8-bit Microcontroller

CMOS

F²MC-8FX MB95160M Series

MB95F168M/F168N/F168J/FV100D-103

■ DESCRIPTION

The MB95160M series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

• F2MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instruction
- · Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Sub clock
 - Sub PLL clock

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL: http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

- Timer
 - 8/16-bit compound timer × 2 channels

Can be used to interval timer, PWC timer, PWM timer and input capture.

- 8/16-bit PPG × 2 channels
- 16-bit PPG × 1 channel
- Time-base timer × 1 channel
- Watch prescaler × 1 channel
- LIN-UART × 1 channel
 - · LIN function, clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- www.DataSheet4U.comula duplex double buffer
 - UART/SIO × 1 channel
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer
 - I²C* × 1 channel

Built-in wake-up function

- External interrupt × 8 channels
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter × 8 channels

8-bit or 10-bit resolution can be selected.

- LCD controller (LCDC)
 - 32 SEG × 4 COM (Max 128 pixels)
 - With blinking function
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - · Watch mode
 - · Time-base timer mode
- I/O port
 - The number of maximum ports : Max 53
 - Port configuration
 - General-purpose I/O ports (N-ch open drain) : 2 ports
 - General-purpose I/O ports (CMOS) : 51 ports
- Programmable input voltage levels of port

Automotive input level / CMOS input level / hysteresis input level

• Flash memory security function

Protects the content of Flash memory

* : Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PRODUCT LINEUP

Par	Part number*1	MB95F168M	MB95F168N	MB95F168J		
Туре		Flash memory product				
RO	M capacity		60 Kbytes			
RAI	VI capacity	2 Kbytes				
Res	set output	Ye	es	No		
Z Z	Clock system		Dual clock			
Option*2	Low voltage detection reset	No	No Yes			
	Clock supervisor	N	0	Yes		
CPI	J functions	Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8, and 16 bits Minimum instruction execution time : 61.5 ns (at machine clock frequency 16.25 MHz) Interrupt processing time : 0.6 μs (at machine clock frequency 16.25 MHz)				
	Ports (Max 53 ports)	General-purpose I/O port (N-ch open drain) : 2 ports General-purpose I/O port (CMOS) : 51 ports Programmable input voltage levels of port : Automotive input level / CMOS input level / hysteresis input level				
	Time-base timer (1 channel)	Interrupt cycle: 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at main oscillation clock 4 MHz)				
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz : Min 105 ms At sub oscillation clock 32.768 kHz (for dual clock product) : Min 250 ms				
	Wild register	Capable of replacing 3 bytes of ROM data				
oheral functions	I ² C (1 channel)	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function				
Periphe	UART/SIO (1 channel)	Data transfer capable in UART/SIO Full duplex double buffer, variable data length (5/6/7/8-bit), built-in baud rate generator NRZ type transfer format, error detected function LSB-first or MSB-first can be selected. Clock synchronous (SIO) or clock asynchronous (UART) serial data transfer capable				
	LIN-UART (1 channel)	Dedicated reload timer allowing a wide range of communication speeds to be set. Full duplex double buffer. Capable of serial data transfer synchronous or asynchronous to clock signal. LIN functions available as the LIN master or LIN slave.				
8/10-bit A/D converter (8 channels) 8-bit or 10-bit resolution can be selected.						

(Continued)

(Continued)

COM output : 4 (Max) SEG output : 32 (Max) LCD drive power supply (bias) pin : 4 32 SEG × 4 COM : 128 pixels can be displayed. Duty LCD mode Operable in LCD standby mode With blinking function Built-in division resistance for LCD drive Each channel of the timer can be used as "8-bit timer × 2 channels" or "16-bit timer × 1 channel". Built-in timer function, PWC function, PWM function, capture function, and square wave form output Count clock : 7 internal clocks and external clock can be selected. PWM mode or one-shot mode can be selected. Counter operating clock : Eight selectable clock sources Support for external trigger start		Part number*1	MB95F168M	MB95F168N	MB95F168J	
SEG output	Pa	rameter	MIDSSF100M	MID33F 100M	MD33F1003	
8/16-bit compound timer (2 channels) 1 channel". Built-in timer function, PWC function, PWM function, capture function, and square wave form output Count clock: 7 internal clocks and external clock can be selected.	LCD controller (LCDC)		SEG output : 32 (Max) LCD drive power supply (bias) pin : 4 32 SEG × 4 COM : 128 pixels can be displayed. Duty LCD mode Operable in LCD standby mode With blinking function			
Tebit PPG (1 channel) PWM mode or one-shot mode can be selected.	functions		1 channel". Built-in timer function, PWC wave form output	function, PWM function, capt	ture function, and square	
Sale	eripheral		Counter operating clock : Eight selectable clock sources			
Watch counter Counter value can be set from 0 to 63. (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60) Watch prescaler (1 channel) External interrupt (8 channels) Interrupt by edge detection (rising, falling, or both edges can be selected.) Can be used to recover from standby modes. Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash	 g					
(1 channel) External interrupt (8 channels) Interrupt by edge detection (rising, falling, or both edges can be selected.) Can be used to recover from standby modes. Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash		Watch counter	Counter value can be set fro	om 0 to 63. (Capable of count	ing for 1 minute when	
(8 channels) Can be used to recover from standby modes. Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash			4 selectable interval times (*	125 ms, 250 ms, 500 ms, or 1	s)	
Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash					can be selected.)	
Standby mode Sleep, stop, watch, and time-base timer	Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum): 10000 times Data retention time: 20 years Erase can be performed on each block Block protection with external programming voltage		lash			
	Sta	andby mode	Sleep, stop, watch, and time	e-base timer		

^{*1 :} MASK ROM products are currently under consideration.

Note: Part number of evaluation product in MB95160M series is MB95FV100D-103. When using it, the MCU board (MB2146-303A) is required.

^{*2 :} For details of option, refer to "■ MASK OPTION".

■ OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks
(2 ¹⁴ -2) /Fcн	Approx. 4.10 ms (at main oscillation clock 4 MHz)

■ PACKAGES AND CORRESPONDING PRODUCTS

www.DataShee	Part number Package	MB95F168M/F168N/F168J	MB95FV100D-103
	FPT-64P-M23	0	×
	FPT-64P-M24	0	×
	BGA-224P-M08	×	0

○ : Available× : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on Using Evaluation Products

The evaluation product has not only the functions of the MB95160M series but also those of other products to support software development for multiple series and models of the F2MC-8FX family. The I/O addresses for peripheral resources not used by the MB95160M series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory products, do not use these values in the program.

The functions corresponding to certain bits in single-byte registers may not be supported on some Flash memory products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, as the evaluation and Flash memory products are designed to have identical software operation, no particular precautions are required.

Difference of Memory Spaces

If the amount of memory on the evaluation product is different from that of the Flash memory products, carefully check the difference in the amount of memory from the model to be actually used when developing software.

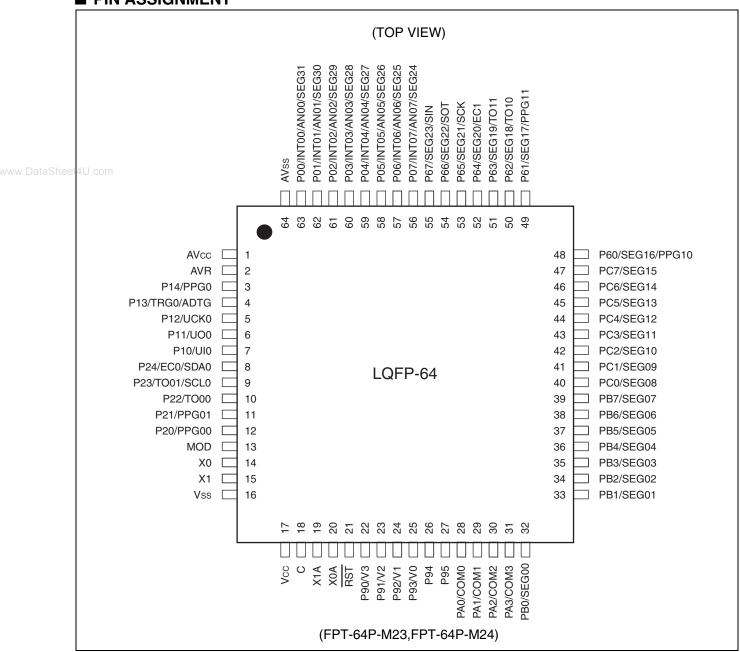
For details of memory space, refer to "■ CPU CORE".

Current Consumption

For details of current consumption, refer to "

ELECTRICAL CHARACTERISTICS".

Package


For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

Operating voltage

The operating voltage is different among the evaluation and Flash memory products.

For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS"

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

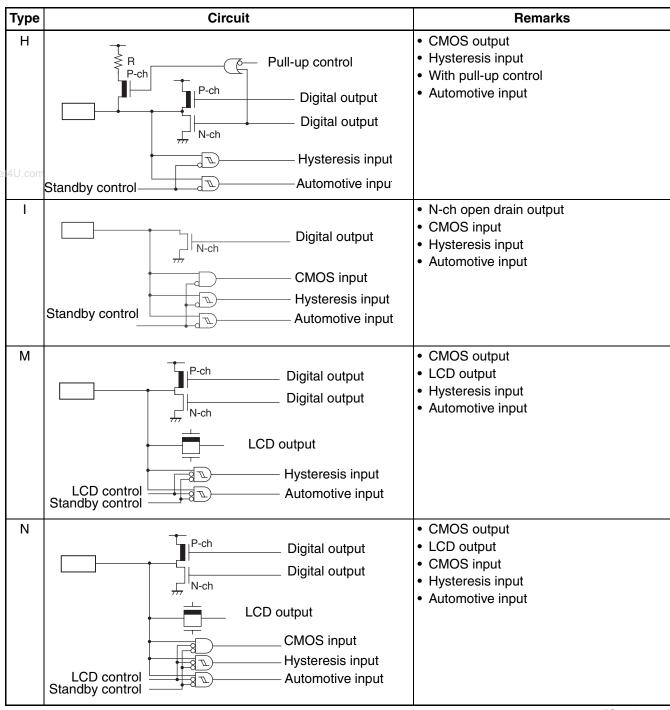
■ PIN DESCRIPTION					
	Pin no.	Pin name	I/O circuit type*	Function	
	1	AVcc		A/D converter power supply pin	
	2	AVR	_	A/D converter reference input pin	
	3	P14/PPG0		General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 output.	
www.DataSheel	4 4U.com	P13/TRG0/ ADTG	Н	General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D converter trigger input (ADTG) .	
	5	P12/UCK0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 clock I/O.	
	6	P11/UO0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 data output.	
	7	P10/UI0	G	General-purpose I/O port. The pin is shared with UART/SIO ch.0 data input.	
	8	P24/EC0/ SDA0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 clock input (EC0) and I ² C ch.0 data I/O (SDA0) .	
	9	P23/TO01/ SCL0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output (TO01) and I ² C ch.0 clock I/O (SCL0) .	
	10	P22/TO00		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output.	
	11	P21/PPG01	Н	General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.	
	12	P20/PPG00		General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.	
	13	MOD	В	Operating mode designation pin	
	14	X0	Α	Main clock oscillation pin	
	15	X1	1 ^	Main Clock oscillation pin	
	16	Vss	_	Power supply pin (GND)	
	17	Vcc	_	Power supply pin	
	18	С	_	Capacitor connection pin	
	19	X1A	۸	Sub clock oscillation pins (32 kHz)	
	20	X0A	A	Sub clock oscillation pins (32 kHz)	
	21	RST	B'	Reset pin	
	22	P90/V3			
	23	P91/V2		General-purpose I/O port.	
	24 P92/V1		_ n	The pins are shared with power supply pin for LCDC drive.	
	25	P93/V0			

(Continued)

	Pin no.	Pin name	I/O circuit type*	Function	
	26	P94	S	General-purpose I/O port.	
	27	P95	3	General-purpose 1/O port.	
	28	PA0/COM0			
	29	PA1/COM1	М	General-purpose I/O port.	
	30	PA2/COM2	IVI	The pins are shared with LCDC COM output (COM0 to COM3).	
www.DataSheet	4U.com 31	PA3/COM3			
	32	PB0/SEG00			
	33	PB1/SEG01			
	34	PB2/SEG02			
	35	PB3/SEG03	М	General-purpose I/O port.	
	36	PB4/SEG04	IVI	The pins are shared with LCDC SEG output (SEG00 to SEG07).	
	37	PB5/SEG05			
	38	PB6/SEG06			
	39	PB7/SEG07			
	40	PC0/SEG08			
	41	PC1/SEG09			
	42	PC2/SEG10			
	43	PC3/SEG11	М	General-purpose I/O port.	
	44	PC4/SEG12	IVI	The pins are shared with LCDC SEG output (SEG08 to SEG15).	
	45	PC5/SEG13			
	46	PC6/SEG14			
	47	PC7/SEG15			
	48	P60/SEG16/ PPG10		General-purpose I/O port. The pins are shared with LCDC SEG output (SEG16, SEG17) and	
	49	P61/SEG17/ PPG11	М	8/16-bit PPG ch.1 output (PPG10, PPG11).	
	50	P62/SEG18/ TO10		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG18) and 8/16-bit compound timer ch.1 output (TO10) .	

