	P03_1 / BIN1 / IN5 / TTG5 / TTG13 / AN25
56	M	P03_2 / INT10_R / RX2
57	Н	P03_3 / TX2
58	K	P03_4 / OUT4 / AN28
59	K	P03_5 / OUT5 / AN29
60	K	P03_6 / ZIN1 / OUT6 / AN30
61	K	P03_7 / OUT7 / AN31
62	K	P06_0 / AN0 / PPG0
63	K	P06_1 / AN1 / PPG1
64	Supply	AVcc

^{*:} Please refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
Type B	Standby control for input shutdown X1A P-ch P-ch P-ch P-ch P-ch P-ch P-ch P-c	Remarks Low-speed oscillation circuit shared with GPIO functionality: · Feedback resistor = approx. 5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled · GPIO functionality selectable (CMOS hysteresis input with input shutdown function, I _{OL} = 4mA, I _{OH} = -4mA, Programmable pull-up resistor)
С		· CMOS hysteresis input pin
	R Hysteresis inputs	

Type	Circuit	Remarks
F	P-ch N-ch	Power supply input protection circuit
G	P-ch ANE AV R ANE	 A/D converter ref+ (AVRH) power supply input pin with protection circuit Without protection circuit against VCC for pins AVRH
Н	P-ch P-ch Pout N-ch Nout Standby control for input shutdown	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
I	Pull-up control Pout N-ch Nout Nout Hysteresis input for input shutdown Analog input	CMOS level output (I _{OL} = 4mA, I _{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor Analog input

Туре	Circuit	Remarks
K	P-ch P-ch Pout N-ch Nout Automotive input for input shutdown Analog input	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor Analog input
M	P-ch P-ch Pout N-ch Nout Hysteresis input for input shutdown	CMOS level output (I _{OL} = 4mA, I _{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor

Туре	Circuit	Remarks
N	Pull-up control Pout N-ch Nout* Hysteresis input for input shutdown	 CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor *: N-channel transistor has slew rate control according to I²C spec, irrespective of usage.
0	Standby control for input shutdown	· I _{o.} : 25mA @ 2.7V · TTL input

■ MEMORY MAP

	MB96F62x
FF:FFFFH DE:0000H	USER ROM *3
DD:FFFFH	
	Reserved
10:0000н	
0F:Е000н	Boot-ROM
0Е:9000н	Peripheral
01:0000н	Reserved
00:8000н	ROM/RAM MIRROR
RAMSTART0 ^{*2}	Internal RAM bank0
00:0С00н	Reserved
00:0380н	Peripheral
00:0380н	GPR *1
00:0100н	DMA
00:00F0н	Reserved
00:000н	Peripheral

^{*1:} Unused GPR banks can be used as RAM area

The DMA area is only available if the device contains the corresponding resource. The available RAM and ROM area depends on the device.

^{*2:} For RAMSTART/END addresses, please refer to the table on the next page.

^{*3:} For details about USER ROM area, see the "■USER ROM MEMORY MAP FOR FLASH DEVICES" on the following pages.

■ RAMSTART ADDRESSES

Devices	Bank 0 RAM size	RAMSTART0
MB96F622	4KByte	00:7200 _H
MB96F623 MB96F625	10KByte	00:5A00 _н

■ USER ROM MEMORY MAP FOR FLASH DEVICES

		MB96F622	MB96F623	MB96F625	
Alternative mode CPU address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFFH FF:8000+ FF:7FFFH FF:0000+	3F:FFFFн 3F:8000н 3F:7FFFн 3F:0000н	SA39 - 32KB	— SA39 - 64KB -	SA39 - 64KB	Bank A of Flash A
FE:FFFFH FE:0000+	3E:FFFFн 3E:0000н			SA38 - 64KB	Balik A OI Flasii A
DF:A0004	1F:9FFFH	Reserved	Reserved	Reserved	
DF:9FFFH DF:8000+ DF:7FFFH	1F:9FFFн 1F:8000н 1F:7FFFн	SA3 - 8KB SA2 - 8KB	SA3 - 8KB SA2 - 8KB	SA3 - 8KB SA2 - 8KB	
DF:6000H DF:5FFFH	1F:6000н 1F:5FFFн	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	Bank B of Flash A
DF:4000+ DF:3FFF+ DF:2000+	1F:4000н 1F:3FFFн 1F:2000н	SA0 - 8KB	SA0 - 8KB	SA0 - 8KB	
DF:2000H DF:1FFFH DF:0000H	1F:2000H 1F:1FFFH 1F:0000H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFFH DE:0000H		Reserved	Reserved	Reserved	

^{*:} Phiysical address area of SAS-512B is from DF:0000 $_{\rm H}$ to DF:01FF $_{\rm H}$. Others (from DF:0200 $_{\rm H}$ to DF:1FFF $_{\rm H}$) are all ROM Mirror area for SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000 $_{\rm H}$ - DF:01FF $_{\rm H}$. SAS can not be used for E²PROM emulation.

■ SERIAL PROGRAMMING COMMUNICATION INTERFACE

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB96F62x			
Pin Number	Pin Number USART Number		
9		SIN2	
37		SIN2_R	
10	USART2	SOT2	
38	USART7	SOT2_R	
11		SCK2	
39		SCK2_R	
26		SIN7_R	
25		SOT7_R	
24		SCK7_R	
29	USART8	SIN8_R	
28		SOT8_R	
27		SCK8_R	

