8-bit Proprietary Microcontrollers

CMOS

F²MC-8FX MB95140 Series

MB95F146S/F146W/FV100D-101

DESCRIPTION

The MB95140 series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

• F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Sub clock (for dual clock product)
 - Sub PLL clock (for dual clock product)

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

- Timer
 - + 8/16-bit compound timer $\times\,2$ channels
 - 8/16-bit PPG \times 2 channels
 - 16-bit PPG
 - Timebase timer
 - Watch prescaler (for dual clock product)
- LIN-UART
 - Full duplex double buffer
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- UART/SIO
 - Full duplex double buffer
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- External interrupt
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter
 - 8-bit or 10-bit resolution can be selected.
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode (for dual clock product)
 - Timebase timer mode
- I/O port
 - The number of maximum ports
 - Single clock product : 24 ports
 - Dual clock product : 22 ports
 - Port configuration
 - General-purpose I/O ports (CMOS) : Single-clock product : 24 ports
 - : Dual-clock product : 22 ports
- Flash memory security function
 - Protects the content of Flash memory (Flash memory device only)

■ PRODUCT LINEUP

	Part number*1	MD0551400								
Pa	rameter	MB95F146S	MB95F146W							
Ту	ре	Flash memory product								
RC	DM capacity	32K bytes								
RA	M capacity	1K byte								
Re	eset output		N	lo						
ption	Clock system	Single clock		Dual clock						
Opti	Low voltage detection reset		N	lo						
CF	PU functions	Number of basic instructions Instruction bit length Instruction length Data bit length Minimum instruction execution time Interrupt processing time	: 1, 8, : 61.5							
	General purpose I/O ports	Single clock product : 24 ports		Dual clock product : 22 ports						
	Timebase timer	Interrupt cycle : 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at 4 MHz main oscillation clo								
	Watchdog timer	Reset generated cycle At 10 MHz main oscillation clock : Mi At 32.768 kHz sub oscillation clock (f								
suo	Wild register	Capable of replacing 3 bytes of ROM data								
Peripheral functions	UART/SIO	Data transfer capable in UART/SIO Full duplex double buffer, variable data length (5/6/7/8 bits), built-in baud rate gene NRZ type transfer format, error detected function LSB-first or MSB-first can be selected. Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capab								
Ě,	LIN-UART	Dedicated reload timer allowing a wide range of communication speeds to be set Full duplex double buffer. Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer cap LIN functions available as the LIN master or LIN slave.								
	8/10-bit A/D converter (8 channels)	8-bit or 10-bit resolution can be selec	ted.							

(Continued)

Pa	Part number*1 arameter	MB95F146S MB95F146W								
	8/16-bit compound timer (2 channels)	channel". Built-in timer function, PWC function, PWM t form output	of the timer can be used as "8-bit timer \times 2 channels" or "16-bit timer \times 1 unction, PWC function, PWM function, capture function and square wave 7 internal clocks and external clock can be selected.							
ei4U.	16-bit PPG	PWM mode or one-shot mode can be select Counter operating clock : 8 selectable clock Support for external trigger start								
s	8/16-bit PPG (2 channels)	-bit PPG \times 2 channels" or "16-bit PPG \times 1 sources								
Peripheral functions	Watch counter (for dual clock product)	5 ms, 250 ms, 500 ms, or 1 s) able of counting for 1 minute when selecting ralue to 60)								
Periphera	Watch prescaler (for dual clock product)	. 500 ms, or 1 s)								
	External interrupt (12 channels)	Interrupt by edge detection (rising, falling, or both edges can be selected.) Can be used to recover from standby modes.								
	Flash memory	Supports automatic programming, Embedded Algorithm ^{™*2} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum) : 10000 times Data retention time : 20 years Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash								
St	andby mode	Sleep, stop, watch (for dual clock product), a	and timebase timer							

*1 : MASK ROM products are currently under consideration.

*2 : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

Note : Part number of the evaluation device in MB95140 series is MB95FV100D-101. When using it, the MCU board (MB2146-301A) is required.

OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value.

The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks					
(2 ¹⁴ – 2) /Fсн	Approx. 4.10 ms (at 4 MHz main oscillation clock)					

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F146S MB95F146W	MB95FV100D-101
FPT-32P-M21	0	×
BGA-224P-M08	×	0

 \bigcirc : Available

 \times : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on Using Evaluation Products

The Evaluation product has not only the functions of the MB95140 series but also those of other products to support software development for multiple series and models of the F²MC-8FX family. The I/O addresses for peripheral resources not used by the MB95140 series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Note that the values read from barred addresses are different between the Evaluation product and the Flash memory product. Therefore, the value must not be used for program.

The Evaluation product does not support the functions of some bits in single-byte registers. Read/write access to these bits does not cause hardware malfunctions. The Evaluation, and Flash memory products are designed to behave completely the same way in terms of hardware and software.