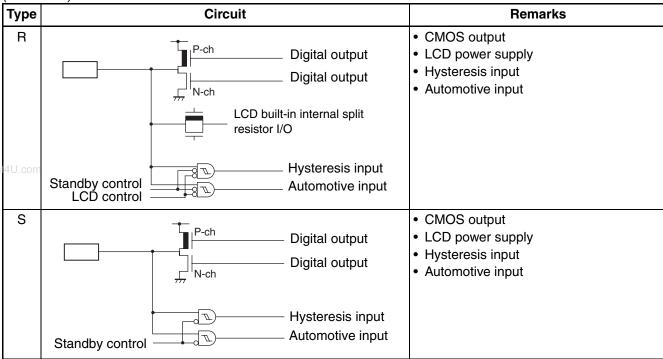
(Continued)

(Continued)


Pin no.	Pin name	I/O circuit type*	Function
51	P63/SEG19/ TO11		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG19) and 8/16-bit compound timer ch.1 output (TO11).
52	P64/SEG20/ EC1	М	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG20) and 8/16-bit compound timer ch.1 clock input (EC1).
14U.com 53	P65/SEG21/ SCK	IVI	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG21) and LIN-UART clock I/O (SCK) .
54	P66/SEG22/ SOT		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG22) and LIN-UART data output (SOT) .
55	P67/SEG23/ SIN	N	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG23) and LIN-UART data input (SIN) .
56	P07/INT07/ AN07/SEG24		
57	P06/INT06/ AN06/SEG25		
58	P05/INT05/ AN05/SEG26		
59	P04/INT04/ AN04/SEG27	F	General-purpose I/O port. The pins are shared with external interrupt input (INT00 to INT07),
60	P03/INT03/ AN03/SEG28	Г	A/D analog input (AN00 to AN07) and LCDC SEG output (SEG24 to SEG31) .
61	P02/INT02/ AN02/SEG29		
62	P01/INT01/ AN01/SEG30		
63	P00/INT00/ AN00/SEG31		
64	AVss	_	Power supply pin (GND) of A/D converter

^{* :} Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

■ I/O CIRCUIT TYPE


Туре	Circuit	Remarks
A	X1 (X1A) Clock input X0 (X0A) N-ch Standby control	 Oscillation circuit High-speed side Feedback resistance : approx. 1 MΩ Low-speed side Feedback resistance : approx. 10 MΩ
14U B om	Mode input	Only for inputHysteresis input
B'	Reset input N-ch Reset output	Hysteresis input Reset output
F	Analog input Analog input LCD output Hysteresis input Automotive input External interrupt control	 CMOS output LCD output Hysteresis input Analog input Automotive input
G	Pull-up control Pigital output Digital output CMOS input Hysteresis input Automotive input	 CMOS output CMOS input Hysteresis input With pull-up control Automotive input

(Continued)

(Continued)

(Continued)

■ HANDLING DEVICES

Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.

Latch-up may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between V_{CC} pin and V_{SS} pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range (50/60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

PIN CONNECTION

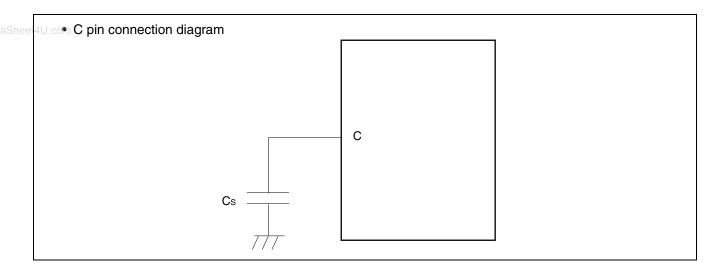
Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.


It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between V_{CC} and V_{SS} pins near this device.

Mode Pin (MOD)

Connect the MOD pin directly to Vcc or Vss.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to Vcc or Vss and to provide a low-impedance connection.

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of $V_{\rm CC}$ pin must have a capacitance value higher than $C_{\rm S}$. For connection of smoothing capacitor $C_{\rm S}$, refer to the diagram below.

Analog Power Supply

Always set the same potential to AV_{CC} and V_{CC} pins. When $V_{CC} > AV_{CC}$, the current may flow through the AN00 to AN07 pins.

• Treatment of Power Supply Pins on A/D Converter

Connect to be AVcc = Vcc and AVss = AVR = Vss even if the A/D converter is not in use.

Noise riding on the AV $_{\text{CC}}$ pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV $_{\text{CC}}$ and AV $_{\text{SS}}$ pins in the vicinity of this device.

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

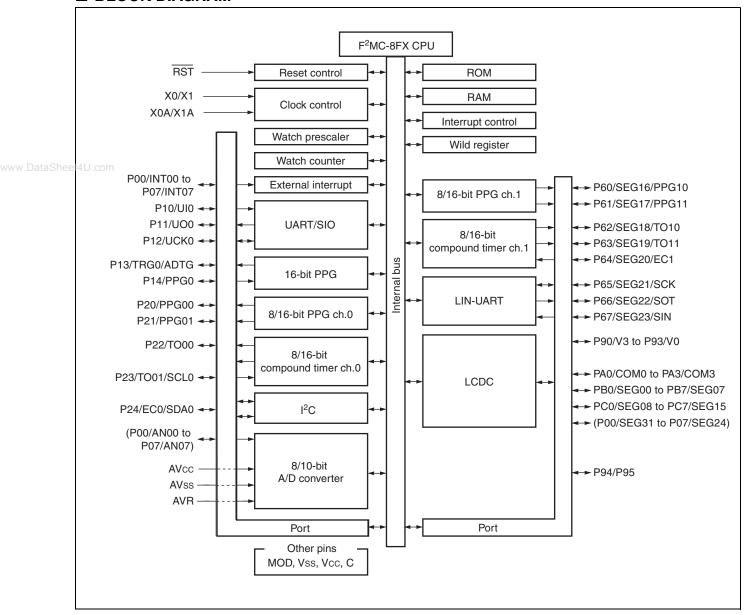
Package	Applicable adapter model	Parallel programmers
FPT-64P-M23	TEF110-95F168HPMC	AF9708 (Ver 02.35G or more)
FPT-64P-M24	TEF110-95F168HPMC1	AF9709/B (Ver 02.35G or more) AF9723+AF9834 (Ver 02.08E or more)

Note: For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

• Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

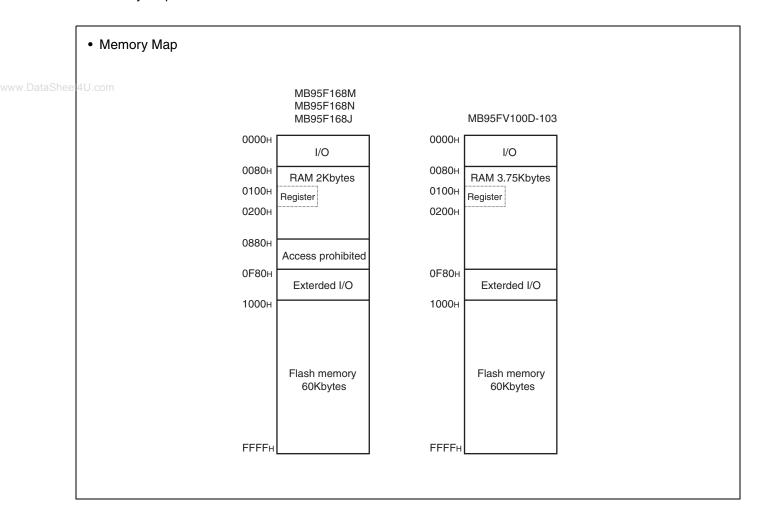
Flash memor	y CPU address	Programmer address*
60 Kbytes		11000 _H
,	FFFFH	1FFFFH


^{*:} Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory.

These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

Programming Method

- 1) Set the type code of the parallel programmer to 17222.
- 2) Load program data to programmer addresses 11000_H to 1FFFF_H.
- 3) Programmed by parallel programmer


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory space

Memory space of the MB95160M series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table. Memory map of the MB95160M series is shown below.

2. Register

The MB95160M series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:

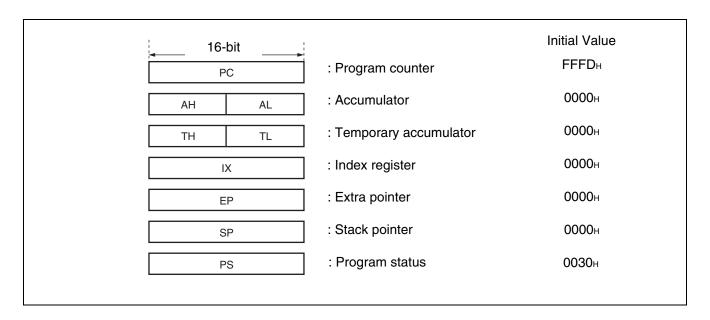
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.

Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of

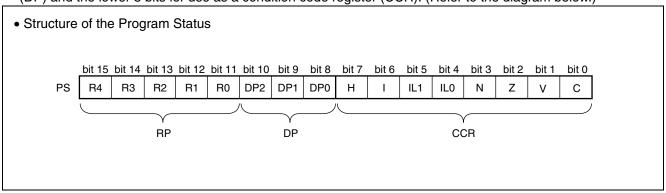
an 8-bit data processing instruction, the lower 1 byte is used.

Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator.

In the case of an 8-bit data processing instruction, the lower 1 byte is used.


Index register (IX) : A 16-bit register for index modification.

Extra pointer (EP) : A 16-bit pointer to point to a memory address.


Stack pointer (SP) : A 16-bit register to indicate a stack area.

Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and

a condition code register.

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

 Rule for Conversion of Actual Addresses in the General-purpose Register Area RP upper OP code lower R4 R3 R2 R1 R0 b2 b1 b0 ¥ **** ¥ Generated address A15 A14 A13 A12 A11 A10 Α9 **A8** Α7 A6 A5 Α4 АЗ A2 Α1 A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080_H to 00FF_H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)
000₅ (initial value)		0080н to 00FFн (without mapping)
001в		0100н to 017Fн
010в		0180н to 01FFн
011в	0080н to 00FFн	0200н to 027Fн
100в	- 0000H tO 00FFH	0280н to 02FFн
101в		0300н to 037Fн
110в		0380н to 03FFн
111в		0400н to 047Fн

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.

Cleared to "0" otherwise. This flag is for decimal adjustment instructions.

I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0".

The flag is set to "0" when reset.

 $IL1,\,IL0\quad :\ Indicates\ the\ level\ of\ the\ interrupt\ currently\ enabled.\ Processes\ an\ interrupt\ only\ if\ its\ request\ level\ of\ the\ interrupt\ currently\ enabled.$

is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	↑
1	0	2	<u> </u>
1	1	3	Low (no interruption)

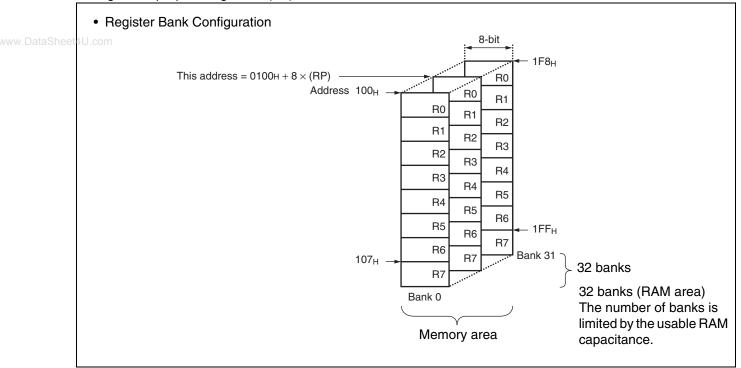
N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the

bit is set to "0".

Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.

V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0"

otherwise.