■ INTERRUPT VECTOR TABLE

<u> </u>	RUPI VEC	TOR TABLE	1		
Vector	Offset in		Cleared by	Index in	
number	vector table	Vector name	DMA	ICR to	Description
Hamber	vector table		DIVIA	program	
0	3FC	CALLV0	No		Reserved
1	3F8	CALLV1	No	-	Reserved
2	3F4	CALLV2	No	-	Reserved
3	3F0	CALLV3	No	-	Reserved
4	3EC	CALLV4	No	-	Reserved
5	3E8	CALLV5	No	-	Reserved
6	3E4	CALLV6	No	-	Reserved
7	3E0	CALLV7	No	-	Reserved
8	3DC	RESET	No	-	Reserved
9	3D8	INT9	No	-	Reserved
10	3D4	EXCEPTION	No	-	Reserved
11	3D0	NMI	No	-	Non-Maskable Interrupt
12	3CC	DLY	No	12	Delayed Interrupt
13	3C8	RC_TIMER	No	13	RC Timer
14	3C4	MC_TIMER	No	14	Main Clock Timer
15	3C0	SC_TIMER	No	15	Sub Clock Timer
16	3BC	LVDI	No	16	Low Voltage Detector
17	3B8	EXTINT0	Yes	17	External Interrupt 0
18	3B4	-	-	18	Reserved
19	3B0	EXTINT2	Yes	19	External Interrupt 2
20	3AC	EXTINT3	Yes	20	External Interrupt 3
21	3A8	EXTINT4	Yes	21	External Interrupt 4
22	3A4	-	-	22	Reserved
23	3A0	-	-	23	Reserved
24	39C	EXTINT7	Yes	24	External Interrupt 7
25	398	EXTINT8	Yes	25	External Interrupt 8
26	394	EXTINT9	Yes	26	External Interrupt 9
27	390	EXTINT10	Yes	27	External Interrupt 10
28	38C	EXTINT11	Yes	28	External Interrupt 11
29	388	EXTINT12	Yes	29	External Interrupt 12
30	384	EXTINT13	Yes	30	External Interrupt 13
31	380	EXTINT14	Yes	31	External Interrupt 14
32	37C	EXTINT15	Yes	32	External Interrupt 15
33	378	-	-	33	Reserved
34	374	-	-	34	Reserved
35	370	CAN2	No	35	CAN Controller 2
36	36C	-	-	36	Reserved
37	368	-	-	37	Reserved
38	364	PPG0	Yes	38	Programmable Pulse Generator 0
39	360	PPG1	Yes	39	Programmable Pulse Generator 1
40	35C			40	Reserved
41	358	PPG3	Yes	41	Programmable Pulse Generator 3
42	354	PPG4	Yes	42	Programmable Pulse Generator 4
43	350	-	-	43	Reserved
44	34C	PPG6	Yes	44	Programmable Pulse Generator 6
45	348	PPG7	Yes	45	Programmable Pulse Generator 7
46	344	-	-	46	Reserved
47	340	-	-	47	Reserved
48	33C	-	-	48	Reserved
49	338	=	-	49	Reserved

MB96620 Series

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
50	334	PPG12	Yes	50	Programmable Pulse Generator 12
51	330	-	-	51	Reserved
52	32C	PPG14	Yes	52	Programmable Pulse Generator 14
53	328	11014	103	53	Reserved
54	324	-	-	55 	Reserved
55	320	-	_	55	Reserved
56	31C	-	-	56	Reserved
57	318		_	57	Reserved
58	314	_	_	58	Reserved
59	310	RLT1	Yes	59	Reload Timer 1
60	30C	-	-	60	Reserved
61	308	RLT3	Yes	61	Reload Timer 3
62	304	-	-	62	Reserved
63	300	_	_	63	Reserved
					Reload Timer 6 can be used as PPG
64	2FC	PPGRLT	Yes	64	clock source
65	2F8	ICU0	Yes	65	Input Capture Unit 0
66	2F4	ICU1	Yes	66	Input Capture Unit 1
67	2F0	=	-	67	Reserved
68	2EC	=	-	68	Reserved
69	2E8	ICU4	Yes	69	Input Capture Unit 4
70	2E4	ICU5	Yes	70	Input Capture Unit 5
71	2E0	ICU6	Yes	71	Input Capture Unit 6
72	2DC	ICU7	Yes	72	Input Capture Unit 7
73	2D8	-	-	73	Reserved
74	2D4	ICU9	Yes	74	Input Capture Unit 9
75	2D0	ICU10	Yes	75	Input Capture Unit 10
76	2CC	-	-	76	Reserved
77	2C8	OCU0	Yes	77	Output Compare Unit 0
78	2C4	OCU1	Yes	78	Output Compare Unit 1
79	2C0	=	-	79	Reserved
80	2BC	=	-	80	Reserved
81	2B8	OCU4	Yes	81	Output Compare Unit 4
82	2B4	OCU5	Yes	82	Output Compare Unit 5
83	2B0	OCU6	Yes	83	Output Compare Unit 6
84	2AC	OCU7	Yes	84	Output Compare Unit 7
85	2A8	-	-	85	Reserved
86	2A4	-	-	86	Reserved
87	2A0	-	-	87	Reserved
88	29C	=	-	88	Reserved
89	298	FRT0	Yes	89	Free Running Timer 0
90	294	FRT1	Yes	90	Free Running Timer 1
91	290	FRT2	Yes	91	Free Running Timer 2
92	28C	FRT3	Yes	92	Free Running Timer 3
93	288	RTC0	No	93	Real Time Clock
94	284	CAL0	No	94	Clock Calibration Unit
95	280	-	-	95	Reserved
96	27C	IIC0	Yes	96	I ² C interface0
97	278	-	-	97	Reserved
98	274	ADC0	Yes	98	A/D Converter
99	270	-	-	99	Reserved
100	26C	-	-	100	Reserved
101	268	-	-	101	Reserved

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
102	264	-	-	102	Reserved
103	260	-	-	103	Reserved
104	25C	-	-	104	Reserved
105	258	LINR2	Yes	105	LIN USART 2 RX
106	254	LINT2	Yes	106	LIN USART 2 TX
107	250	-	-	107	Reserved
108	24C	-	-	108	Reserved
109	248	-	-	109	Reserved
110	244	-	-	110	Reserved
111	240	-	-	111	Reserved
112	23C	-	-	112	Reserved
113	238	-	-	113	Reserved
114	234	-	-	114	Reserved
115	230	LINR7	Yes	115	LIN USART 7 RX
116	22C	LINT7	Yes	116	LIN USART 7 TX
117	228	LINR8	Yes	117	LIN USART 8 RX
118	224	LINT8	Yes	118	LIN USART 8 TX
119	220	-	-	119	Reserved
120	21C	-	-	120	Reserved
121	218	-	-	121	Reserved
122	214	-	-	122	Reserved
123	210	-	-	123	Reserved
124	20C	-	-	124	Reserved
125	208	-	-	125	Reserved
126	204	-	-	126	Reserved
127	200	-	-	127	Reserved
128	1FC	-	-	128	Reserved
129	1F8	-	-	129	Reserved
130	1F4	-	-	130	Reserved
131	1F0	-	-	131	Reserved
132	1EC	-	-	132	Reserved
133	1E8	FLASHA	Yes	133	Flash memory A interrupt
134	1E4	-	-	134	Reserved
135	1E0	-	-	135	Reserved
136	1DC	-	-	136	Reserved
137	1D8	QPRC0	Yes	137	Quad Possition/Revolution counter 0
138	1D4	QPRC1	Yes	138	Quad Possition/Revolution counter 1
139	1D0	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC	-	-	140	Reserved
141	1C8	-	-	141	Reserved
142	1C4	-	-	142	Reserved
143	1C0	-	-	143	Reserved