• Difference of Memory Spaces

If the amount of memory on the Evaluation product is different from that of the Flash memory product, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

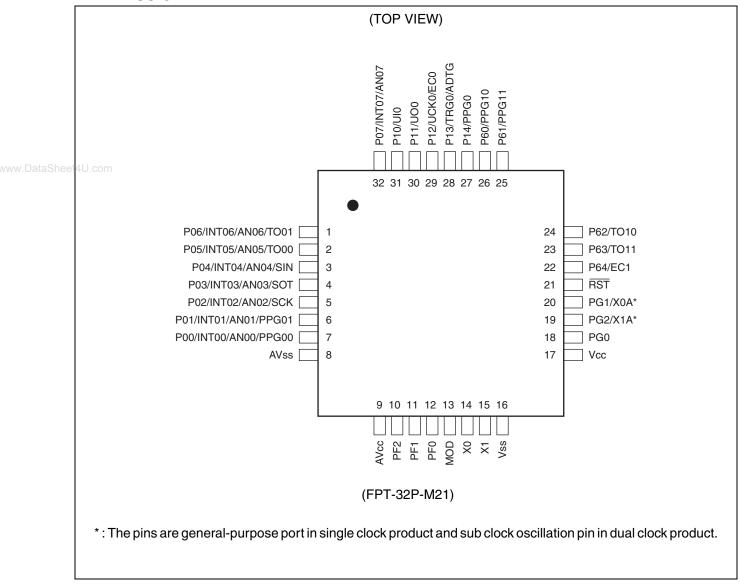
• Current Consumption

For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

Operating voltage


The operating voltage is different among the Evaluation and Flash memory products.

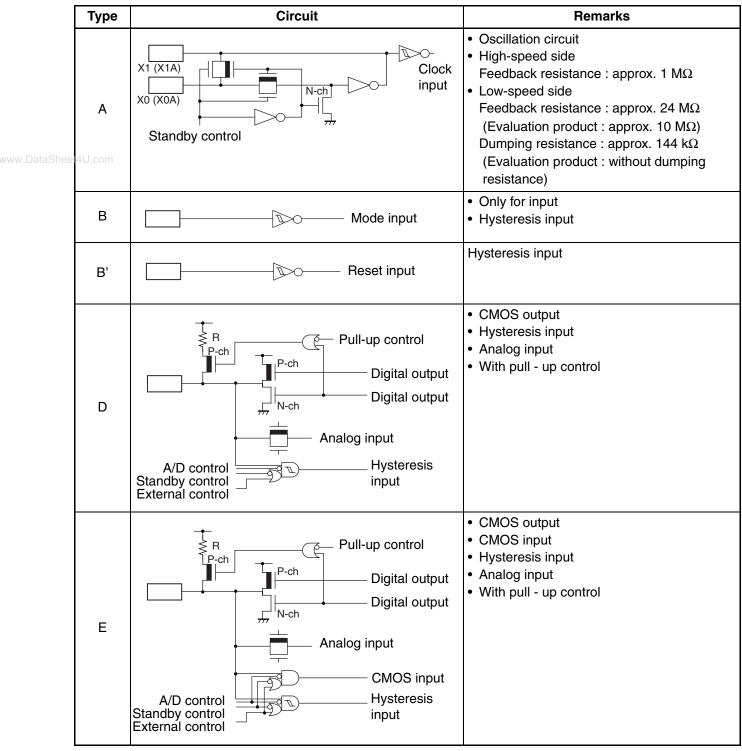
For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS"

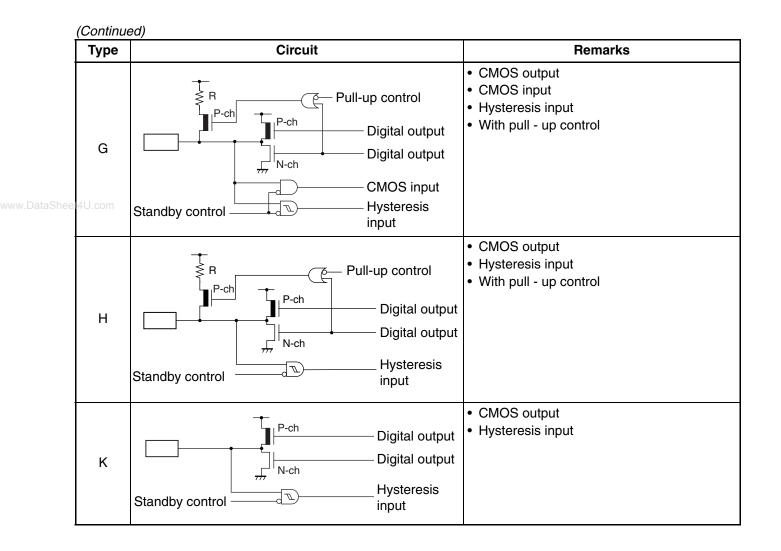
• Difference between RST and MOD pins

The input type of \overline{RST} and MOD pins is CMOS input on the Flash memory product.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION


	Pin no.	Pin name	I/O circuit type*	Function						
	1	P06/INT06/ AN06/TO01	D	General-purpose I/O port. Shared with external interrupt input (INT05, INT06), A/D analog						
	2	P05/INT05/ AN05/TO00	D	input (AN05, AN06) and 8/16-bit compound timer ch.0 output (TO00, TO01).						
ataShee	4U.com 3	P04/INT04/ AN04/SIN	Е	General-purpose I/O port. Shared with external interrupt input (INT04), A/D converter analog input (AN04) and LIN-UART data input (SIN).						
	4	P03/INT03/ AN03/SOT	D	General-purpose I/O port. Shared with external interrupt input (INT03), A/D converter analog input (AN03) and LIN-UART data output (SOT).						
	5	P02/INT02/ AN02/SCK	D	General-purpose I/O port. Shared with external interrupt input (INT02), A/D converter analog input (AN02) and LIN-UART clock I/O (SCK).						
	6	P01/INT01/ AN01/PPG01	D	General-purpose I/O port. Shared with external interrupt input (INT00, INT01), A/D converter						
	7	P00/INT00/ AN00/PPG00	D	analog input (AN00, AN01) and 8/16-bit PPG ch.0 output (PPG00, PPG01).						
	8	AVss	_	A/D converter power supply pin (GND)						
	9	AVcc	_	A/D converter power supply pin						
	10	PF2		General-purpose I/O port. Large current port.						
	11	PF1	К							
	12	PF0								
	13	MOD	В	Operating mode designation pin						
	14	X0	^	Main clock input oscillation pin						
	15	X1	A	Main clock I/O oscillation pin						
	16	Vss		Power supply pin (GND)						
	17	Vcc		Power supply pin						
	18	PG0	Н	General-purpose I/O port						
	19	PG2/X1A	H/A	This pin is general-purpose port in single clock product (PG2) . This pin is sub clock oscillation pin in dual clock product (32 kHz) .						
	20	PG1/X0A	17	This pin is general-purpose port in single clock product (PG1) . This pin is sub clock oscillation pin in dual clock product (32 kHz) .						
	21	RST	B'	Reset pin						


(Continued)

	Pin no.	Pin name	I/O circuit type*	Function							
	22	P64/EC1		General-purpose I/O port. Shared with 8/16-bit compound timer ch.1 clock input.							
	23	P63/TO11	К	General-purpose I/O port.							
	24	P62/TO10	ĸ	Shared with 8/16-bit compound timer ch.1 output.							
Sheei	25 4U.com	P61/PPG11		General-purpose I/O port. Shared with 8/16-bit PPG ch.1 output.							
	26	P60/PPG10	К	General-purpose I/O port. Shared with 8/16-bit PPG ch.1 output.							
	27	P14/PPG0	Н	General-purpose I/O port. Shared with 16-bit PPG ch.0 output.							
	28	P13/TRG0/ ADTG	н	General-purpose I/O port. Shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D trigger input (ADTG).							
	29	P12/UCK0/EC0	н	General-purpose I/O port. Shared with UART/SIO ch.0 clock I/O (UCK0) and 8/16-bit compound timer ch.0 clock input (EC0).							
	30	P11/UO0	Н	General-purpose I/O port. Shared with UART/SIO ch.0 data output.							
	31	P10/UI0	G	General-purpose I/O port. Shared with UART/SIO ch.0 data input.							
	32	P07/INT07/ AN07	D	General-purpose I/O port. Shared with external interrupt input (INT07) and A/D converter analog input (AN07).							

* : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.

Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between V_{cc} pin and V_{ss} pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

Also, take care to prevent the analog power supply voltage (AV $_{CC}$) and analog input voltage from exceeding the digital power supply voltage (V $_{CC}$) when the analog system power supply is turned on or off.

• Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in V_{CC} ripple (p-p value) in a commercial frequency range (50/60 Hz) not to exceed 10% of the standard V_{CC} value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

■ PIN CONNECTION

• Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage.

Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

• Treatment of Power Supply Pins on A/D Converter

Connect to be $AV_{CC} = V_{CC}$ and $AV_{SS} = V_{SS}$ even if the A/D converter is not in use.

Noise riding on the AV_{CC} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{CC} and AV_{ss} pins in the vicinity of this device.

• Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between Vcc and Vss pins near this device.

• Mode Pin (MOD)

Connect the MOD pin directly to Vcc or Vss pins.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to Vcc or Vss pins and to provide a low-impedance connection.

Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When Vcc > AVcc, the current may flow through the AN00 to AN07 pins.

ww.DataSheet4U.com

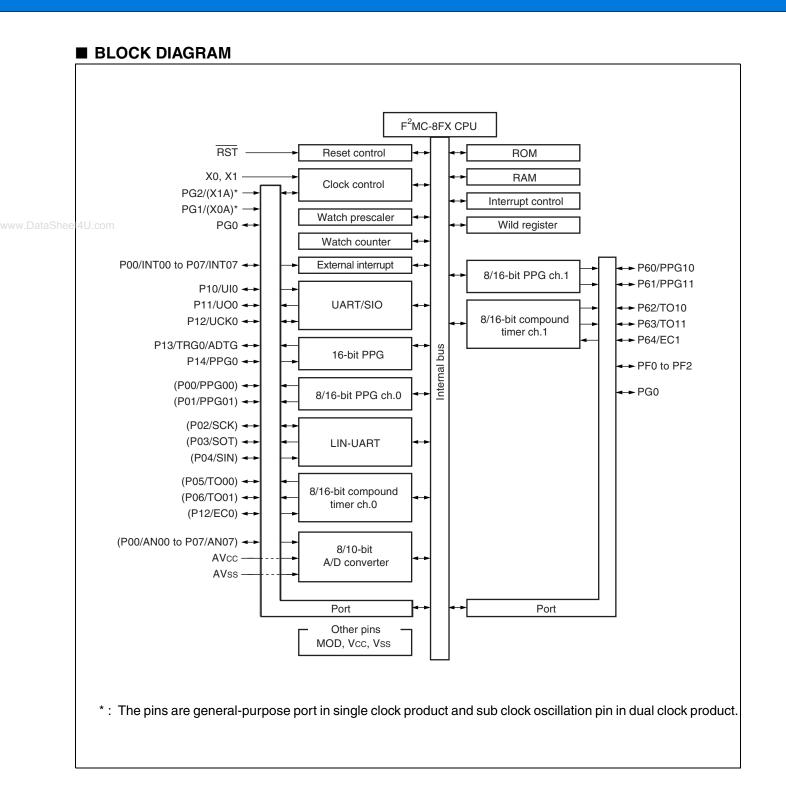
PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-32P-M21	TEF110-95F146	AF9708 (Ver 02.35G or more) AF9709/B (Ver 02.35G or more)