C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared

to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-register. Up to a total of 32 banks can be used on the MB95160M series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000В
0003н	DDR1	Port 1 direction register	R/W	0000000В
0004н	_	(Disabled)	_	_
а 0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111В
0006н	PLLC	PLL control register	R/W	0000000В
0007н	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	0000000В
0009н	RSRR	Reset factor register	R/W	XXXXXXXX
000Ан	TBTC	Time-base timer control register	R/W	0000000В
000Вн	WPCR	Watch prescaler control register	R/W	0000000В
000Сн	WDTC	Watchdog timer control register	R/W	0000000В
000Dн	_	(Disabled)	_	_
000Ен	PDR2	Port 2 data register	R/W	0000000В
000Fн	DDR2	Port 2 direction register	R/W	0000000В
0010н to 0015н	_	(Disabled)	_	_
0016н	PDR6	Port 6 data register	R/W	0000000
0017н	DDR6	Port 6 direction register	R/W	0000000В
0018н to 001Вн	_	(Disabled)	_	_
001Сн	PDR9	Port 9 data register	R/W	0000000В
001Dн	DDR9	Port 9 direction register	R/W	0000000В
001Ен	PDRA	Port A data register	R/W	0000000
001Гн	DDRA	Port A direction register	R/W	0000000в
0020н	PDRB	Port B data register	R/W	0000000в
0021н	DDRB	Port B direction register	R/W	0000000
0022н	PDRC	Port C data register	R/W	0000000
0023н	DDRC	Port C direction register	R/W	0000000
0024н to 002Сн	_	(Disabled)	_	_

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
002Dн	PUL1	Port 1 pull-up register	R/W	0000000В
002Ен	PUL2	Port 2 pull-up register	R/W	0000000В
002Fн to 0035н	_	(Disabled)	_	_
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000В
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000В
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000B
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000B
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000B
003Сн	PC11	8/16-bit PPG1 control register ch.1	R/W	0000000
003Dн	PC10	8/16-bit PPG0 control register ch.1	R/W	00000000B
003Ен to 0041н	_	(Disabled)	_	_
0042н	PCNTH0	16-bit PPG status control register (upper byte) ch.0	R/W	00000000B
0043н	PCNTL0	16-bit PPG status control register (lower byte) ch.0	R/W	0000000B
0044н to 0047н	_	(Disabled)	_	_
0048н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	00000000
0049н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000E
004Ан	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000
004Вн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	00000000
004Сн to 004Fн	_	(Disabled)	_	_
0050н	SCR	LIN-UART serial control register	R/W	0000000e
0051н	SMR	LIN-UART serial mode register	R/W	0000000E
0052н	SSR	LIN-UART serial status register	R/W	00001000E
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	00000000
0054н	ESCR	LIN-UART extended status control register	R/W	00000100
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XX
0056н	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	00000000
0057н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	00100000i
0058н	SSR0	UART/SIO serial status register ch.0	R/W	0000001

(Continued)

www.DataSheet4bgom

Address	Register abbreviation	Register name	R/W	Initial value
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch.0	R	00000000в
005Вн to 005Fн	_	(Disabled)	_	_
0060н	IBCR00	I ² C bus control register 0 ch.0	R/W	00000000в
^{4U} 0061 н	IBCR10	I ² C bus control register 1 ch.0	R/W	00000000в
0062н	IBSR0	I ² C bus status register ch.0	R	00000000в
0063н	IDDR0	I ² C data register ch.0	R/W	00000000в
0064н	IAAR0	I ² C address register ch.0	R/W	00000000в
0065н	ICCR0	I ² C clock control register ch.0	R/W	00000000в
0066н to 006Вн	_	(Disabled)	_	_
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	00000000В
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	00000000В
006Ен	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	00000000В
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	00000000в
0070н	WCSR	Watch counter status register	R/W	00000000в
0071н	_	(Disabled)		_
0072н	FSR	Flash memory status register	R/W	000Х0000в
0073н	SWRE0	Flash memory sector writing control register 0	R/W	00000000в
0074н	SWRE1	Flash memory sector writing control register 1	R/W	00000000в
0075н	_	(Disabled)		_
0076н	WREN	Wild register address compare enable register	R/W	0000000В
0077н	WROR	Wild register data test setting register	R/W	0000000В
0078н	_	Register bank pointer (RP), Mirror of direct bank pointer (DP)	_	_
0079н	ILR0	Interrupt level setting register 0	R/W	111111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	111111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	111111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	111111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	111111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	111111111в
007Fн	_	(Disabled)	_	_
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F81н	WRARL0	Wild register address setting register (lower byte) ch.0	R/W	0000000В
0F82н	WRDR0	Wild register data setting register ch.0	R/W	0000000В
0F83н	WRARH1	Wild register address setting register (upper byte) ch.1	R/W	0000000В
0F84н	WRARL1	Wild register address setting register (lower byte) ch.1	R/W	0000000В
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000В
а 0F86н	WRARH2	Wild register address setting register (upper byte) ch.2	R/W	00000000в
0F87н	WRARL2	Wild register address setting register (lower byte) ch.2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch.2	R/W	0000000В
0F89н to 0F91н	_	(Disabled)	_	_
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	00000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	00000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	00000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	00000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0		00000000В
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch.1	R/W	0000000В
0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch.1	R/W	0000000В
0F99н	T11DR	8/16-bit compound timer 11 data register ch.1	R/W	0000000В
0F9Ан	T10DR	8/16-bit compound timer 10 data register ch.1	R/W	0000000В
0F9Вн	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch.1	R/W	0000000в
0F9Cн	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0	R/W	11111111 _B
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	111111111в
0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	111111111
0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	111111111в
0ҒА0н	PPS11	8/16-bit PPG1 cycle setting buffer register ch.1	R/W	111111111в
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch.1	R/W	111111111
0FA2⊦	PDS11	8/16-bit PPG1 duty setting buffer register ch.1	R/W	111111111в
0FАЗн	PDS10	8/16-bit PPG0 duty setting buffer register ch.1	R/W	111111111в
0FA4н	PPGS	8/16-bit PPG start register	R/W	0000000В
0FA5н	REVC	8/16-bit PPG output inversion register	R/W	0000000
0FA6н to 0FA9н	_	(Disabled)		_

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0ГААн	PDCRH0	16-bit PPG down counter register (upper byte) ch.0	R	0000000В
0ГАВн	PDCRL0	16-bit PPG down counter register (lower byte) ch.0	R	0000000В
0FACн	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch.0	R/W	11111111В
0FADн	PCSRL0	16-bit PPG cycle setting buffer register (lower byte) ch.0	R/W	11111111В
0ГАЕн	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch.0	R/W	11111111В
_{4U} 0 БАF н	PDUTL0	16-bit PPG duty setting buffer register (lower byte) ch.0	R/W	11111111В
0FB0н to 0FBBн	_	(Disabled)		_
0FBCн	BGR1	LIN-UART baud rate generator register 1	R/W	0000000В
0FBDн	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
0FВЕн	PSSR0	UART/SIO dedicated baud rate generator prescaler selecting register ch.0	R/W	0000000В
0FBFн	BRSR0	UART/SIO dedicated baud rate generator setting register ch.0	R/W	0000000В
0FC0н to 0FC2н	to — (Disabled)		_	_
0ГСЗн	AIDRL	A/D input disable register (lower byte)	R/W	0000000В
0FС4н	LCDCC	LCDC control register	R/W	00010000в
0FС5н	LCDCE1	LCDC enable register 1	R/W	00110000в
0FС6н	LCDCE2	LCDC enable register 2	R/W	0000000В
0FC7 _н	LCDCE3	LCDC enable register 3	R/W	0000000В
0FC8н	LCDCE4	LCDC enable register 4	R/W	0000000В
0FС9н	LCDCE5	LCDC enable register 5	R/W	0000000В
0ГСАн	_	(Disabled)	_	_
0ГСВн	LCDCB1	LCDC blinking setting register 1	R/W	0000000В
0ГССн	LCDCB2	LCDC blinking setting register 2	R/W	0000000В
0FCDн to 0FDCн	LCDRAM	LCDC display RAM	R/W	0000000В
0FDDн to 0FE2н	_	(Disabled)	_	_
0FE3н	WCDR	Watch counter data register	R/W	00111111в

(Continued)

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE4н to 0FE6н		(Disabled)	_	_
0FE7н	ILSR2	Input level select register 2	R/W	0000000В
0FE8н, 0FE9н	_	(Disabled)		_
e 4U 0БЕА н	CSVCR	Clock supervisor control register	R/W	00011100в
0FEBн to 0FEDн		(Disabled)	_	_
0FEEн	ILSR	Input level selecting register	R/W	0000000В
0FEF _H	WICR	Interrupt pin control register	R/W	01000000в
0FF0н to 0FFFн	_	(Disabled)	_	_

• R/W access symbols

R/W : Readable/Writable

R : Read only W : Write only

• Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

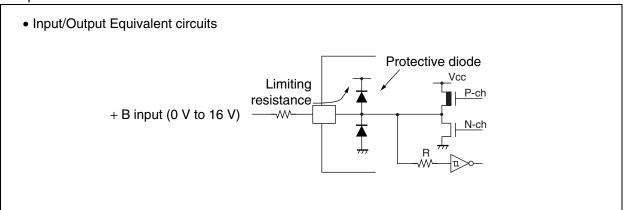
X : The initial value of this bit is undefined.

Note: Do not write to the "(Disabled)". Reading the "(Disabled)" returns an undefined value.

■ INTERRUPT SOURCE TABLE

	Interrupt	Vector tab	le address	Bit name of	Same level
Interrupt source	request number Upper		Lower	interrupt level setting register	priority order (atsimultaneous occurrence)
External interrupt ch.0	IRQ0	FFF A H	FFFB⊦	1.00 [1 . 0]	High
External interrupt ch.4	INQU	FFFAH	ГГГОН	L00 [1 : 0]	_
External interrupt ch.1	IRQ1	FFF8 _H	FFF9 _H	1.01.[1.0]	1
External interrupt ch.5	inqi	ГГГОН	ГГГЭН	L01 [1 : 0]	
External interrupt ch.2	IRQ2	FFF6 _H	FFF7 _H	1.00 [1 . 0]	
External interrupt ch.6	INQZ	ГГГОН		L02 [1 : 0]	
External interrupt ch.3	IRQ3	FFF4 _H	ı FFF5 _H	L03 [1 : 0]	
External interrupt ch.7	INQS		ГГГЭН	L03 [1 . 0]	
UART/SIO ch.0	IRQ4	FFF2 _H	FFF3⊦	L04 [1 : 0]	
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0 _H	FFF1 _H	L05 [1 : 0]	
8/16-bit compound timer ch.0 (Upper)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]	
LIN-UART (reception)	IRQ7	FFECH	FFEDH	L07 [1 : 0]	
LIN-UART (transmission)	IRQ8	FFEA⊦	FFEB _H	L08 [1 : 0]	
8/16-bit PPG ch.1 (Lower)	IRQ9	FFE8 _H	FFE9 _H	L09 [1 : 0]	
8/16-bit PPG ch.1 (Upper)	IRQ10	FFE6⊦	FFE7 _H	L10 [1 : 0]	
(Unused)	IRQ11	FFE4 _H	FFE5 _H	L11 [1:0]	
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2 _H	FFE3 _H	L12 [1 : 0]	
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0 _H	FFE1 _H	L13 [1 : 0]	
8/16-bit compound timer ch.1 (Upper)	IRQ14	FFDEH	FFDF _H	L14 [1 : 0]	
16-bit PPG ch.0	IRQ15	FFDCH	FFDD _H	L15 [1 : 0]	
I ² C ch.0	IRQ16	FFDA⊦	FFDB⊦	L16 [1:0]	
(Unused)	IRQ17	FFD8 _H	FFD9 _H	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6 _H	FFD7 _H	L18 [1 : 0]	
Time-base timer	IRQ19	FFD4 _H	FFD5 _H	L19 [1 : 0]	
Watch prescaler/Watch counter	IRQ20	FFD2 _H	FFD3 _H	L20 [1:0]	
(Unused)	IRQ21	FFD0 _H	FFD1 _H	L21 [1:0]	
8/16-bit compound timer ch.1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCCH	FFCDH	L23 [1:0]	Low

■ ELECTRICAL CHARACTERISTICS


1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ing	Unit	Remarks
raiailletei	Зунион	Min	Max	Uiiii	neiliaiks
Power supply voltage*1	Vcc, AVcc	Vss - 0.3	Vss + 6.0	٧	*2
	AVR	Vss - 0.3	Vss + 6.0		*2
Power supply voltage for LCD	V0 to V3	Vss - 0.3	Vss + 6.0	٧	*3
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*4
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*4
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	Applicable to pins*5
Total maximum clamp current	ΣΙΙCLAMPΙ	_	20	mA	Applicable to pins*5
"L" level maximum output current	loL	_	15	mA	Applicable to pins*5
"L" level average current	lolav	_	4	mA	Applicable to pins*5 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣloL	_	100	mA	
"L" level total average output current	Σ lolav	_	50	mA	Total average output current = operating current × operating ratio (Total of pins)
"H" level maximum output current	Іон	_	– 15	mA	Applicable to pins*5
"H" level average current	Іонач	_	- 4	mA	Applicable to pins*5 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон	_	- 100	mA	
"H" level total average output current	ΣΙομαν	_	- 50	mA	Total average output current = operating current × operating ratio (Total of pins)
Power consumption	Pd	_	320	mW	
Operating temperature	TA	- 10	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

(Continued)

(Continued)

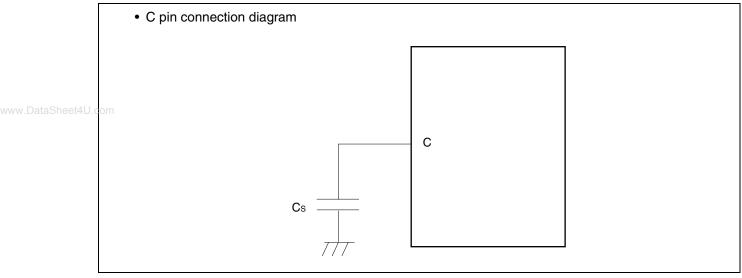
- *1 : The parameter is based on $V_{SS} = 0.0 \text{ V}$.
- *2 : Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.
- *3 : V0 to V3 should not exceed Vcc + 0.3 V.
- *4: V_I and Vo should not exceed V_{CC} + 0.3 V. V_I must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *5 : Applicable to pins :
 - P00 to P07, P10 to P14, P20 to P22,P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7
 - Use within recommended operating conditions.
- www.DataSheet4U.com Use at DC voltage (current).
 - + B signal is an input signal that exceeds Vcc voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
 potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects
 other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept
 + B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Condi-	Val	lue	Unit	Remark	· c	
Parameter	Syllibol	tions	Min	Max	Oilit	nemark	.5	
			2.42*1,*2	5.5* ¹		In normal operating	Other than	
Power supply	Vcc,		2.3	5.5	v	Hold condition in STOP mode	MB95FV100D- 103	
voltage	AVcc		2.7	5.5	, v	In normal operating	MB95FV100D-	
el4U.com			2.3	5.5		Hold condition in STOP mode	103	
Power supply voltage for LCD	V0 to V3	_	Vss	Vcc	V	The range of liquid crystal power sup without up-conversion (The optimal videpends on liquid crystal display elemused.)		
A/D converter reference input voltage	AVR		4.0	AVcc	٧			
Smoothing capacitor	Cs		0.1	1.0	μF	*3		
Operating temperature	TA		- 10	+ 85	°C	Other than MB95FV100D-103		
Operating temperature	IA		+ 5	+35	°C	MB95FV100D-103		


^{*1:} The values vary with the operating frequency, machine clock or analog guarantee range.