HANDLING DEVICES

Special care is required for the following when handling the device:

- Latch-up prevention
- · Unused pins handling
- · External clock usage
- Notes on PLL clock mode operation
- Power supply pins (V_{CC}/V_{SS})
- · Crystal oscillator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication

1. Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

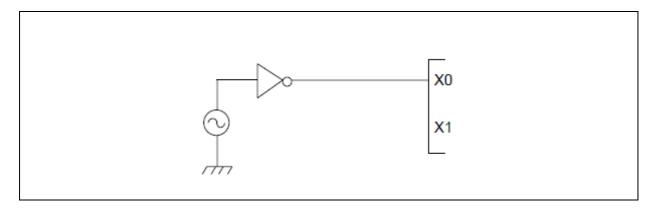
- \bullet A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} pins and V_{SS} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device. For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC} , AVRH) exceed the digital power-supply voltage.

2. Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. They must therefore be pulled up or pulled down through resistors. To prevent latch-up, those resistors should be more than $2 \ k\Omega$.


Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

3. External clock usage

The permitted frequency range of an external clock depends on the oscillator type and configuration. See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

1. Single phase external clock for Main oscillator

• When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.

2. Single phase external clock for Sub oscillator

• When using a single phase external clock for the Sub oscillator, 'External clock mode' must be selected and X0A/GP04_0 must be driven. X1A/GP04_1 must be configured as GPIO.

4. Notes on PLL clock mode operation

If the PLL clock mode is selected and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

5. Power supply pins (V_{CC}/V_{SS})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

 V_{CC} and V_{SS} must be connected to the device from the power supply with lowest possible impedance. As a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1 μF between Vcc and Vss as close as possible to Vcc and Vss pins.

6. Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

7. Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, the voltage must not exceed AVRH or AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

8. Pin handling when not using the A/D converter

It is required to connect the unused pins of the A/D converter as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

9. Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50µs from 0.2V to 2.7V.

10. Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the Vcc power supply voltage, a malfunction may occur. The Vcc power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that Vcc ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60 Hz) fall within 10% of the standard Vcc power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

MB96620 Series

11. Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

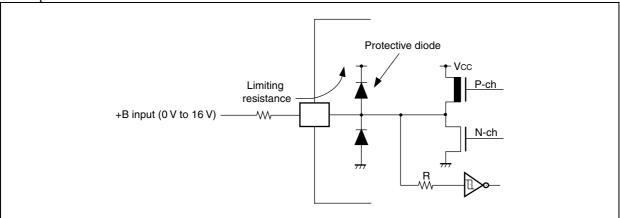
Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

■ ELECTRICAL CHARACTERISTICS

This section describes the electrical characteristics of MB96620 series.

1. Absolute Maximum Ratings

Parameter	Symbol	Condition		ting	Unit	Remarks
T dramotor		Corrainori	Min	Max	Onne	rtomanto
Power supply voltage*1	Vcc	-	Vss - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage*1	AVcc	-	Vss - 0.3	V _{SS} + 6.0	V	$Vcc = AVcc^{*2}$
Analog reference voltage*1	AVRH	-	Vss - 0.3	V _{SS} + 6.0	V	AVCC ≥ AVRH AVRH ≥ AVSS
Input voltage*1	V_{I}	-	Vss - 0.3	Vcc + 0.3	V	$VI \le VCC + 0.3V^{*3}$
Output voltage*1	V_{O}	-	Vss - 0.3	Vcc + 0.3	V	$VO \le VCC + 0.3V^{*3}$
Maximum clamp current	I_{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins*4
Total maximum clamp current	$\sum I_{\text{CLAMP}} $	-	-	17	mA	Applicable to general purpose I/O pins*4
"L" level maximum output current	I_{OL}	-	-	15	mA	
"L" level average output current	I_{OLAV}	-	-	4	mA	
"L" level maximum overall output current	$\sum I_{OL}$	-	-	TBD	mA	
"L" level average overall output current	$\sum I_{OLAV}$	-	-	21	mA	
"H" level maximum output current	I_{OH}	-	-	-15	mA	
"H" level average output current	I_{OHAV}	-	-	- 4	mA	
"H" level maximum overall output current	$\sum I_{\mathrm{OH}}$	-	-	TBD	mA	
"H" level average overall output current	$\sum\!I_{OHAV}$	-	-	-21	mA	
		$T_A=+85$ °C	-	TBD*6	mW	
Power consumption*5	P_{D}	$T_A = +105^{\circ}C$	-	TBD*6	mW	
	- U	T _A =+85°C	-	TBD*6	mW	No Flash program erase*7
Operating ambient temperature	T_A	-	-40	+105	°C	
Storage temperature	T_{STG}	-	- 55	+ 150	°C	


^{*1:} Base on Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, $T_A = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$.

^{*2:} AVcc and Vcc must be set to the same voltage. It is required that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.

^{*3:} V1 and Vo should not exceed Vcc + 0.3 V. V1 should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V1 rating. Input/output voltages of standard ports depend on Vcc.

- *4: Applicable to all general purpose I/O pins (Pnn m)
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset (except devices with persistent low voltage reset in internal vector mode).

• Sample recommended circuits:

*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_{\text{D}}\!=P_{\text{IO}}\!+P_{\text{INT}}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

Icc is the total core current consumption into $V_{\rm CC}$ as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming. Ia is the analog current consumption into $AV_{\rm CC}$.

- *6: Worst case value for a package mounted on single layer PCB at specified TA without air flow.
- *7: Please contact FUJITSU SEMICONDUCTOR for reliability limitations when using under these conditions.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0.0V)$

Parameter	Symbol	Value			Unit	Remarks		
Farameter	Min Typ I		Max	Offic	Remarks			
Power supply voltage	Vcc	2.7	-	5.5	V			
Smoothing capacitor at C pin	Cs	0.5	1.0	1.5	μF	1.0μF (Allowance within ± 50%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at Vcc must use the one of a capacity value that is larger than Cs.		

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

The following tables show the DC characteristics.