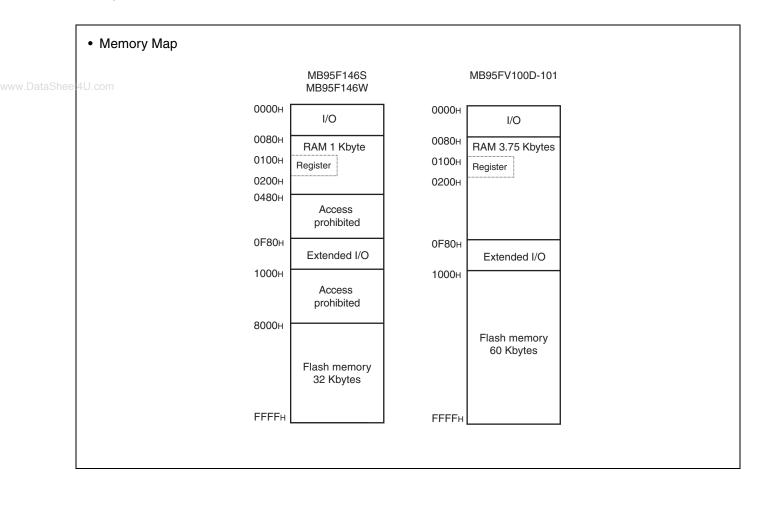
Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380


Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

Flash memory	CPU address	Programmer address*
32 Kbytes	8 <u>000н</u>	18000 _H
,	F <u>FFF</u> +	1 <u>FFFF</u> +
programs data into I	-lash memory.	ng to CPU addresses, used when the parallel programmer or the parallel programmer to program or erase data in Flash memory.

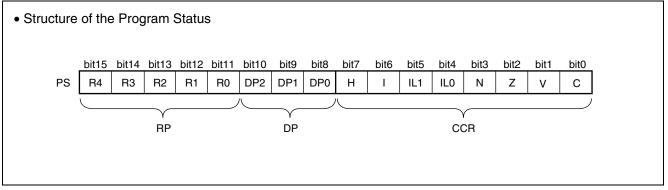
Programming Method


- 1) Set the type code of the parallel programmer to "1723E".
- 2) Load program data to programmer addresses 18000_H to 1FFFF_H.
- 3) Programmed by parallel programmer

■ CPU CORE

1. Memory space

Memory space of the MB95140 series is 64K bytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose 7 registers and vector table. Memory map of the MB95140 series is shown below.


2. Register

The MB95140 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:

	Program counter (PC)	: A 16-bit register to indicate locations where instructions are stored.
	Accumulator (A)	: A 16-bit register for temporary storage of arithmetic operations. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
	Temporary accumulator (T)	: A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
	Index register (IX)	: A 16-bit register for index modification
4U	Extra pointer (EP)	: A 16-bit pointer to point to a memory address.
	Stack pointer (SP)	: A 16-bit register to indicate a stack area.
	Program status (PS)	: A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register

16-bit PC	: Program counter	Initial Value FFFD⊦
A	: Accumulator	0000н
Т	: Temporary accumulator	0000н
IX	: Index register	0000н
EP	: Extra pointer	0000н
SP	: Stack pointer	0000н
PS	: Program status	0030н

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

 Rule for Conversion of Actual Addresses in the General-purpose Register Area 																
										RP	upp	ər	(OP c	ode l	ower
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	+	¥	¥	¥	¥	¥	¥	ŧ	+	¥	¥	¥	¥	¥	¥	+
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080H to 00FFH.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area					
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)					
000 _B (initial value)		0080н to 00FFн (without mapping)					
001в		0100н to 017Fн					
010в		0180н to 01FFн					
011в	0080н to 00FFн	0200н to 027Fн					
100в		0280н to 02FFн					
101в		0300н to 037Fн					
110в		0380н to 03FFн					
111в		0400н to 047Fн					

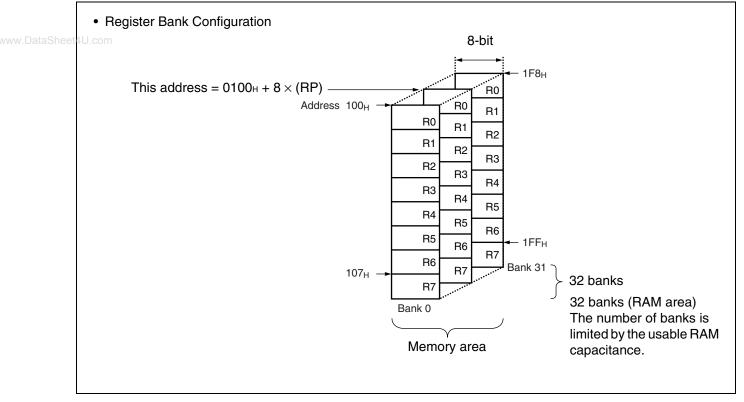
The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

- H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
- I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0". The flag is cleared to "0" when reset.
- IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	≜
1	0	2	ļ
1	1	3	Low = no interruption

N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".

Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.


V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.

C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-register. Up to a total of 32 banks can be used on the MB95140 series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)		—
0005 н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	0000000в
0007н	SYCC	System clock control register	R/W	1010X011в
0008 H	STBC	Standby control register	R/W	0000000в
0009 н	RSRR	Reset source register	R	XXXXXXXXB
000А н	TBTC	Timebase timer control register	R/W	0000000в
000Bн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн to 0015н		(Disabled)		
0016 H	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018н to 0027н		(Disabled)		
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002А н	PDRG	Port G data register	R/W	0000000в
002Bн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн	PUL1	Port 1 pull-up register	R/W	0000000в
002Ен to 0034н		(Disabled)		
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000в
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000в
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000в
0039 н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000в
003А н	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000в
003Сн	PC11	8/16-bit PPG1 control register ch.1	R/W	0000000в
003Dн	PC10	8/16-bit PPG0 control register ch.1	R/W	0000000в
003Eн to 0041н	_	(Disabled)		
0042н	PCNTH0	16-bit PPG control status register (Upper byte) ch.0	R/W	0000000в
0043н	PCNTL0	16-bit PPG control status register (Lower byte) ch.0	R/W	0000000в
0044н to 0047н	_	(Disabled)		
0048 н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	0000000в
0049 н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000в
004А н	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000в
004Bн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000B
004Сн to 004Fн	_	(Disabled)		_
0050н	SCR	LIN-UART serial control register	R/W	0000000B
0051 н	SMR	LIN-UART serial mode register	R/W	0000000в
0052 н	SSR	LIN-UART serial status register	R/W	00001000B
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000
0054н	ESCR	LIN-UART extended status control register	R/W	00000100B
0055 н	ECCR	LIN-UART extended communication control register	R/W	000000XXE
0056 H	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	0000000B
0057 н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	0010000B
0058 H	SSR0	UART/SIO serial status register ch.0	R/W	0000001
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000
005А н	RDR0	UART/SIO serial input data register ch.0	R	0000000
005Вн to 006Вн	05B _H to — (Disabled)		_	_
006Cн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000E
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000E
006Е н	ADDH	8/10-bit A/D converter data register (Upper byte)	R/W	0000000e
006Fн	ADDL	8/10-bit A/D converter data register (Lower byte)	R/W	0000000e

Address	Register abbreviation	Register name	R/W	Initial value	
0070н	WCSR	Watch counter status register	R/W	0000000в	
0071 н		(Disabled)			
0072н	FSR	Flash memory status register	R/W	000Х0000в	
0073н	SWRE0	Flash memory sector writing control register 0	R/W	0000000в	
0074н	SWRE1	Flash memory sector writing control register 1	R/W	0000000в	
0075н		(Disabled)			
0076н	WREN	Wild register address compare enable register	R/W	0000000в	
0077н	WROR	Wild register data test setting register	R/W	0000000в	
0078 н		(Mirror of register bank pointer (RP) and direct bank pointer (DP))	_	_	
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в	
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в	
007Bн	ILR2	Interrupt level setting register 2	R/W	11111111в	
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в	
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в	
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в	
007Fн		(Disabled)			
0F80н	WRARH0	Wild register address setting register (Upper byte) ch.0	R/W	0000000в	
0F81н	WRARL0	Wild register address setting register (Lower byte) ch.0	R/W	0000000в	
0F82н	WRDR0	Wild register data setting register ch.0	R/W	0000000в	
0F83н	WRARH1	Wild register address setting register (Upper byte) ch.1	R/W	0000000в	
0F84⊦	WRARL1	Wild register address setting register (Lower byte) ch.1	R/W	0000000в	
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000в	
0F86н	WRARH2	Wild register address setting register (Upper byte) ch.2	R/W	0000000в	
0F87н	WRARL2	Wild register address setting register (Lower byte) ch.2	R/W	0000000в	
0F88н	WRDR2	Wild register data setting register ch.2	R/W	0000000в	
0F89⊦ to 0F91⊦	_	(Disabled)		_	
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	0000000в	
0F93⊦	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	0000000в	
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	0000000в	
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	0000000в	
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register			
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch.1	R/W	0000000в	