(Continued)

^{*2:} The value is 2.88 V when the low voltage detection reset is used. The device operates normally during the time between 2.88 V and low voltage detection, and between release voltage and 2.88 V.

(Continued)

*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of Vcc pin must have a capacitor value higher than Cs. For connection of smoothing capacitor Cs, refer to the diagram below.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

Parameter	Sym-	Pin name	Conditions	,	Value		Unit	Remarks	
Parameter	bol	Fili liaille	Conditions	Min	Тур	Max	Offic	nemarks	
	V _{IH1}	P10, P67	*1	0.7 Vcc		Vcc + 0.3	٧	When selecting CMOS input level	
	V _{IH2}	P23, P24	*1	0.7 Vcc		Vss + 5.5	V		
"H" level input	VIHA	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	_	0.8 Vcc		Vcc + 0.3	V	Port inputs if Auto- motive input levels are selected	
voltage	V _{IHS1}	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	0.8 Vcc	l	Vcc + 0.3	>	Hysteresis input	
	V _{IHS2}	P23, P24	*1	0.8 Vcc	—	Vss + 5.5	V		
	VIHM	RST, MOD		0.7 Vcc		Vcc + 0.3	٧	CMOS input	
	VIL	P10,P23, P24,P67	*1	Vss - 0.3	_	0.3 Vcc	V	Hysteresis input (When selecting CMOS input level)	
"L" level input voltage	VILA	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	_	Vss - 0.3		0.5 Vcc	V	Port inputs if Automotive input levels are selected	
	VILS	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	Vss - 0.3		0.2 Vcc	V	Hysteresis input	
	VILM	RST, MOD	_	Vss - 0.3		0.3 Vcc	V	Hysteresis input	
"H" level output voltage	Vон	Output pins other than P00 to P07	Iон = - 4.0 mA	V _{cc} - 0.5			V		

(Continued)

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, TA = - 40 °C to + 85 °C)

	Davamatav	Sym-	Din nama	,	J V ± 10	Value			,
	Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	"L" level output voltage	Vol	Output pins other than P00 to P07, RST*2	IoL = 4.0 mA	_		0.4	V	
	Input leakage current (Hi-Z output leakage current)	lu	Ports other than P23, P24	0.0 V < Vı < Vcc	- 5	_	+ 5	μΑ	When the pull-up prohibition setting
www.DataShee	Pull-up resistor	RPULL	P10 to P14, P20 to P22	Vı = 0.0 V	25	50	100	kΩ	When the pull-up permission setting
	Input capacitance	Cin	Other than AVcc, AVss, AVR, Vcc, Vss	f = 1 MHz	_	5	15	pF	
				F _{CH} = 20 MHz F _{MP} = 10 MHz Main clock mode		9.5	12.5	mA	At other than Flash memory writing and erasing
		la a		(divided by 2)	_	30.0	35.0	mA	At Flash memory writing and erasing
	lccs Power supply current*3 Icc.	ICC		F _{CH} = 32 MHz F _{MP} = 16 MHz Main clock mode		15.2	20.0	mA	At other than Flash memory writing and erasing
				(divided by 2)		35.7	42.5	mA	memory writing and erasing
		l		F _{CH} = 20 MHz F _{MP} = 10 MHz Main Sleep mode (divided by 2)	_	4.5	7.5	mA	
		ICCS	Vcc (External clock operation)	F _{CH} = 32 MHz F _{MP} = 16 MHz Main Sleep mode (divided by 2)	_	7.2	12.0	mA	
		Iccl		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Sub clock mode (divided by 2) $T_A = +25 \text{ °C}$	_	45	100	μΑ	
		Iccls		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Sub sleep mode (divided by 2) $T_A = +25 \text{ °C}$		10	81	μΑ	
		Ісст		F _{CL} = 32 kHz Watch mode Main stop mode T _A = +25 °C	_	4.6	27.0	μА	

(Continued)

(Continued)

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 ^{\circ}C to +85 ^{\circ}C)$

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Parameter	bol	Pili liaille	Conditions	Min	Тур	Max	Oilit	neiliaiks
	Iccmpll.		F _{CH} = 4 MHz F _{MP} = 10 MHz Main PLL mode (multiplied by 2.5)		9.3	12.5	mA	
el4U.com	ICCMPLL		F _{CH} = 6.4 MHz F _{MP} = 16 MHz Main PLL mode (multiplied by 2.5)		14.9	20.0	mA	
Power supply	Iccspll	Vcc (External clock operation)	$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 128 \text{ kHz}$ Sub PLL mode $(\text{multiplied by 4}),$ $T_{A} = +25 ^{\circ}\text{C}$	_	160	400	μΑ	
current*3	Істѕ		$F_{CH} = 10 \text{ MHz}$ Time-base timer mode $T_A = +25 ^{\circ}\text{C}$	_	0.15	1.10	mA	
	Іссн		Sub stop mode T _A = +25 °C		5	20	μА	
	la		F _{CH} = 16 MHz At operating of A/D conversion	_	2.4	4.7	mA	
	Іан	AVcc	$F_{CH} = 16 \text{ MHz}$ At stopping of A/D conversion $T_A = +25 ^{\circ}\text{C}$	_	1	5	μΑ	
LCD internal division resistance	RLCD	_	Between V3 and Vss		300	_	kΩ	
COM0 to COM3 output impedance	Rvcoм	COM0 to COM3	V1 to V3 = 5.0 V		_	5	kΩ	
SEG00 to SEG31 output impedance	Rvseg	SEG00 to SEG31	V 1 10 V3 = 5.0 V	_		7	kΩ	
LCD leak current	ILCDL	V0 to V3, COM0 to COM3 SEG00 to SEG31	_	- 1	—	+ 1	μΑ	

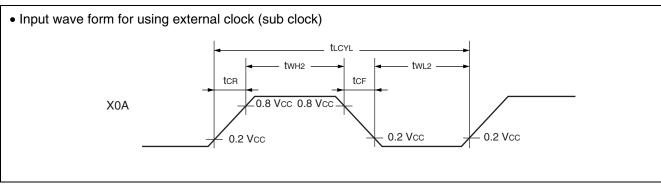
^{*1 :} The value is 2.88 V when the low voltage detection reset is used.

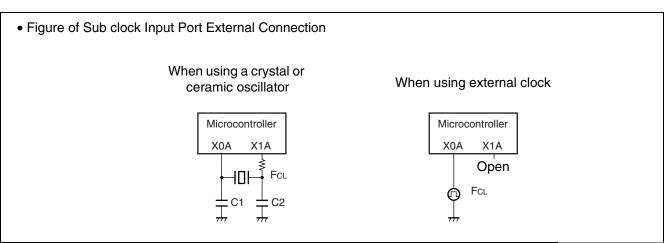
- Refer to "4. AC Characteristics (1) Clock Timing" for Fch and Fcl.
- Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.

^{*2:} Product without clock supervisor only

^{*3: •} The power-supply current is determined by the external clock. When both low voltage detection option and clock supervisor option are selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (ILVD) and current consumption of built-in CR oscillator (ICSV) to the specified value.

4. AC Characteristics


(1) Clock Timing


(Vcc = 2.42 V to 5.5 V, Vss = 0.0 V, Ta = $-40~^{\circ}\text{C}$ to $+85~^{\circ}\text{C}$)

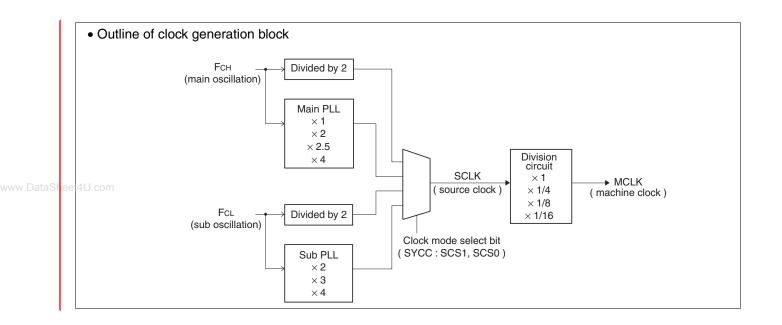
	Parameter	Sym- bol	Pin name	Conditions	Value			Linit	Remarks
www.DataSheej					Min	Тур	Max	Unit	nemarks
	4U.com Clock frequency	Fсн	X0, X1		1.00	_	16.25	MHz	When using main oscillation circuit
					1.00		32.50	MHz	When using external clock
					3.00		10.00	MHz	Main PLL multiplied by 1
					3.00		8.13	MHz	Main PLL multiplied by 2
					3.00	_	6.50	MHz	Main PLL multiplied by 2.5
					3.00	_	4.06	MHz	Main PLL multiplied by 4
		FcL	X0A, X1A			32.768		kHz	When using sub oscillation circuit
					_	32.768		kHz	When using sub PLL
	Clock cycle time	thcyL	X0, X1		61.5	_	1000	ns	When using oscillation circuit
					30.8		1000	ns	When using external clock
		tLCYL	X0A, X1A			30.5	_	μs	When using sub clock
	Input clock pulse width	twH1 twL1	X0		61.5			ns	When using external clock Duty ratio is about 30% to 70%.
		twH2	X0A			15.2		μs	
	Input clock rise time and fall time	tcr tcr	X0, X0A				5	ns	When using external clock

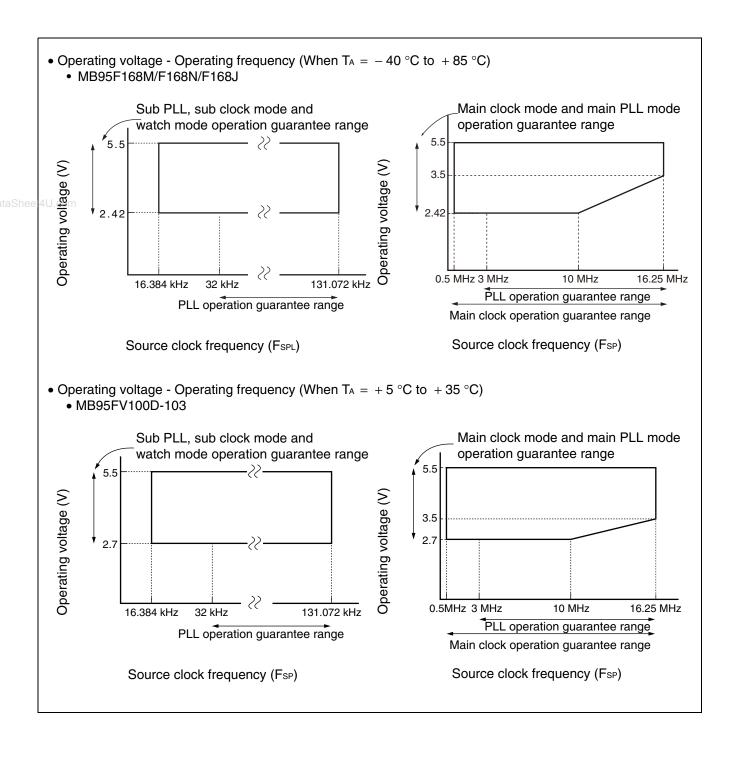
Input wave form for using external clock (main clock)

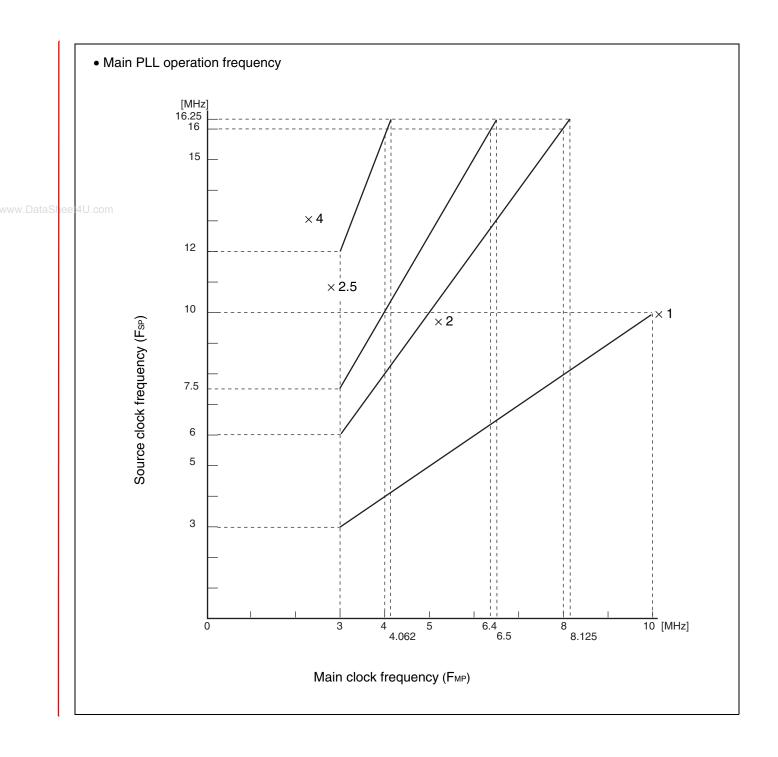
 The twill term twill the term twill the term twill term twill the twill