1. Current rating of MB96F622/F623/F625 (Provisional value)

 $(\text{Vcc} = \text{AVcc} = 2.7\text{V to } 5.5\text{V}, \text{Vss} = \text{AVss} = 0\text{V}, \text{T}_{A} = -40^{\circ}\text{C to} + 105^{\circ}\text{C})$

Deremeter	Cumphal	Pin			Value		I loit	Demorks
Parameter	Symbol	name		Min	Тур	Max	Unit	Remarks
	T		PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz	-	30	-	mA	T _A =+ 25°C
	I _{CCPLL}		(CLKP1/2 – 32MHZ (CLKRC and CLKSC stopped)	-	-	40	mA	$T_A = +105$ °C
Power supply	ī		Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	5	1	mA	$T_A = +25$ °C
current in Run modes* ¹	I _{CCMAIN}	Vcc	(CLKPLL, CLKSC and CLKRC stopped)	-	-	10	mA	$T_A = +105$ °C
	I _{CCSUB}	ļ	Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	-	0.5	-	mA	$T_A = +25$ °C
	ССЗОВ		(CLKMC, CLKPLL and CLKRC stopped)	-	-	5	mA	$T_A = +105$ °C
			PLL Sleep mode with CLKS1/2 = CLKP1/2 =	-	10	-	mA	T _A =+ 25°C
	ICCSPLL		32MHz (CLKRC and CLKSC stopped)	-	-	15	mA	$T_A = +105$ °C
Power supply	_	Vcc	Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	3	-	mA	T _A =+ 25°C
current in Sleep modes*1	Iccsmain		4MHz (CLKPLL, CLKRC and CLKSC stopped)	-	-	8	mA	$T_A = +105$ °C
	Iccssub		Sub Sleep mode with CLKS1/2 = CLKP1/2 =	-	0.3	ı	mA	T _A =+ 25°C
			32kHz, (CLKMC, CLKPLL and CLKRC stopped)	-	-	4.5	mA	$T_A = +105^{\circ}C$
			Main Timer mode with CLKMC = 4MHz	-	360	430	μΑ	T _A =+ 25°C
	I _{CCTMAIN}		CL=10pF (CLKPLL, CLKRC and CLKSC stopped)	-	-	1250	μΑ	$T_A = +105$ °C
	ī		RC Timer mode with	-	150	190	μΑ	$T_A = +25$ °C
Power supply current in	I _{CCTRCH}	Vcc	(CLKRC = 2MHz)	-	-	1025	μΑ	$T_A = +105$ °C
Timer modes*2	т	VCC	RC Timer mode with	-	45	75	μΑ	T _A =+ 25°C
	I_{CCTRCL}		(CLKRC = 100kHz)	-	-	855	μΑ	$T_A = +105$ °C
	Ţ		Sub Timer mode with CLKSC = 32kHz	-	40	75	μΑ	$T_A = +25$ °C
	I _{CCTSUB}		CL=10pF (CLKMC, CLKPLL and CLKRC stopped)	-	-	840	μΑ	$T_A = +105^{\circ}C$

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Pin	Conditions		Value	1	Unit	Remarks
1 drameter	Cymbol	name	Conditions	Min	Тур	Max	Onic	rtomanto
Power supply	ī			-	30	55	μΑ	$T_A = +25$ °C
current in Stop mode *3	I_{CCH}		-	-	ı	830	μΑ	$T_A = +105^{\circ}C$
Power supply current for active Low Voltage detector	I _{CCLVD}	Vcc	Low voltage detector enabled	-	5	10	μΑ	This current must be added to all Power supply currents above
Flash Write/ Erase current	$I_{CCFLASH}$		Current for Flash module	_	15	25	mA	Must be added to all current above

^{*1:} The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control.

^{*2:} The power supply current in Timer mode is the value when Flash is in Flash Deep sleep mode. Main Timer mode is the value in crystal oscillator of 4MHz (C_L=10pF). Sub Timer mode is the value in crystal oscillator of 32kHz (C_L=10pF).

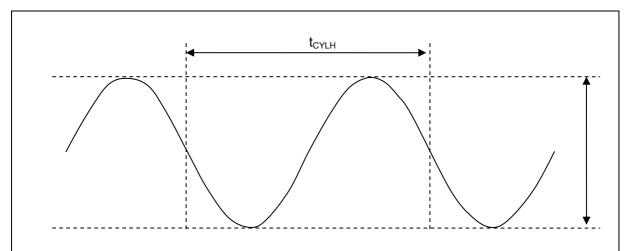
^{*3:} The power supply current in Stop mode is the value when Flash is in Flash Deep Sleep mode.

2. Pin Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Darameter	ameter Symbol Pin Conditions Value		Unit	,				
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
	***	Port	-	Vcc × 0.7	-	Vcc + 0.3	V	CMOS Hysteresis Input
	$ m V_{IH}$	inputs Pnn_m	-	Vcc × 0.8	-	Vcc + 0.3	V	AUTOMOTIVE Hysteresis Input
	V _{IHX0S}	X0	External clock in "oscillation mode"	VD × 0.8	-	VD	V	VD=1.8V±0.15V
"H" level input voltage	$V_{\rm IHX0AS}$	X0A	External clock in "oscillation mode"	Vcc × 0.8	-	Vcc + 0.3	V	
voluge	$ m V_{IHR}$	RSTX	-	Vcc × 0.8	-	Vcc + 0.3	V	CMOS Hysteresis Input
	V_{IHM}	MD	-	Vcc - 0.3	-	Vcc + 0.3	V	CMOS Hysteresis Input
	V_{IHD}	DEBUG I/F	-	2.0	-	Vcc + 0.3	V	TTL Input
	$ m V_{IL}$	Port inputs	-	Vss - 0.3	-	Vcc × 0.3	V	CMOS Hysteresis Input
	▼ IL	Pnn_m	-	Vss - 0.3	-	Vcc × 0.5	V	AUTOMOTIVE Hysteresis Input
	$V_{\rm ILX0S}$	X0	External clock in "oscillation mode"	Vss	-	VD × 0.2	V	VD=1.8V±0.15V
"L" level input	V _{ILX0AS}	X0A	External clock in "oscillation mode"	Vss - 0.3	-	Vcc × 0.2	V	
voltage	V _{ILR}	RSTX	-	Vss - 0.3	1	Vcc × 0.2	V	CMOS Hysteresis Input
	$V_{\rm ILM}$	MD	-	Vss - 0.3	-	Vss + 0.3	V	CMOS Hysteresis Input
	$V_{\rm ILD}$	DEBUG I/F	-	Vss - 0.3	-	0.8	V	TTL Input
"H" level	$ m V_{OH4}$	4mA type	$\begin{array}{c} 4.5 V \leq V c c \leq 5.5 V \\ I_{OH} = -4 m A \\ \\ 2.7 V \leq V c c < 4.5 V \\ I_{OH} = TBD \end{array}$	Vec - 0.5	1	Vec	V	
voltage	V_{OH3}	3mA type	$\begin{array}{c} 4.5 V \leq V cc \leq 5.5 V \\ I_{OH} = -3 mA \\ 2.7 V \leq V cc < 4.5 V \\ I_{OH} = TBD \end{array}$	Vcc - 0.5	-	Vcc	V	
"L" level output voltage	V_{OL4}	4mA type	$\begin{aligned} 4.5\text{V} &\leq \text{Vcc} \leq 5.5\text{V} \\ I_{\text{OH}} &= +4\text{mA} \\ 2.7\text{V} &\leq \text{Vcc} < 4.5\text{V} \\ I_{\text{OH}} &= TBD \end{aligned}$	ı	-	0.4	V	
voitage	V_{OL3}	3mA type	$4.5V \le Vcc \le 5.5V$ $I_{OH} = -3mA$	-	-	0.4	V	
Input leak current	I_{IL}	Pnn_m	$V_{SS} < V_I < V_{CC}$ $AV_{SS} < V_I <$ AV_{CC} , AV_{CC}	- 1	-	1	μΑ	
Pull-up resistance value	$R_{ m PU}$	Pnn_m	Vcc=5.0V ±10%	25	50	100	kΩ	