A	ddress	Register abbreviation	Register name	R/W	Initial value
	0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch.1	R/W	0000000в
	0F99н	T11DR	8/16-bit compound timer 11 data register ch.1	R/W	0000000в
	0F9Aн	T10DR	8/16-bit compound timer 10 data register ch.1	R/W	0000000в
	0F9B⊦	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch.1	R/W	0000000в
	0F9Cн	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0	R/W	11111111в
	0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	11111111в
	0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	11111111в
	0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	11111111в
	0FA0⊦	PPS11	8/16-bit PPG1 cycle setting buffer register ch.1	R/W	11111111в
	0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch.1	R/W	11111111в
	0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch.1	R/W	11111111в
	0FA3⊦	PDS10	8/16-bit PPG0 duty setting buffer register ch.1	R/W	11111111в
	0FA4н	PPGS	8/16-bit PPG start register	R/W	0000000в
	0FA5н	REVC	8/16-bit PPG output inversion register	R/W	0000000в
	0FA6⊦ to 0FA9⊦		(Disabled)	_	_
-	0FAAH	PDCRH0	16-bit PPG down counter register (Upper byte) ch.0	R	0000000в
-	0FABH	PDCRL0	16-bit PPG down counter register (Lower byte) ch.0	R	0000000в
	0FACH	PCSRH0	16-bit PPG cycle setting buffer register (Upper byte) ch.0	R/W	11111111в
	0FADH	PCSRL0	16-bit PPG cycle setting buffer register (Lower byte) ch.0	R/W	11111111в
	0FAEH	PDUTH0	16-bit PPG duty setting buffer register (Upper byte) ch.0	R/W	11111111в
	0FAFH	PDUTL0	16-bit PPG duty setting buffer register (Lower byte) ch.0	R/W	11111111в
	0FB0н to 0FBBн		(Disabled)		_
	0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
	0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
	0FBEH	PSSR0	UART/SIO dedicated baud rate generator prescaler selection register ch.0	R/W	0000000в
	0FBFн	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch.0	R/W	0000000в
	0FC0н to 0FC2н		(Disabled)		_
	0FC3н	AIDRL	A/D input disable register (Lower byte)	R/W	0000000в
	0FC4н to 0FE2н		(Disabled)		_

(Continued)

	(Certainaca)				
	Address	Register abbreviation	Register name	R/W	Initial value
	0FE3⊦	WCDR	Watch counter data register	R/W	00111111в
	0FE4н to 0FEDн	—	(Disabled)	_	
	0FEEH	ILSR	Input level select register	R/W	0000000в
	0FEFH	WICR	Interrupt pin control register	R/W	0100000в
www.DataShee	^{4U} 0FF0н to 0FFFн	—	(Disabled)	_	

• R/W access symbols

- R/W : Readable/Writable
- R : Read only
- W : Write only

• Initial value symbols

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is undefined.

Note : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

■ INTERRUPT SOURCE TABLE

	Interrupt	Vector tab	le address	Bit name of	Same level
Interrupt source	request number	Upper	Lower	interrupt level setting register	priority order (at simultaneous occurrence)
External interrupt ch.0	IRQ0	FFFA _H	FFFB _H	L00 [1 : 0]	High
External interrupt ch.4	INQU	FFFAH	FFFDH		
External interrupt ch.1	IRQ1	FFF8 _H	FFF9⊦	L01 [1 : 0]	
External interrupt ch.5	INUT	ГГГОН	ГГГЭН		
External interrupt ch.2			FFF7H	1.00.[1.0]	
External interrupt ch.6	IRQ2	FFF6H		L02 [1 : 0]	
External interrupt ch.3			FFF5H	1 02 [1 : 0]	
External interrupt ch.7	IRQ3	FFF4 _H	ГГГЭН	L03 [1 : 0]	
UART/SIO ch.0	IRQ4	FFF2H	FFF3H	L04 [1 : 0]	
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0H	FFF1⊦	L05 [1 : 0]	
8/16-bit compound timer ch.0 (Upper)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]	
LIN-UART (reception)	IRQ7	FFECH	FFEDH	L07 [1 : 0]	
LIN-UART (transmission)	IRQ8	FFEAH	FFEBH	L08 [1 : 0]	
8/16-bit PPG ch.1 (Lower)	IRQ9	FFE8H	FFE9H	L09 [1 : 0]	
8/16-bit PPG ch.1 (Upper)	IRQ10	FFE6H	FFE7н	L10 [1 : 0]	
(Unused)	IRQ11	FFE4H	FFE5H	L11 [1 : 0]	
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2H	FFE3H	L12 [1 : 0]	
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0H	FFE1⊦	L13 [1 : 0]	
8/16-bit compound timer ch.1 (Upper)	IRQ14	FFDEH	FFDFH	L14 [1 : 0]	
16-bit PPG ch.0	IRQ15	FFDC _H	FFDDH	L15 [1 : 0]	
(Unused)	IRQ16	FFDAH	FFDBH	L16 [1 : 0]	
(Unused)	IRQ17	FFD8H	FFD9н	L17 [1 : 0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7н	L18 [1 : 0]	
Timebase timer	IRQ19	FFD4н	FFD5H	L19 [1 : 0]	
Watch timer/Watch counter	IRQ20	FFD2H	FFD3H	L20 [1 : 0]	
(Unused)	IRQ21	FFD0н	FFD1н	L21 [1 : 0]	
8/16-bit compound timer ch.1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼
Flash memory	IRQ23	FFCCH	FFCDH	L23 [1 : 0]	Low