(2) Source Clock/Machine Clock

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

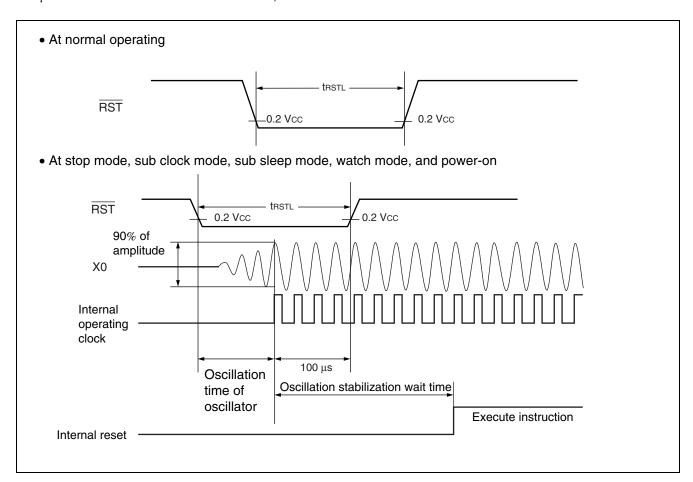

Parameter	Sym-	Condi-		Value)	Unit	Remarks
raiailletei	bol	tions	Min	Тур	Max	Oilit	nemarks
Source clock cycle time*1 (Clock before setting	t sclk		61.5		2000	ns	When using main clock Min: FcH = 8.125 MHz, PLL multiplied by 2 Max: FcH = 1 MHz, divided by 2
division)			7.6	_	61.0	μs	When using sub clock Min : $F_{CL} = 32$ kHz, PLL multiplied by 4 Max : $F_{CL} = 32$ kHz, divided by 2
Source clock frequency	Fsp		0.50		16.25	MHz	When using main clock
Source clock frequency	FSPL		16.384		131.072	kHz	When using sub clock
Machine clock cycle time*2	t mclk		61.5		32000	ns	When using main clock Min : F _{SP} = 16.25 MHz, no division Max : F _{SP} = 0.5 MHz, divided by 16
(Minimum instruction execution time)	IMOLK		7.6	_	976.5	μs	When using sub clock Min: Fspl = 131 kHz, no division Max: Fspl = 16 kHz, divided by 16
Machine clock	FMP		0.031		16.250	MHz	When using main clock
frequency	FMPL		1.024		131.072	kHz	When using sub clock


^{*1:} Clock before setting division due to machine clock division ratio selection bit (SYCC: DIV1 and DIV0). This source clock is divided by the machine clock division ratio selection bit (SYCC: DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.


- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)

*2: Operation clock of the microcontroller. Machine clock can be selected as follows.

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

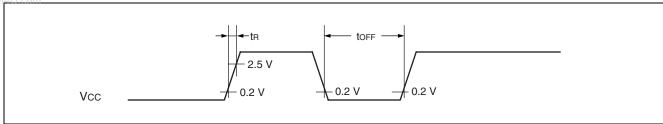

(3) External Reset

$$(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$$

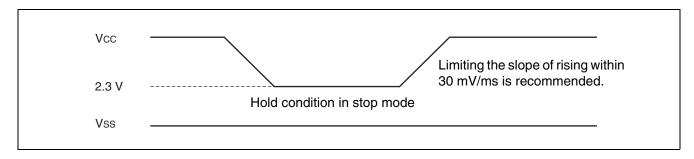
Parameter	Sym-	Pin	Condi-	Value	Unit	Remarks	
Parameter	bol	name	tions	Min	Max	Offic	nemarks
				2 tmcLK*1	_	ns	At normal operating
RST "L" level pulse width	t RSTL	RST	_	Oscillation time of oscillator*2 + 100	_	μs	At stop mode, sub clock mode, sub sleep mode, and watch mode
el4U.com				100		μs	At time-base timer mode

^{*1 :} Refer to " (2) Source Clock/Machine Clock" for tmclk.

^{*2 :} Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of µs and several ms. In the external clock, the oscillation time is 0 ms.



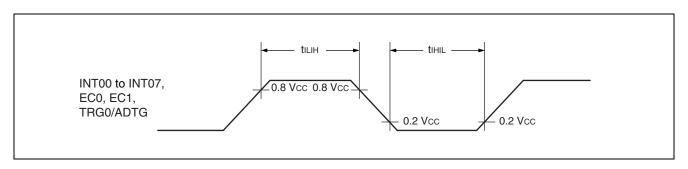
(4) Power-on Reset


(Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol	Pili lialile	Conditions	Min	Max	Oilit	nemarks
Power supply rising time	t _R	Vcc		_	50	ms	
Power supply cutoff time	toff	V CC	_	1	_	ms	Waiting time until power-on

vw.DataSheet<u>4LLcom</u>

Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.

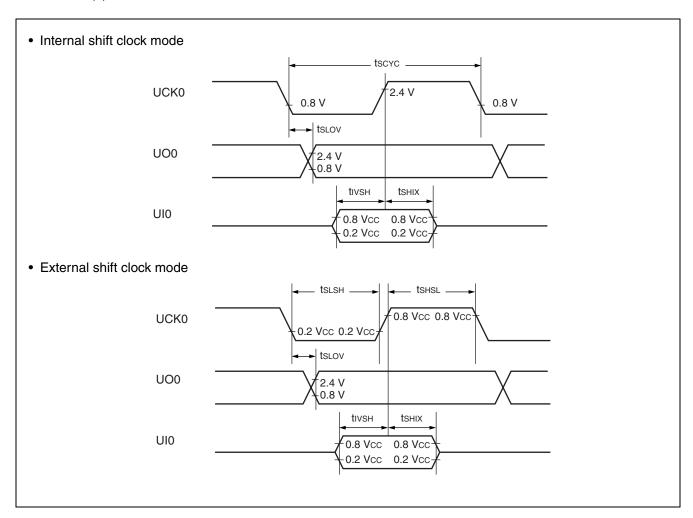


(5) Peripheral Input Timing

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

Parameter	Symbol Pin name		Conditions	Val	Unit		
Parameter	Syllibol	Fili lialile	Conditions	Min	Max	Oilit	
Peripheral input "H" pulse width	tıын	INT00 to INT07,		2 tmclk*	_	ns	
Peripheral input "L" pulse width	tıнı∟	EC0, EC1, TRG0/ADTG	_	2 tmclk*	_	ns	

www.DataSheet Refer to " (2) Source Clock/Machine Clock" for tmclk.



(6) UART/SIO, Serial I/O Timing

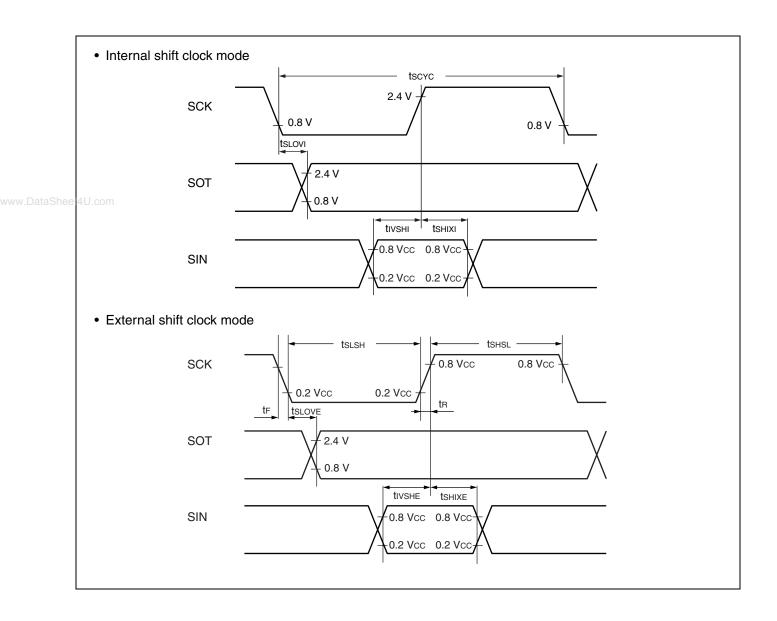
(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, TA = - 40 °C to + 85 °C)

Parameter	Symbol Pin name		Conditions	Va	Unit	
Farameter			Conditions	Min	Max	Ollit
Serial clock cycle time	tscyc	UCK0	Internal clock	4 t мськ*	_	ns
UCK $\downarrow \rightarrow$ UO time	t sLov	UCK0, UO0	operation	- 190	+ 190	ns
Valid UI → UCK ↑	tıvsн	UCK0, UI0	output pin : C∟ = 80 pF + 1TTL.	2 t мськ*	_	ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsнıx	UCK0, UI0	+ 111L.	2 t мськ*	_	ns
Serial clock "H" pulse width	t shsl	UCK0		4 t мськ*	_	ns
Serial clock "L" pulse width	t slsh	UCK0	External clock	4 t мськ*	_	ns
$UCK \downarrow \to UO$ time	t sLov	UCK0, UO0	operation output pin : C∟= 80 pF		190	ns
Valid UI → UCK ↑	tıvsн	UCK0, UI0	+ 1TTL.	2 t мськ*	_	ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsнıх	UCK0, UI0		2 t мськ*		ns

^{*:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

(7) LIN-UART Timing

Sampling at the rising edge of sampling $clock^{*1}$ and prohibited serial clock delay*² (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)


 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 \,^{\circ}C to + 85 \,^{\circ}C)$

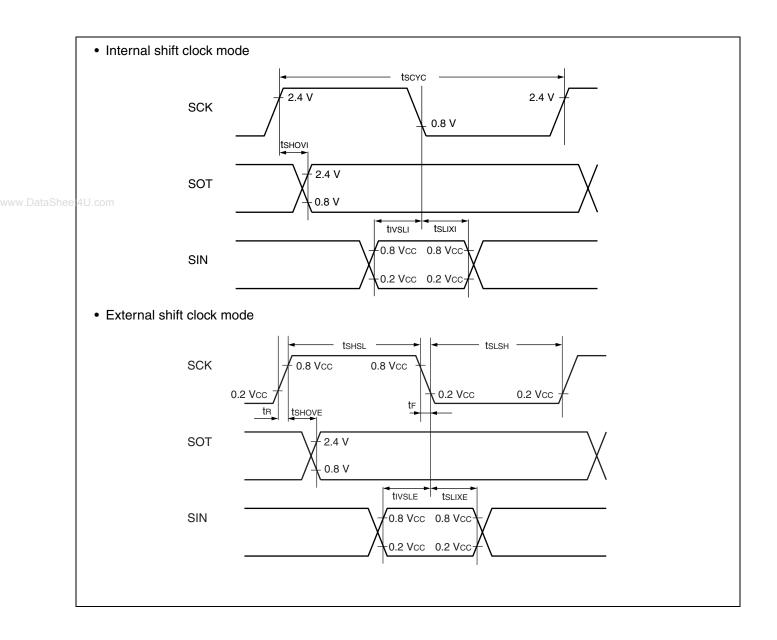
Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
Farameter	bol	Pili lialile	Conditions	Min	Max	Oilit
Serial clock cycle time	tscyc	SCK		5 t мськ*³	_	ns
$SCK \downarrow \to SOT$ delay time	t sLOVI	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN → SCK ↑	tıvsнı	SCK, SIN	operation output pin : $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 190	_	ns
$SCK \uparrow \rightarrow valid SIN hold time$	tsнıxı	SCK, SIN	•	0	_	ns
Serial clock "L" pulse width	tslsh	SCK		3 tмськ*3 — tr	_	ns
Serial clock "H" pulse width	tshsl	SCK		tмськ*3 + 95	_	ns
$SCK \downarrow \to SOT$ delay time	tslove	SCK, SOT	External clock	_	2 tmclk*3 + 95	ns
Valid SIN → SCK ↑	tivshe	SCK, SIN	operation output pin :	190	_	ns
$SCK \uparrow \to valid \; SIN \; hold \; time$	t shixe	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 95	_	ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	t R	SCK			10	ns

^{*1:} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2:} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2 (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

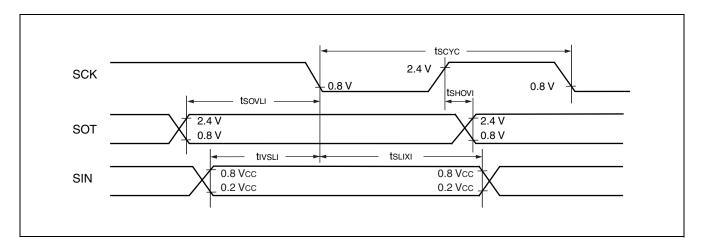

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
raiailletei	bol	Fill Hallie	Conditions	Min	Max	Ollit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns
$SCK \uparrow \rightarrow SOT$ delay time	t shovi	SCK, SOT	Internal clock operation output pin :	-95	+ 95	ns
Valid SIN→SCK↓	tivsli	SCK, SIN	C _L = 80 pF + 1 TTL.	tмськ*3 + 190		ns
$SCK \downarrow \rightarrow valid SIN hold time$	t slixi	SCK, SIN	-	0	_	ns
Serial clock "H" pulse width	t shsl	SCK		3 tмськ*3 — tr		ns
Serial clock "L" pulse width	t slsh	SCK		tмськ*3 + 95	_	ns
SCK [↑] →SOT delay time	t shove	SCK, SOT	External clock		2 tmclk*3 + 95	ns
Valid SIN→SCK↓	tivsle	SCK, SIN	operation output pin :	190		ns
$SCK \downarrow \rightarrow valid SIN hold time$	tslixe	SCK, SIN	C _L = 80 pF + 1 TTL.	tмськ*3 + 95		ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	t⊓	SCK		_	10	ns

^{*1:} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

^{*2:} Serial clock delay function is used to delay half clock for the output signal of serial clock.