Parameter	Parameter Symbol		Pin Conditions		Value		Unit	Remarks
Parameter	Syllibol	name	Conditions	Min	Тур	Max	5	remarks
		Other						
		than						
Input		Vcc,						
capacitance	C_{IN}	Vss,	-	-	5	15	pF	
capacitance		AVcc,						
		AVss,						
		AVRH						

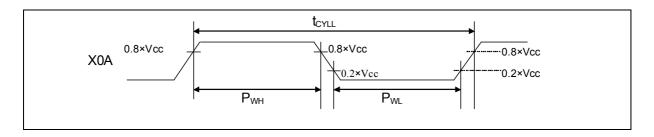

4. AC Characteristics

The following tables show the AC characteristics.

(1) Main Clock Input Characteristics

 $(AVcc = 2.7V \text{ to } 5.5V, Vcc = 1.8V \pm 0.15V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Pin	Conditions	-10	Value		Unit	Remarks
Farameter	Syllibol	name	Conditions	Min	Тур	Max	5	Remarks
				4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	f_{C}	X0, X1	-	-	-	8	MHz	When using an opposite phase external clock, PLL off
				4	1	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
Input frequency	f	X0		-	1	16	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
input frequency	f _{FCI}	AU	-	4	-	16	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	-	62.5	-		ns	
Input clock pulse width	Pwh, Pwl	-	-	30	-	70	%	



The amplitude changes by resistance, capacity which added outside or the difference of the device.

(2) Sub Clock Input Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

			(100 11100	-:/ : * *	7 5 . 5 4 , 4 5 5	71700	0,,1	A 10 C to 103 C)	
Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Farameter	Syllibol	name	Conditions	Min	Тур	Max	5	Remarks	
		X0A,	-	ı	32.768	Ī	kHz	When using an oscillation circuit	
Input frequency	F_{CL}	X1A	-	1	1	100	kHz	When using an opposite phase external clock	
		X0A	-	ı	ı	50	kHz	When using a single phase external clock	
Input clock cycle	t_{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	Pwh/tcyll Pwl/tcyll	30	-	70	%		

(3) Built-in CR Oscillation Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Parameter	Syllibol	Conditions	Min	Тур	Max	Ullit	Remarks	
Clock frequency	E	-	50	100	200	kHz	When using slow frequency of RC oscillator	
	F_{CR}	-	1	2	4	MHz	When using fast frequency of RC oscillator	

(4) Internal Clock timing

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

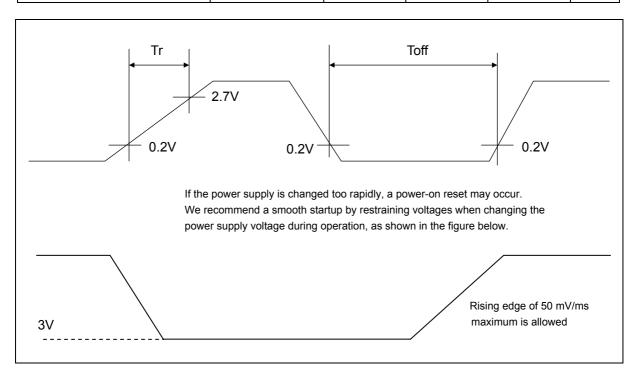
Parameter	Symbol	Value		Unit
		Min	Max	Offic
Internal System clock frequency (CLKS1 and CLKS2)	f_{CLKS1}, f_{CLKS2}	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{CLKB} , f _{CLKP1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	$ m f_{CLKP2}$	-	32	MHz

(5) Operating Conditions of PLL

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Offic	Remarks
PLL oscillation stabilization wait time (LOCK UP time)	t_{LOCK}	1	-	4	ms	Time from when the PLL starts operating until the oscillation stabilizes
PLL input clock frequency	$f_{ m PLLI}$	4	-	16	MHz	
PLL macro oscillation clock frequency	f_{PLLO}	56	-	108	MHz	

(6) Reset Input Characteristics


 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

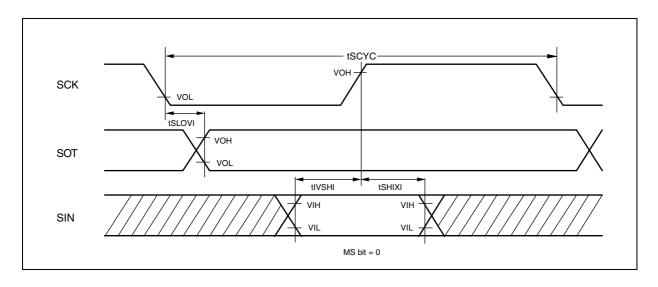
Parameter	Symbol	Pin name	Conditions	Va	Unit		
i arameter	Syllibol	i iii iiaiiie	Conditions	Min	Max	Offic	
Reset input time			-	10	-	μs	
Rejection of reset input time	T_{RSTL}	RSTX	-	1	-	μs	