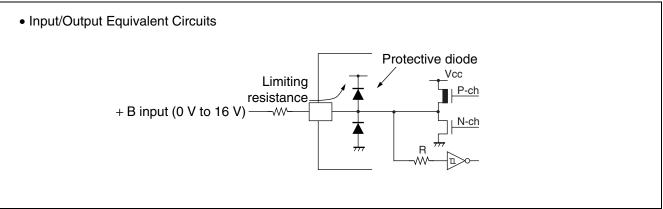
■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Deservator	Symbol	Rat	ting	Unit	Demorko
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss + 4.0	V	*2
Input voltage*1	Vı	Vss - 0.3	Vss + 4.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*3
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	Applicable to pins*4
Total maximum clamp current	Σ clamp		20	mA	Applicable to pins*4
"L" level maximum	OL1		15	m۸	Other than PF0 to PF2
output current	OL2		15	mA	PF0 to PF2
"L" level average	IOLAV1		4	mA	Other than PF0 to PF2 Average output current = operating current × operating ratio (1 pin)
current	Iolav2		12		PF0 to PF2 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	Σ Iol		100	mA	
"L" level total average output current	ΣΙοιαν		50	mA	Total average output current = operating current × operating ratio (Total of pins)
"H" level maximum	Іон1		– 15	A	Other than PF0 to PF2
output current	Іон2	_	– 15	mA	PF0 to PF2
"H" level average	Iohav1		- 4		Other than PF0 to PF2 Average output current = operating current × operating ratio (1 pin)
current	Iohav2		- 8	mA	PF0 to PF2 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон		- 100	mA	
"H" level total average output current	ΣΙοήαν		- 50	mA	Total average output current = operating current × operating ratio (Total of pins)

(Continued)

Parameter	Symbol	Rat	ing	Unit	Remarks
Faranieter	Symbol	Min	Max	Unit	nelliaiks
Power consumption	Pd	—	320	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	


*1 : The parameter is based on $AV_{SS} = V_{SS} = 0.0 V$.

*2 : Apply equal potential to AVcc and Vcc.

*3: Vi and Vo should not exceed V_{cc} + 0.3 V. Vi must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the Vi rating.

*4 : Applicable to pins : P00 to P07, P10 to P14, P60 to P64, PF0 to PF2, PG0

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The + B signal is an input signal that exceeds Vcc voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
- Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the + B input pin open.
- Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

	Parameter	Sym-	Pin name	Condi-	Va	lue	Unit	Remarks
	Falameter	bol		tion	Min	Max	Unit	neillaiks
			—	—	2.3*	3.3		At normal operating, $T_A = -10 \ ^\circ C$ to +85 $^\circ C$
	Power supply voltage				2.4*	3.3	v	At normal operating, $T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$
heel	4U.com	AVCC	_	—	2.6	3.6		MB95FV100D-101 T _A = +5 to +35
				—	1.5	3.3		Retain status in stop mode
	Operating temperature	ΤA			- 40	+ 85	°C	

* : The values vary with the operating frequency.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

	Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
	Falameter	bol	Fin name	Conditions	Min	Тур	Max	Unit	Remarks
I		VIH	P04, P10	*1	0.7 Vcc		Vcc + 0.3	V	At selecting CMO input level
I	"H" level input voltage 4U.com	VIHS	P00 to P07, P10 to P14, P60 to P64, PF0 to PF2, PG0, PG1 ^{*2} , PG2 ^{*2}	*1	0.8 Vcc		Vcc + 0.3	V	Hysteresis input
		VIHM	RST, MOD	—	0.8 Vcc		Vcc + 0.3	V	Hysteresis input
Ī	'L" level input voltage	VIL	P04, P10	*1	Vss – 0.3	_	0.3 Vcc	V	At selecting CMO input level (Hysteresis inpu
		Vils	P00 to P07, P10 to P14, P60 to P64, PF0 to PF2, PG0, PG1* ² , PG2* ²	*1	Vss - 0.3		0.2 Vcc	V	Hysteresis input
		VILM	RST, MOD	—	$V_{\text{SS}} - 0.3$		0.2 Vcc	V	Hysteresis input
	"H" level output	V _{OH1}	Output pin other than PF0 to PF2	Iон = - 4.0 mA	2.4		_	V	
	voltage	V он2	PF0 to PF2	$I_{OH} = -8.0 \text{ mA}$	2.4			V	
	"L" level output	V _{OL1}	Output pin other than PF0 to PF2	lo∟ = 4.0 mA			0.4	V	
	voltage	V _{OL2}	PF0 to PF2	lo∟ = 12 mA	—		0.4	V	
	Input leakage current (Hi-Z output leakage current)	lu	All input pins	0.0 V < VI < Vcc	- 5		+ 5	μA	When the pull-up prohibition setting
	Pull-up resistor	Rpull	P00 to P07, P10 to P14, PG0, PG1* ² , PG2* ²	$V_{I} = 0.0 V$	25	50	100	kΩ	When the pull-up permission settin
	Power supply current* ³			$F_{CH} = 20 \text{ MHz}$ $F_{MP} = 10 \text{ MHz}$ Main clock		11.0	14.0	mA	At other than Flas memory writing and erasing
		lcc	Vcc (External clock	mode (divided by 2)		30.0	35.0	mA	At Flash memory writing and erasi
			operation)	F _{CH} = 32 MHz F _{MP} = 16 MHz Main clock		17.6	22.4	mA	At other than Flas memory writing and erasing
				mode (divided by 2)		38.1	44.9	mA	At Flash memory writing and erasi