^{*3:} Refer to "(2) Source Clock/Machine Clock" for tmclk.

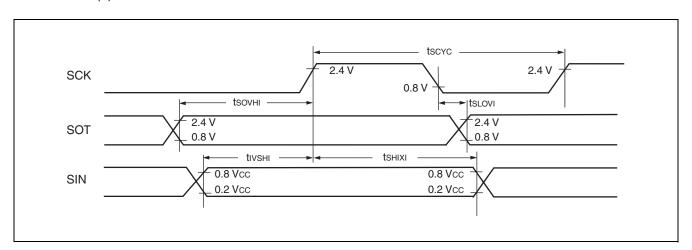


Sampling at the rising edge of sampling clock*1 and enabled serial clock delay*2 (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } + 85 \,^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Valu	Unit	
Farameter	bol	Finitianie	Conditions	Min	Max	Ollit
Serial clock cycle time	tscyc	SCK		5 t мськ*³	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	tshovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN→SCK↓	tıvslı	SCK, SIN	operation output pin :	tмськ*3 + 190	_	ns
$SCK \downarrow \rightarrow valid SIN hold time$	t slixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0		ns
SOT→SCK↓ delay time	tsovli	SCK, SOT		_	4 tмськ*3	ns

- *1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
- *2: Serial clock delay function is used to delay half clock for the output signal of serial clock.
- *3: Refer to "(2) Source Clock/Machine Clock" for tmclk.


Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2 (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

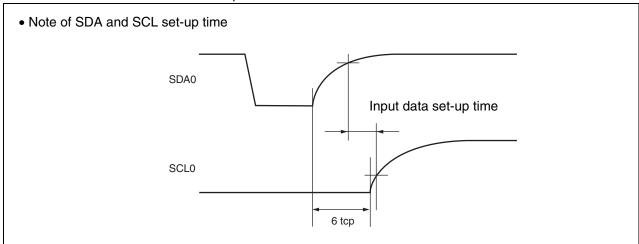
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C to } + 85 \,^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Valu	Unit	
Parameter	bol	Fill flaffie	Conditions	Min	Max	Ollit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
SCK↓→SOT delay time	tslovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN→SCK↑	t ıvshı	SCK, SIN	operation output pin :	tмськ*3 + 190	_	ns
$SCK \uparrow \rightarrow valid SIN hold time$	t shixi	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0	_	ns
SOT→SCK [↑] delay time	tsovні	SCK, SOT		_	4 tmcLK*3	ns

^{*1 :} Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

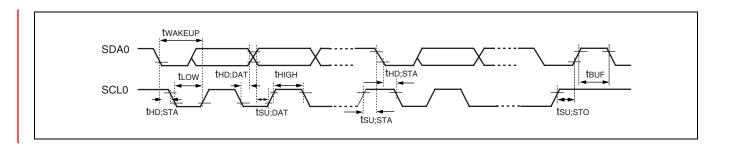
*3: Refer to "(2) Source Clock/Machine Clock" for tmclk.

MANAY DataShoo


^{*2 :} Serial clock delay function is used to delay half clock for the output signal of serial clock.

(8) I2C Timing

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)$


					Val	ue			
Parameter	Symbol	Pin name	Conditions	Standar	d-mode	Fast-	mode	Unit	
				Min	Max	Min	Max		
SCL clock frequency	fscL	SCL0		0	100	0	400	kHz	
(Repeat) Start condition hold time SDA $\downarrow \to$ SCL \downarrow	thd;sta	SCL0 SDA0		4.0		0.6	_	μs	
SCL clock "L" width	tLOW	SCL0		4.7	_	1.3		μs	
SCL clock "H" width	t HIGH	SCL0		4.0	_	0.6		μs	
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0 SDA0	$R = 1.7 \text{ k}\Omega,$	4.7		0.6	_	μs	
Data hold time SCL \downarrow \rightarrow SDA \downarrow \uparrow	thd;dat	SCL0 SDA0	C = 50 pF*1	0	3.45*2	0	0.9*3	μs	
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL0 SDA0		0.25*4		0.1*4	_	μs	
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t su;sто	SCL0 SDA0		4.0		0.6	_	μs	
Bus free time between stop condition and start condition	t BUF	SCL0 SDA0		4.7	_	1.3	_	μs	

- *1: R, C: Pull-up resistor and load capacitor of the SCL and SDA lines.
- *2: The maximum thd:dat have only to be met if the device dose not stretch the "L" width (tLow) of the SCL signal.
- *3 : A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement tsu:pat ≥ 250 ns must then be met.
- *4: Refer to " Note of SDA and SCL set-up time".

Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

(Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, Ta = -40 °C to +85 °C)

	Parameter	Sym-	Pin	Condi-	Val	ue*2	Unit	Remarks																																										
	Parameter	bol	name	tions	Min	Max	Oiii	Hemarks																																										
	SCL clock "L" width	tLOW	SCL0		(2 + nm / 2) tmcLK - 20	_	ns	Master mode																																										
	SCL clock "H" width	t HIGH	SCL0			(nm / 2) tмсLк — 20	(nm / 2) t _{MCLK} + 20	ns	Master mode																																									
	Start condition hold time	thd;sta	SCL0 SDA0		(-1 + nm / 2) tmclk - 20	(-1 + nm) tмсLк + 20	ns	Master mode Maximum value i applied when m, n = 1, 8. Otherwise, the minimum value is applied.																																										
	Stop condition setup time	tsu;sto	SCL0 SDA0		(1 + nm / 2) tmcLK - 20	(1 + nm / 2) tmcLk + 20	ns	Master mode																																										
	Start condition setup time	tsu;sta	SCL0 SDA0		(1 + nm / 2) tmcLK - 20	(1 + nm / 2) tmclk + 20	ns	Master mode																																										
	Bus free time between stop condition and start condition	tвиғ	SCL0 SDA0		(2 nm + 4) tmcLK - 20	_	ns																																											
ti S b c	Data hold time	thd;dat	SCL0 SDA0		3 tmclk - 20	_	ns	Master mode																																										
	Data setup time	tsu;dat	SCL0 SDA0	$R = 1.7 \text{ k}\Omega$, $C = 50 \text{ pF}^{*1}$	(-2 + nm / 2) tмсLк - 20	(-1 + nm / 2) tмськ + 20	ns	Master mode When assuming that "L" of SCL is not extended, th minimum value i applied to first bi of continuous data. Otherwise, the maximum value is applied.																																										
	Setup time between clearing interrupt and SCL rising	tsu;ınt	SCL0		(nm / 2) t _{MCLK} - 20	(1 + nm / 2) tmclk + 20	ns	Minimum value i applied to interru at 9th SCL↓. Maximum value applied to interru at 8th SCL↓.																																										
	SCL clock "L" width	tLOW	SCL0		4 tmclk - 20	_	ns	At reception																																										
	SCL clock "H" width	t HIGH	SCL0					-	-	_	+ +			-	 		-		-	-	-	-	-			-	+ +	-	<u> </u>	-	-	-	-	_		-	-	-		-	_	-	-	_	-			4 tmclk - 20	_	ns
	Start condition detection	thd;sta	SCL0 SDA0		2 tmcLk - 20	_	ns	Undetected whe 1 tmclk is used at reception																																										

(Continued)

(Continued)

www.DataShee

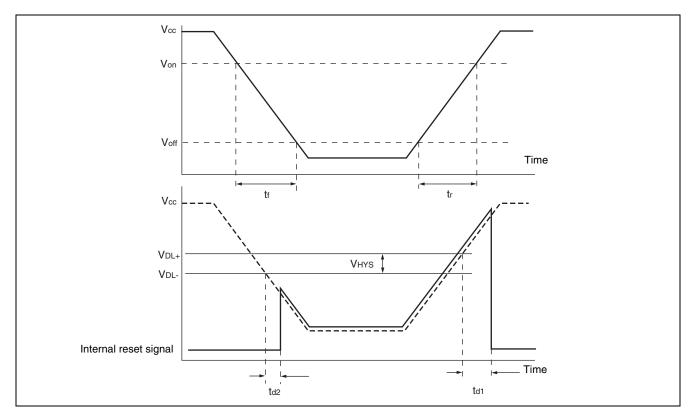
 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Sym-	Pin	Condi-	Valu	e*2	Unit	Remarks
raiailletei	bol	name	tions	Min	Max	Oilit	nemarks
Stop condition detection	t su;sто	SCL0 SDA0		2 tmclk - 20		ns	Undetected when 1 tmclk is used at reception
Restart condition detection condition	tsu;sta	SU;STA SCL0 SDA0 2 tmclk - 20 —		_	ns	Undetected when 1 tmclk is used at reception	
Bus free time	t BUF	SCL0 SDA0		2 tмськ — 20	_	ns	At reception
Data hold time	thd;dat	SCL0 SDA0	$R = 1.7 \text{ k}\Omega,$	2 tмськ — 20	_	ns	At slave transmission mode
Data setup time	tsu;dat	SCL0 SDA0	$C = 50 \text{ pF}^{*1}$	tLow - 3 tMCLK - 20	_	ns	At slave transmission mode
Data hold time	thd;dat	SCL0 SDA0		0	_	ns	At reception
Data setup time	ata setup time tsu;DAT SCLO			tмськ — 20	_	ns	At reception
SDA↓→SCL↑ (at wakeup function)				Oscillation stabilization wait time + 2 tmclk - 20	_	ns	

- *1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
- *2: Refer to "(2) Source Clock/Machine Clock" for tmclk.
 - m is CS4 bit and CS3 bit (bit 4 and bit 3) of I²C clock control register (ICCR).
 - n is CS2 bit to CS0 bit (bit 2 to bit 0) of I2C clock control register (ICCR).
 - Actual timing of I²C is determined by m and n values set by the machine clock (t_{MCLK}) and CS4 to CS0 of ICCR0 register.
 - Standard-mode :

m and n can be set at the range : $0.9 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 10 MHz. Setting of m and n determines the machine clock that can be used below.

• Fast-mode :


m and n can be set at the range : $3.3~MHz < t_{MCLK}$ (machine clock) < 10~MHz. Setting of m and n determines the machine clock that can be used below.

```
\begin{array}{lll} (m,\,n) \,=\, (1,\,8) & : \, 3.3 \; \text{MHz} < t_{\text{MCLK}} \leq 4 \; \text{MHz} \\ (m,\,n) \,=\, (1,\,22) \;,\; (5,\,4) & : \, 3.3 \; \text{MHz} < t_{\text{MCLK}} \leq 8 \; \text{MHz} \\ (m,\,n) \,=\, (6,\,4) & : \, 3.3 \; \text{MHz} < t_{\text{MCLK}} \leq 10 \; \text{MHz} \end{array}
```

(9) Low Voltage Detection

(Vss = 0.0 V, $T_A = -10$ °C to +85 °C)

Parameter	Sym-	Condi-	Value			Unit	Remarks						
Parameter	bol	tions	Min	Тур	Max	Oilit	nemarks						
Release voltage	V_{DL+}		2.52	2.70	2.88	V	At power-supply rise						
Detection voltage	V _{DL} -		2.42	2.60	2.78	V	At power-supply fall						
Hysteresis width	VHYS		70	100	_	mV							
Power-supply start voltage	V _{off}		_	_	2.3	V							
Power-supply end voltage	Von		4.9	_	_	V							
Power-supply voltage			0.3	_	_	μs	Slope of power supply that reset release signal generates						
change time (at power supply rise)	tr	tr	_	3000	_	μs	Slope of power supply that reset release signal generates within rating (V _{DL+})						
Power-supply voltage			300	_	_	μs	Slope of power supply that reset detection signal generates						
change time (at power supply fall)	tf	t _f	tf	tf	tf	t f	t f		_	300	_	μs	Slope of power supply that reset detection signal generates within rating (V _{DL} -)
Reset release delay time	t d1		_		400	μs							
Reset detection delay time	t _{d2}		_		30	μs							
Current consumption	ILVD			38	50	μΑ	Current consumption of low voltage detection circuit only						