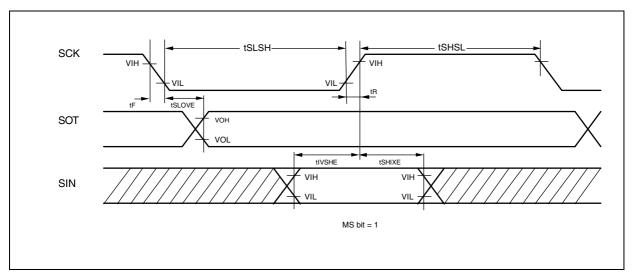
(7) Power-on Reset Timing

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

	(VCC - A VCC - 2	2.7 v to 3.3 v, v	55 - AV 55 - UV	, 1 _A – - 40 C to	1 105 C	
Darameter	Cymbol		Value		Unit	
Parameter	Symbol	Min	Тур	Max	Offic	
Power on rise time	Tr	0.05	-	30	ms	
Power off time	Toff	1	-	-	ms	

(8) USART Timing (Provisional value)

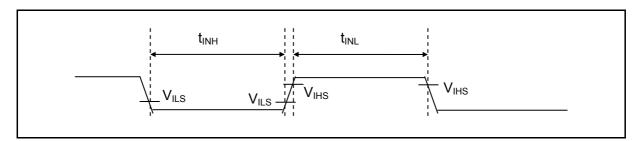

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C, C_L = 50pF)$


Darramatan		Din	Conditions	4.5V ≤ Vo		2.7V ≤ Vo		
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tSCYC	SCKn		4 t _{CLKP1}	-	4 t _{CLKP1}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	tSLOVI	SCKn SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \rightarrow SCK \uparrow delay time$	tOVSHI	SOTn	Internal shift clock	$N \times t_{CLKP1} - 20*$	-	$N \times t_{CLKP1} - 30*$	-	ns
$SIN \rightarrow SCK \uparrow setup time$	tIVSHI	SCKn SINn	operation	t _{CLKP1} + 45	1	t _{CLKP1} + 55	ı	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	tSHIXI	SCKn SINn		0	-	0	1	ns
Serial clock "L" pulse width	tSLSH	SCKn		$t_{\text{CLKP1}} + 10$	-	$t_{\text{CLKP1}} + 10$	-	ns
Serial clock "H" pulse width	tSHSL	SCKn		$t_{\text{CLKP1}} + 10$	-	$t_{\text{CLKP1}} + 10$	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	tSLOVE	SCKn SOTn	External shift clock	-	2 t _{CLKP1} +45	-	2 t _{CLKP1} + 55	ns
$SIN \rightarrow SCK \uparrow setup time$	tIVSHE	SCKn SINn	operation	t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	tSHIXE	SCKn SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	tF	SCKn		-	20	-	20	ns
SCK rise time	tR	SCKn		-	20	-	20	ns

Notes: • The above characteristics apply to CLK synchronous mode.

- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96620 series HARDWARE MANUAL"
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit : ns
- These characteristics only guarantee the same relocate port number. For example, The combination of SCLKn_0 and SOTn_1 is not guaranteed.
- *: Parameter N depends on tscyci and can be calculated as follows:
- If $t_{SCYCI} = 2 \times k \times t_{CLKPI}$, then N = k, where k is an integer > 2
- If $t_{SCYCI} = (2 \times k+1) \times t_{CLKPI}$, then N = k+1, where k is an integer > 1 Examples:

tSCYC	N
4× t _{CLKP1}	2
5× t _{CLKP1} , 6× t _{CLKP1}	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4

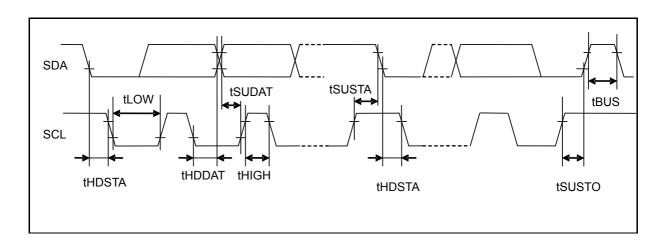


(9) External input timing

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C, C_L = 50pF)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks	
Parameter	Symbol	Fill flame	Conditions	Min	Max	Offic	Remarks	
		Pnn_m					General Purpose I/O	
		ADTG R					A/D converter	
		ADIO_K					trigger input	
		TINn					Reload Timer	
		TTGn FRCKn	2+ +200	Gn 24 1200	24 + 200	2+		PPG Trigger input
				$2t_{CLKP1} + 200$		ns	Free-Running Timer	
Input pulse width	$t_{\rm INH}$	TRCKII	$(t_{\text{CLKP1}} = 1/f_{\text{CLKP1}})^*$	-	113	input clock		
input puise width	$t_{\rm INL}$	INn				Input capture		
		AINn					Quadrature	
		BINn					position/revolution	
		ZINn					counter	
		INTn(R, R1),	1				External interrupt	
		NMI_R		200	-	ns	NMI	

^{*:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop time at stop mode.


(10) I²C timing

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

Parameter	Symbol	Symbol Conditions		node	High-speed mode* ⁴		Unit
			Min	Max	Min	Max	
SCL clock frequency	fSCL		0	100	0	400	kHz
(Repeated) START condition							
hold time	tHDSTA		4.0	-	0.6	-	μs
$SDA \downarrow \rightarrow SCL \downarrow$							
SCLclock "L" width	tLOW		4.7	-	1.3	-	μs
SCLclock "H" width	tHIGH		4.0	-	0.6	-	μs
(Repeated) START setup time $SCL \uparrow \rightarrow SDA \downarrow$	tSUSTA	CI = 50°E	4.7	-	0.6	-	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	tHDDAT	$CL = 50pF,$ $R = (Vp/I_{OL}) *^{1}$	0	3.45* ²	0	0.9*3	μs
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	tSUDAT		250	-	100	_	ns
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	tSUSTO		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	tBUS		4.7	-	1.3	-	μs
Capacitive load for each bus line	Cb	-	-	400	-	400	pF

^{*1:} R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

^{*5:} Cb = Capacitance of each bus line in pF.

^{*2:} The maximum tHDDAT must satisfy that it doesn't extend at least "L" period (tLOW) of device's SCL signal.

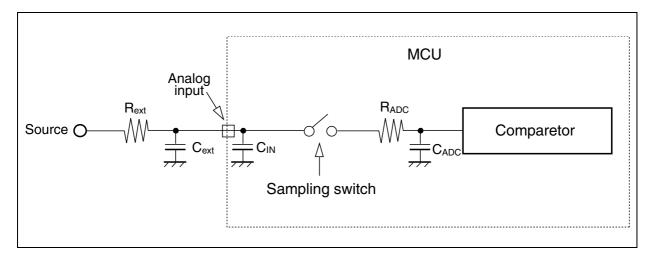
^{*3:} A high-speed mode I^2C bus device can be used on a standard mode I^2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns".