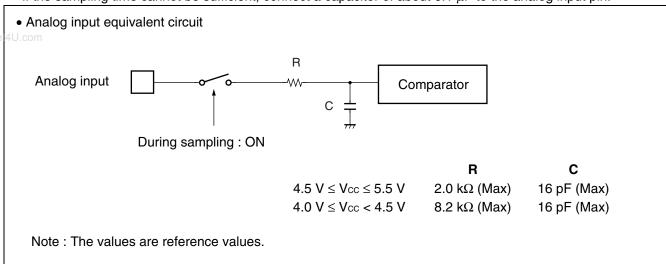
(10) Clock Supervisor Clock

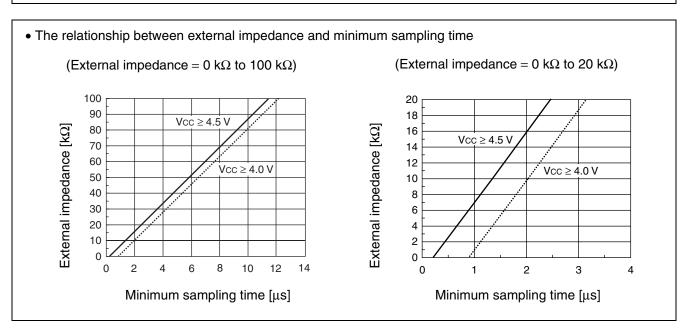
 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 \,^{\circ}C to + 85 \,^{\circ}C)$

Parameter	Symbol Col	Condi- V		Value	Value		Remarks	
Parameter	symbol tions		Min	Тур	Max	Unit	nemarks	
Oscillation frequency	fоит		50	100	200	kHz		
Oscillation start time	twk		_	_	10	μs		
Current consumption	Icsv	_	_	20	36	μΑ	Current consumption of built-in CR oscillator, at 100 kHz oscillation	

5. A/D Converter

(1) A/D Converter Electrical Characteristics


(AVcc = Vcc = 4.0 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Sym-	Condi-	Value			Unit	Remarks
Parameter	bol	tions	Min	Тур	Max	Oilit	Hemarks
Resolution			_	_	10	bit	
Total error			- 3.0		+ 3.0	LSB	
Linearity error	_		- 2.5	_	+ 2.5	LSB	
Differential linear error			- 1.9	_	+ 1.9	LSB	
Zero transition voltage	Vот		AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	V _{FST}		AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	_		0.9	_	16500	μs	4.5 V ≤ AVcc ≤ 5.5 V
Compare time			1.8	_	16500	μs	4.0 V ≤ AVcc < 4.5 V
		_	0.6	_	8	μs	$\begin{array}{l} 4.5 \text{ V} \leq \text{AVcc} \leq 5.5 \text{ V}, \\ \text{At external} \\ \text{impedance} < 5.4 \text{ k}\Omega \end{array}$
Sampling time	Sampling time —		1.2	_	∞	μs	$4.0 \text{ V} \le \text{AVcc} < 4.5 \text{ V},$ At external impedance $< 2.4 \text{ k}\Omega$
Analog input current	lain		- 0.3	_	+ 0.3	μА	
Analog input voltage	Vain		AVss	_	AVR	٧	
Reference voltage	_		AVss + 4.0	_	AVcc	٧	AVR pin
Reference voltage supply	lR		_	600	900	μА	AVR pin, during A/D operation
current	lвн		_	_	5	μА	AVR pin, at stop mode

(2) Notes on Using A/D Converter

. About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about $0.1~\mu F$ to the analog input pin.

About errors

As IVcc – Vssl becomes smaller, values of relative errors grow larger.

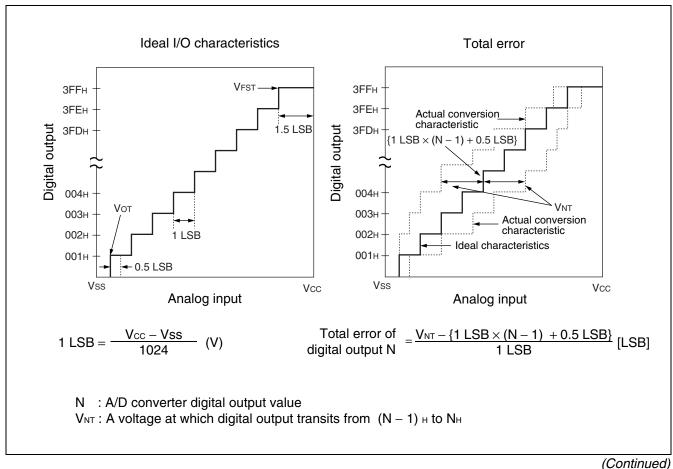
(3) Definition of A/D Converter Terms

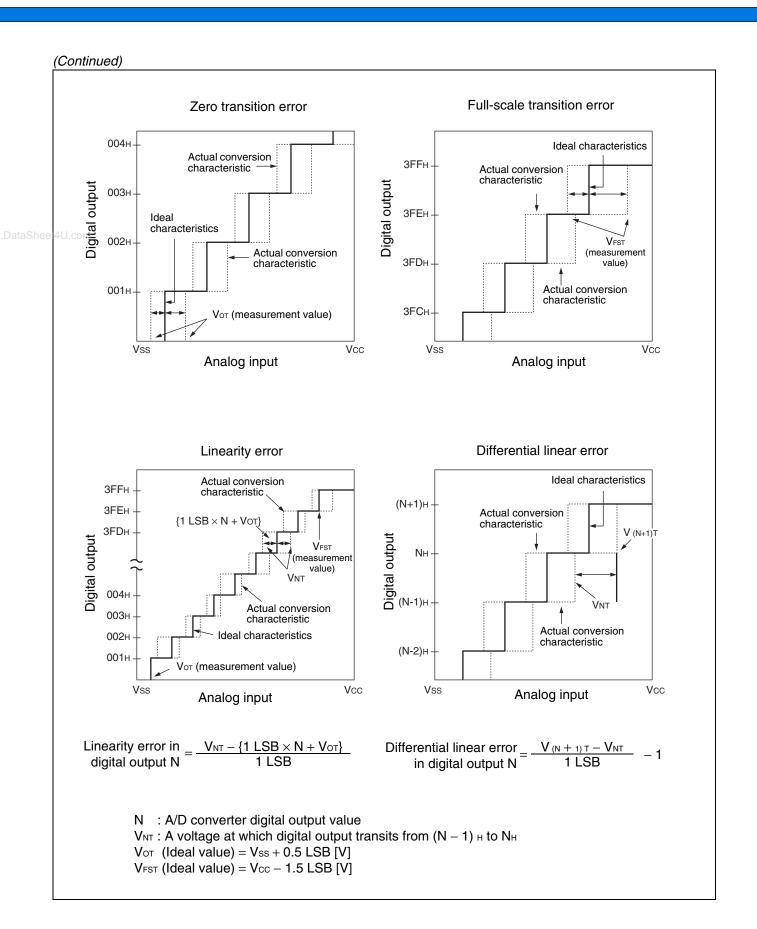
Resolution

The level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

• Linearity error (unit : LSB)


The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") of a device and the full-scale transition point ("11 1111 1111" \leftarrow \rightarrow "11 1111 1110") compared with the actual conversion values obtained.


• Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

6. Flash Memory Program/Erase Characteristics

Parameter	Condi- Value				Unit	Remarks	
Parameter	tions	Min	Тур	Max	Ullit	nemarks	
Chip erase time		_	1 *1	15*2	s	Excludes 00 _H programming prior erasure.	
Byte programming time		_	32	3600	μs	Excludes system-level overhead.	
Erase/program cycle		10000	_	_	cycle		
Power supply voltage at erase/program		4.5	_	5.5	V		
Flash memory data retention time		20*3	_	_	year	Average T _A = +85 °C	

^{*1 :} $T_A = +25$ °C, $V_{CC} = 5.0$ V, 10000 cycles

^{*2 :} $T_A = +85 \, ^{\circ}C$, $V_{CC} = 4.5 \, V$, 10000 cycles

 $^{^*3}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^{\circ}$ C).

■ EXAMPLE CHARACTERISTICS

Power supply current temperature

3

0 L

www.DataSh

Main clock mode, at external clock operating

20

15

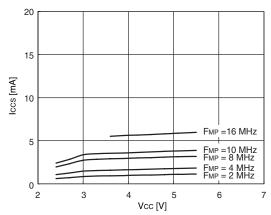
FMP = 16 MHz

FMP = 10 MHz

FMP = 8 MHz

Icc - Vcc

 $T_A = +25$ °C, $F_{MP} = 2, 4, 8, 10, 16$ MHz (divided by 2)

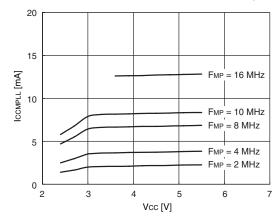

 $I_{\text{CCS}} - V_{\text{CC}}$ T_A = + 25 °C, F_{MP} = 2, 4, 8, 10, 16 MHz (divided by 2) Main sleep mode, at external clock operating

Vcc [V]

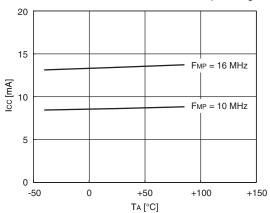
5

FMP = 4 MHz FMP = 2 MHz

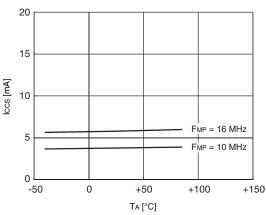
6

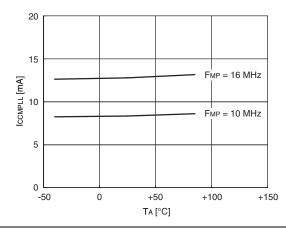


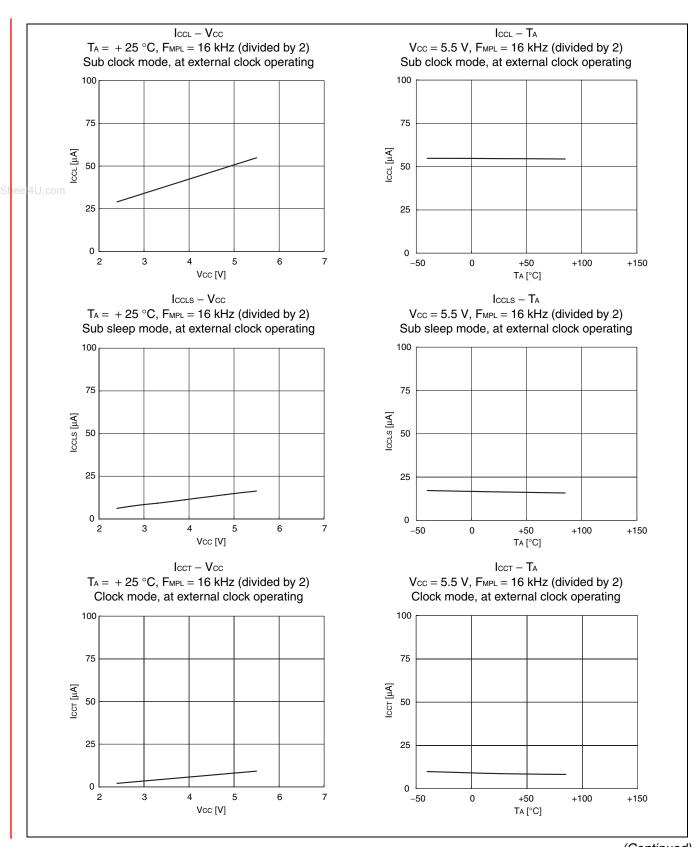
ICCMPLL - VCC

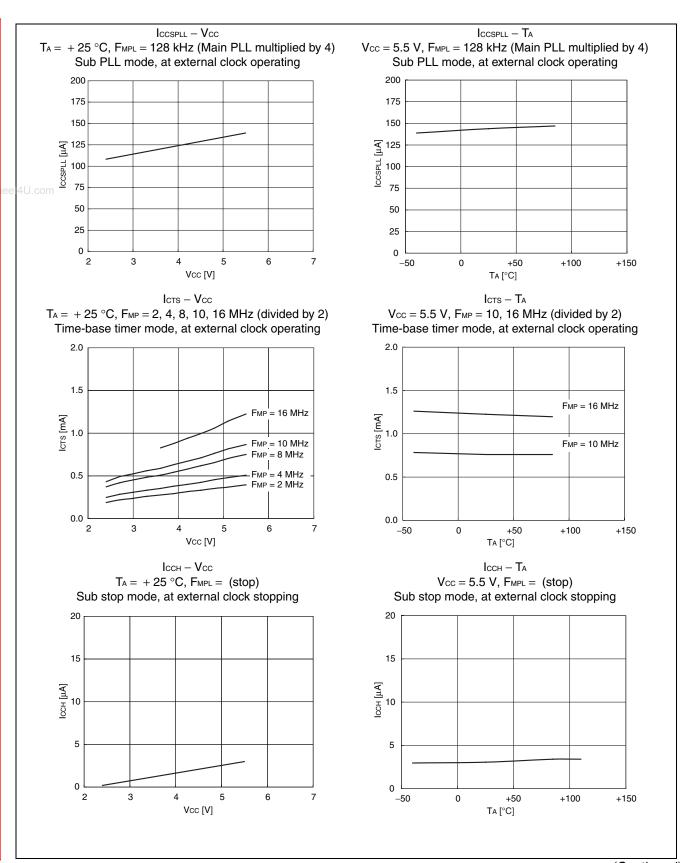

TA = +25 °C, FMP = 2, 4, 8, 10, 16 MHz

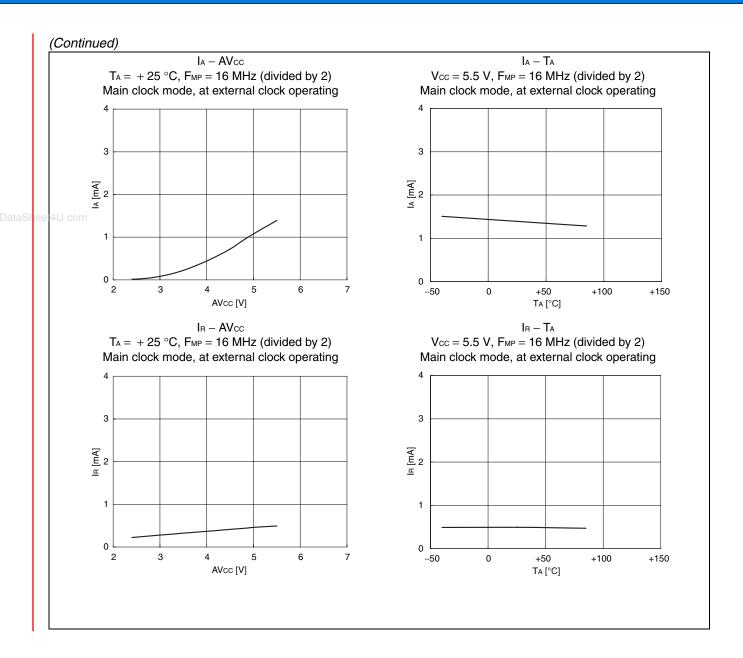
(Main PLL multiplied by 2.5)