^{*4:} t_{CLKP1} is the peripheral clock1 (CLKP1) cycle time. To use I²C, set the peripheral bus clock at 8 MHz or more.

• 10bit A/D Converter

This chapter shows the electrical characteristics for the A/D converter.

• Electrical characteristics for the A/D converter (Provisional value)


 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

D	0 1 1		11,00	Value	, , , , , , , , , , , , , , , , , , , ,		$\frac{1_A - 40 \text{ C to} + 103 \text{ C}}{1_{100} + 1_{100} + 1_{100}}$
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{OT}	ANx	Typ - 20	AVss + 0.5LSB	Typ + 20	mV	
Full transition voltage	V_{FST}	ANx	Typ - 20	AVRH - 1.5LSB	Typ + 20	mV	
Compare time			1.0	-	5.0	μs	$4.5V \le AVcc \le 5.5V$
Compare time	_	_	2.0	-	TBD	μs	$2.7V \le AVcc < 4.5V$
Sampling time			0.5	-	-	μs	$4.5V \le AVcc \le 5.5V$
Sampling time	-	_	1.2	-	-	μs	$2.7V \le AVcc < 4.5V$
Power supply	I_A		-	2.0	3.1	mA	A/D Converter active
current	I_{AH}	AV_{CC}	-	-	3.3	μΑ	A/D Converter not operated
Reference power supply current	I_R	AVRH	-	TBD	TBD	mA	A/D Converter active
(between AVRH to AVSS)	I_{RH}	АУКП	-	-	TBD	μΑ	A/D Converter not operated
Analog input capacity	Cvin	ANx	-	-	15.5	pF	
Analog port input current	I _{AIN}	ANx	- 0.3	-	+ 0.3	μΑ	$\begin{aligned} &AV_{SS} < V < AV_{CC}, \\ &AVRH \end{aligned}$
Analog input voltage	V _{AIN}	ANx	AV_{SS}	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV_{CC}	V	

Accuracy and setting of the A/D Converter sampling time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV $_{cc}$ voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Capacitance of MCU input pin (I/O, analog switch and ADC are contained)

 $R_{\rm VIN}\!\!:$ Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used:

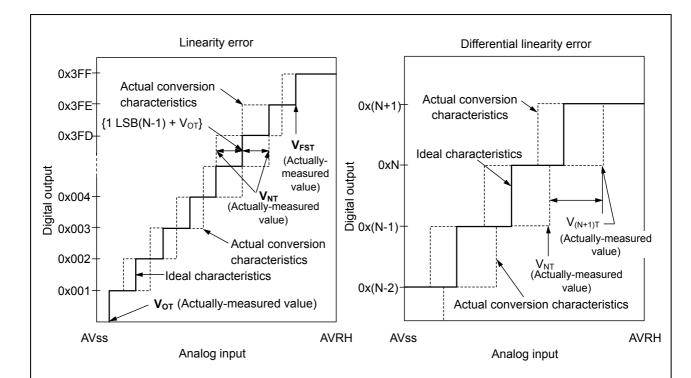
 T_{samp} [min] = TBD

- Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AVcc \le 5.5V, 1.2 \ \mu s \text{ for } 2.7V \le AVcc \le 4.5V).$
- · If the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.
- · A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

• Definition of 10-bit A/D Converter Terms

· Resolution : Analog variation that is recognized by an A/D converter.

0b000000001) and the full-scale transition point (0b11111111110 \longleftrightarrow


0b111111111) from the actual conversion characteristics.

Differential linearity error: Deviation from the ideal value of the input voltage that is required to change the

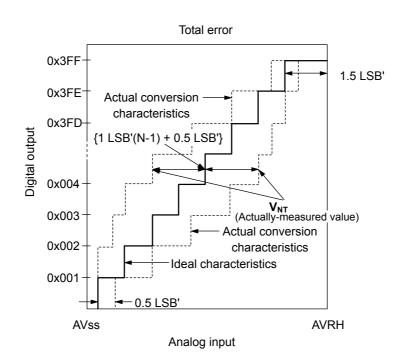
output code by 1 LSB.

· Total error : Difference between the actual value and the theoretical value. The total error

includes zero transition error, full-scale transition error, and linearity error.

Linearity error of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB'}$$
 [LSB]

Differential linearity error of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]


$$1LSB = \frac{V_{FST} - V_{OT}}{1022}$$

N : A/D converter digital output value.

 V_{OT} : Voltage at which the digital output changes from 0x000 to 0x001. V_{FST} : Voltage at which the digital output changes from 0x3FE to 0x3FF. V_{NT} : Voltage at which the digital output changes from 0x(N - 1) to 0xN.

(Continued)

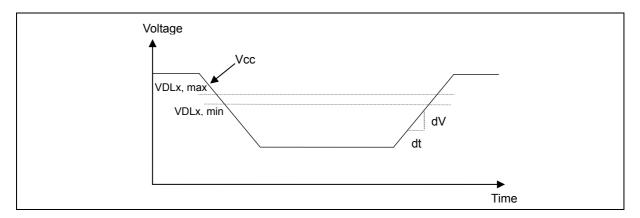
1LSB' (Ideal value) =
$$\frac{AVRH - AV_{SS}}{1024}$$
 [V]

Total error of digital output N =
$$\frac{V_{NT} - \{1LSB' \times (N-1) + 0.5LSB'\}}{1LSB'}$$

N : A/D converter digital output value.

 V_{NT} : Voltage at which the digital output changes from 0x(N + 1) to 0xN.

 V_{OT} ' (Ideal value) = AV_{SS} + 0.5LSB[V]


 V_{FST}' (Ideal value) = AVRH - 1.5LSB[V]

• Low voltage detection characteristics

Low voltage detection reset

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Offic	Remarks
Detected voltage	VDL0	-	2.70	2.90	3.10	V	$CILCR:LVL = 0000_B$
Detected voltage	VDL1	-	2.79	3.00	3.21	V	$CILCR:LVL = 0001_B$
Detected voltage	VDL2	=	2.98	3.20	3.42	V	$CILCR:LVL = 0010_B$
Detected voltage	VDL3	-	3.26	3.50	3.74	V	$CILCR:LVL = 0011_B$
Detected voltage	VDL4	-	3.45	3.70	3.95	V	$CILCR:LVL = 0100_B$
Detected voltage	VDL5	-	3.73	4.00	4.27	V	$CILCR:LVL = 0111_B$
Detected voltage	VDL6	-	3.91	4.20	4.49	V	$CILCR:LVL = 1001_B$
Change ration of power supply voltage	dV/dt	-	-0.004	-	-	V/µs	Detected voltage (VDL) must be within standards.

• Flash Memory Write/Erase Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Dorom	Parameter		Value		Unit	Remarks
Palalli	etei	Min	Тур	Max	Offic	Remarks
Sector erase time	Large Sector	-	0.6	3.1	S	Excludes write time prior to internal
Sector erase time	Small Sector	-	0.3	1.6	S	erase.
Half word (16 bit)	write time	-	25	400	μs	Not including system-level overhead time.
Chip erase time		-	2.7	14.2	S	Excludes write time prior to internal erase.

Erase/write cycles and data hold time (target value)

Erase/write cycles	Data hold time
(cycle)	(year)
1,000	20 *
10,000	10 *
100,000	5 *

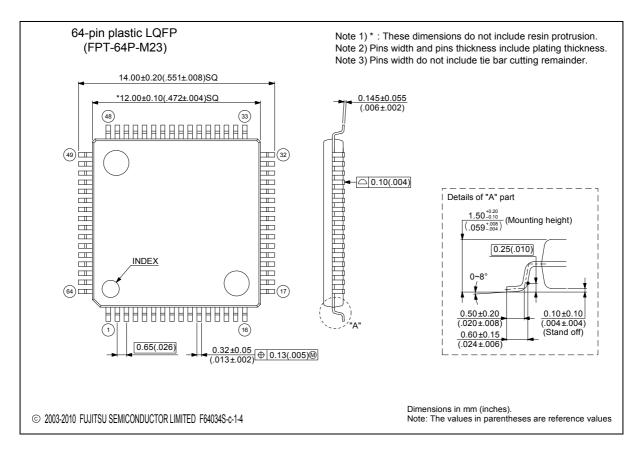
^{*:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

■ ORDERING INFORMATION

MCU with CAN controller

Part number	Flash/ROM	Package
MB96F622RAPMC-GSE1 *		64-pin plastic LQFP
MB96F622RAPMC-GSE2 *	Flash A (64.5KBytes)	(FPT-64P-M23)
MB96F622RAPMC1-GSE1 *	riasii A (04.3KBytes)	64-pin plastic LQFP
MB96F622RAPMC1-GSE2 *		(FPT-64P-M24)
MB96F623RAPMC-GSE1 *		64-pin plastic LQFP
MB96F623RAPMC-GSE2 *	Flash A (96.5KBytes)	(FPT-64P-M23)
MB96F623RAPMC1-GSE1 *	riasii A (90.3KDytes)	64-pin plastic LQFP
MB96F623RAPMC1-GSE2 *		(FPT-64P-M24)
MB96F625RAPMC-GSE1 *		64-pin plastic LQFP
MB96F625RAPMC-GSE2 *	Elash A (160 SVD-4as)	(FPT-64P-M23)
MB96F625RAPMC1-GSE1 *	Flash A (160.5KBytes)	64-pin plastic LQFP
MB96F625RAPMC1-GSE2 *		(FPT-64P-M24)

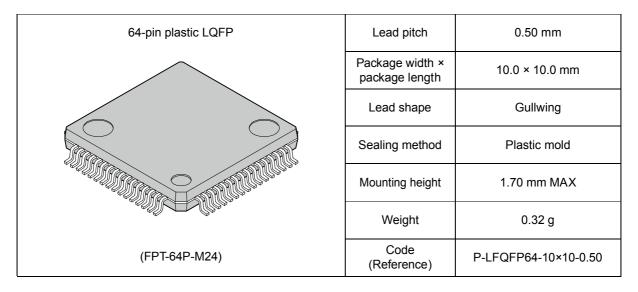
MCU without CAN controller

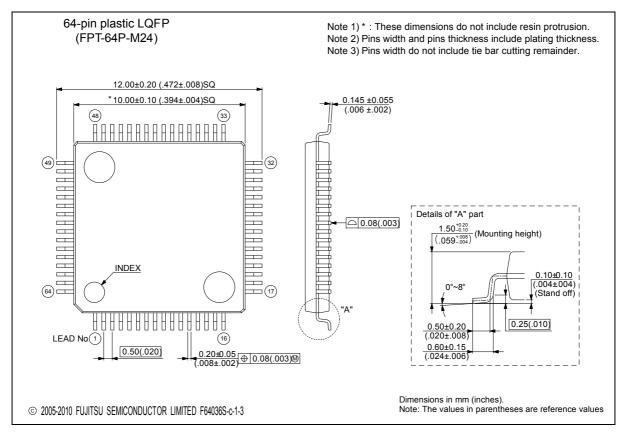

Part number	Flash/ROM	Package
MB96F622AAPMC-GSE1 *		64-pin plastic LQFP
MB96F622AAPMC-GSE2 *	Flash A (64.5KBytes)	(FPT-64P-M23)
MB96F622AAPMC1-GSE1 *	1 1asii A (04.3KDytes)	64-pin plastic LQFP
MB96F622AAPMC1-GSE2 *		(FPT-64P-M24)
MB96F623AAPMC-GSE1 *		64-pin plastic LQFP
MB96F623AAPMC-GSE2 *	Flash A (96.5KBytes)	(FPT-64P-M23)
MB96F623AAPMC1-GSE1 *	riasii A (90.3KDytes)	64-pin plastic LQFP
MB96F623AAPMC1-GSE2 *		(FPT-64P-M24)
MB96F625AAPMC-GSE1 *		64-pin plastic LQFP
MB96F625AAPMC-GSE2 *	Elash A (160 5V Dutas)	(FPT-64P-M23)
MB96F625AAPMC1-GSE1 *	Flash A (160.5KBytes)	64-pin plastic LQFP
MB96F625AAPMC1-GSE2 *		(FPT-64P-M24)

^{*:} These devices are under development and specification is preliminary.

These products under development may change its specification without notice.

■ PACKAGE DIMENSION


64-pin plastic LQFP	Lead pitch	0.65 mm
	Package width × package length	12.0 × 12.0 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
	Weight	0.47 g
(FPT-64P-M23)	Code (Reference)	P-LQFP64-12×12-0.65



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

■ REVISION HISTORY

Revision	Date	Modification
Prelim 1	2011-03-07	Creation

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

http://us.fujitsu.com/micro/

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
#05-08 New Tech Park 556741 Singapore
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws. The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department