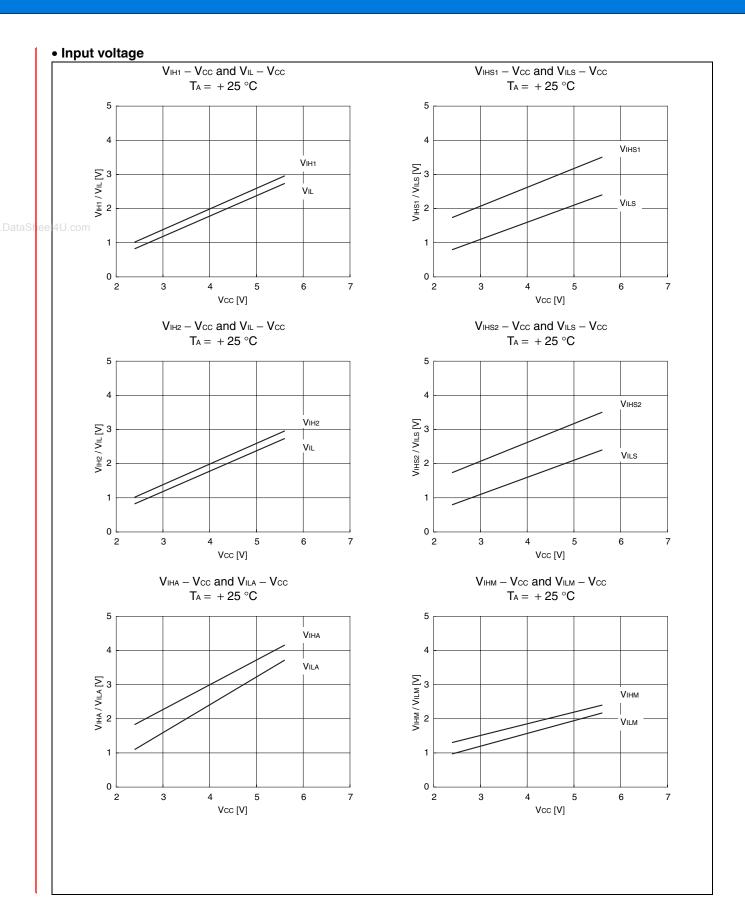

Main PLL mode, at external clock operating

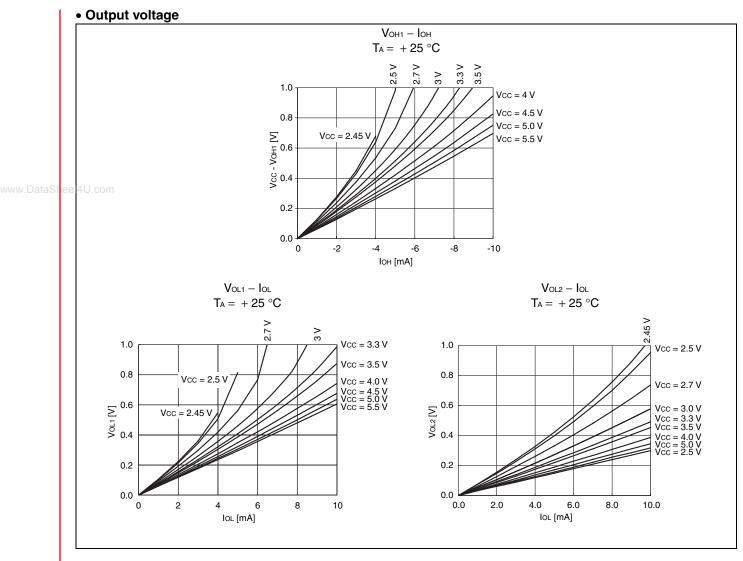

 $\begin{array}{c} I_{\text{CC}}-T_{\text{A}} \\ V_{\text{CC}}=5.5 \text{ V, } F_{\text{MP}}=10, \ 16 \text{ MHz (divided by 2)} \\ \text{Main clock mode, at external clock operating} \end{array}$

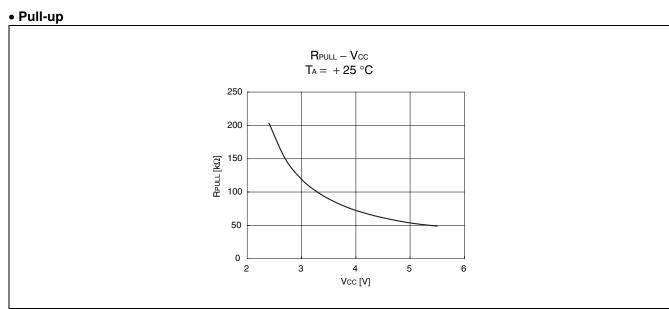



 $\begin{array}{c} I_{\text{CCS}}-T_{\text{A}} \\ V_{\text{CC}}=5.5 \text{ V, } F_{\text{MP}}=10, \, 16 \text{ MHz (divided by 2)} \\ \text{Main sleep mode, at external clock operating} \end{array}$




 $\label{eq:Vcc} \begin{array}{c} I_{\text{CCMPLL}}-T_{\text{A}} \\ V_{\text{CC}}=5.5 \ V, \ F_{\text{MP}}=10, \ 16 \ \text{MHz} \ (\text{Main PLL multiplied by 2.5}) \\ \text{Main PLL mode, at external clock operating} \end{array}$

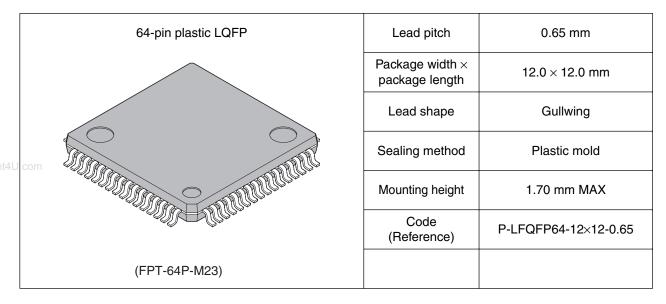


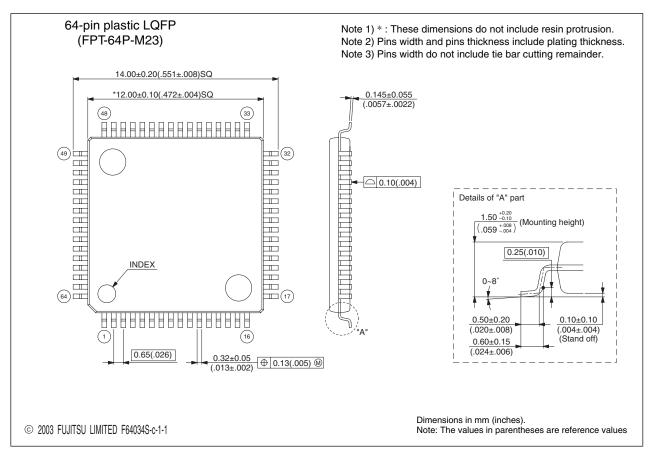


■ MASK OPTION

No.	Part number	MB95F168M/F168N/F168J	MB95FV100D-103
INO.	Specifying procedure	Setting disabled	Setting disabled
1	Clock mode select* • Single-system clock mode • Dual-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2 ei4U.coi	Low voltage detection reset* • With low voltage detection reset • Without low voltage detection reset	Specified by part number	Changing by the switch on MCU board
3	Clock supervisor* • With clock supervisor • Without clock supervisor	Specified by part number	Changing by the switch on MCU board
4	Reset output* • With reset output • Without reset output	Specified by part number	 MCU board switch sets as follows; With clock supervisor: Without reset output Without clock supervisor: With reset output
5	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of $(2^{14} - 2)$ /FcH	Fixed to oscillation stabilization wait time of $(2^{14} - 2)$ /FcH

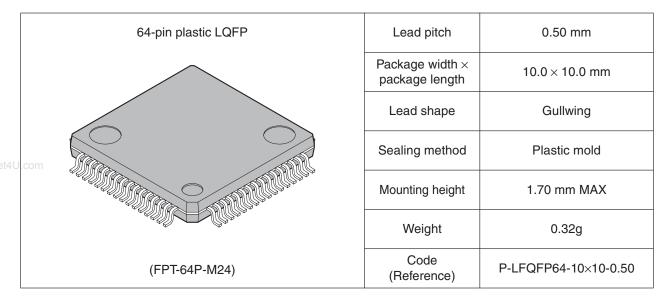
^{*:} Refer to table below about clock mode select, low voltage detection reset, clock supervisor select and reset output.

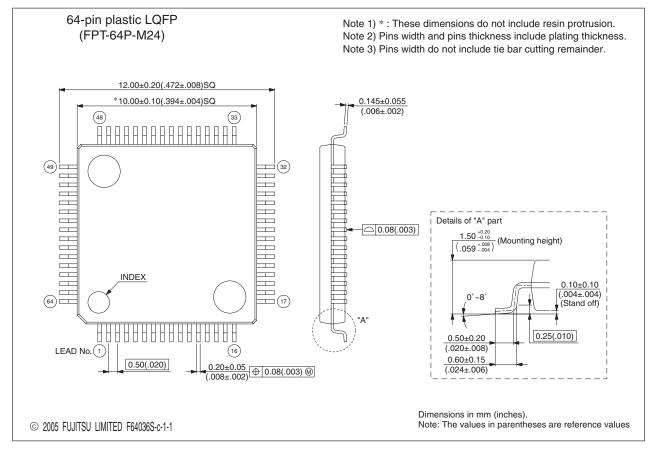

Part number	Clock mode select	Low voltage detection reset	Clock supervisor	Reset output
MB95F168M		No	No	Yes
MB95F168N	Dual-system	Yes	No	Yes
MB95F168J		Yes	Yes	No
		No	No	Yes
	Single-system	Yes	No	Yes
MB95FV100D-103		Yes	Yes	No
IMP82EA 100D-103		No	No	Yes
	Dual-system	Yes	No	Yes
		Yes	Yes	No


www.DataSheet

■ ORDERING INFORMATION

Part number	Package
MB95F168MPMC MB95F168NPMC MB95F168JPMC	64-pin plastic LQFP (FPT-64P-M23)
MB95F168MPMC1 MB95F168NPMC1 MB95F168JPMC1	64-pin plastic LQFP (FPT-64P-M024)
ww.DataShee MB2146-303A (MB95FV100D-103PBT)	MCU board (224-pin plastic PFBGA) (BGA-224P-M08)


■ PACKAGE DIMENSIONS



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

■ MAIN CHANGES (The Main Changes from the First Edition to This Edition)

Page	Section	Change Results
_	_	Preliminary Data Sheet → Data Sheet
22	■ I/O MAP	Changed as follows for R/W of Reset factor register $R \to R/W$
29	■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	The Min value in the row of "Operating temperature" is changed as follows; $-40 \rightarrow -10$
_{4U.co} 31	■ ELECTRICAL CHARACTERISTICS 2. Recommended Operating Conditions	The Min value in the row of "Operating temperature" is changed as follows; $-40 \rightarrow -10$
36	4. AC Characteristics (1) Clock Timing	Added "Main PLL multiplied by 4" in the Clock frequency
38	(2) Source Clock/Machine Clock	 Changed in the remarks of source clock cycle time (when using main clock) Min: FcH = 16.25 MHz, PLL multiplied by 1 → Min: FcH = 8.125 MHz, PLL multiplied by 2 Changed the footnote of *1; PLL multiplication of main clock (select from 1, 2, 2.5 multiplication) → PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
39		Added " × 4" in the Main PLL of "● Outline of clock generation block"
41		Changed the figure of "• Main PLL operation frequency"
52 to 55	(8) I ² C Timing	Added the characteristics
63 to 68	■ EXAMPLE CHARACTERISTICS	Added the ■ EXAMPLE CHARACTERISTICS

The vertical lines marked in the left side of the page show the changes.

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.