Demonstern	Sym-				Value			- 40 C t0 + 65
Parameter	bol	bol Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	Iccs		$\label{eq:Fch} \begin{array}{l} F_{\text{CH}} = 20 \text{ MHz} \\ F_{\text{MP}} = 10 \text{ MHz} \\ \text{Main Sleep mode} \\ (\text{divided by 2}) \end{array}$		4.5	6.0	mA	
ee14U.com	ICCS		$\label{eq:Fch} \begin{array}{l} F_{CH} = 32 \ MHz \\ F_{MP} = 16 \ MHz \\ Main \ Sleep \ mode \\ (divided \ by \ 2) \end{array}$	_	7.2	9.6	mA	
	Iccl		$\label{eq:Fcl} \begin{split} F_{CL} &= 32 \text{ kHz} \\ F_{MPL} &= 16 \text{ kHz} \\ \text{Sub clock mode} \\ (\text{divided by 2}) \text{ ,} \\ T_{A} &= + 25 ^\circ\text{C} \end{split}$	_	25	35	μΑ	
	Iccls		$\label{eq:Fcl} \begin{split} F_{CL} &= 32 \text{ kHz} \\ F_{MPL} &= 16 \text{ kHz} \\ \text{Sub sleep mode} \\ (\text{divided by 2}) \text{ ,} \\ T_{A} &= + 25 \ ^{\circ}\text{C} \end{split}$		7	15	μΑ	
Power supply current*3	Ісст	Vcc (External clock operation)	$F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25 \text{ °C}$	_	2	10	μA	
	ICCMPLL		$\label{eq:Fch} \begin{array}{l} F_{CH} = 4 \mbox{ MHz} \\ F_{MP} = 10 \mbox{ MHz} \\ \mbox{Main PLL mode} \\ \mbox{(multiplied by 2.5)} \end{array}$	_	10	14	mA	
	ICOMPLE		$\label{eq:Fch} \begin{array}{l} F_{CH} = 6.4 \mbox{ MHz} \\ F_{MP} = 16 \mbox{ MHz} \\ \mbox{ Main PLL mode} \\ \mbox{ (multiplied by 2.5)} \end{array}$	_	16.0	22.4	mA	
	ICCSPLL		$\label{eq:Fcl} \begin{split} F_{CL} &= 32 \ \text{kHz} \\ F_{MPL} &= 128 \ \text{kHz} \\ \text{Sub PLL mode} \\ (\text{multiplied by 4}) , \\ T_{A} &= + 25 \ ^{\circ}\text{C} \end{split}$		190	250	μΑ	
	Істѕ		$F_{CH} = 10 \text{ MHz}$ Timebase timer mode $T_A = +25 \text{ °C}$	_	0.64	0.80	mA	
	Іссн		Sub stop mode T _A = + 25 °C	_	1	5	μA	

(Vcc = AVcc = 3.3 V, AVss = Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

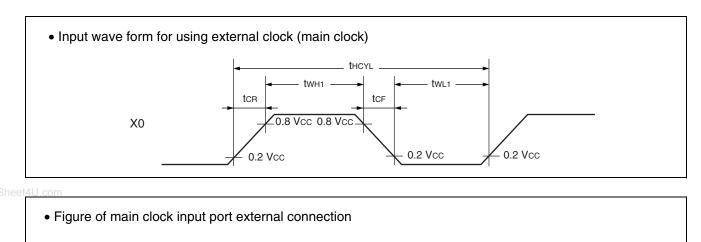
(Continued)

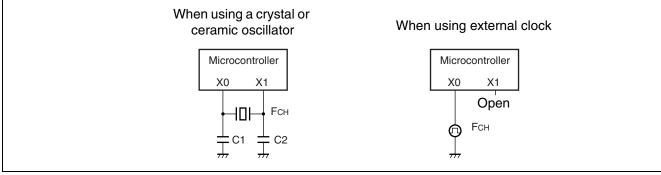
(continued)		$(V_{CC} = AV_{CC} = 3.3 \text{ V}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$						
Parameter	Sym- bol	Pin name	Conditions		Value		Unit	Remarks
			Conditions	Min	Тур	Max	Unit	
Power oupply	IA		$F_{CH} = 10 \text{ MHz}$ At operating of A/D conversion	_	1.3	2.2	mA	
Power supply current* ³	rent*3 IAH		$F_{CH} = 10 \text{ MHz}$ At stopping of A/D conversion $T_A = +25 \text{ °C}$		1	5	μA	
Input capacitance	CIN	Other than AVcc, AVss, Vcc, Vss	f = 1 MHz		5	15	pF	

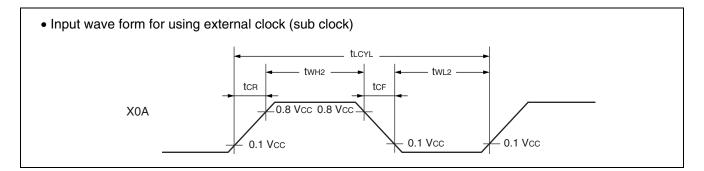
*1 : P04, P10 can switch the input level to either the "CMOS input level" or "hysteresis input level". The switching of the input level can be set by the input level selection register (ILSR).

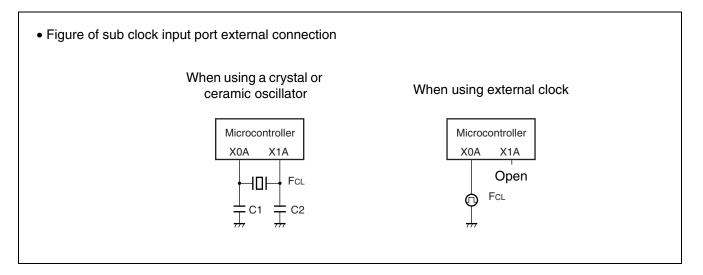
*2 : Single clock product only

*3 : Power supply current is regulated by external clock.


- Refer to "4. AC Characteristics (1) Clock Timing" for FCH and FCL.
- Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.


4. AC Characteristics

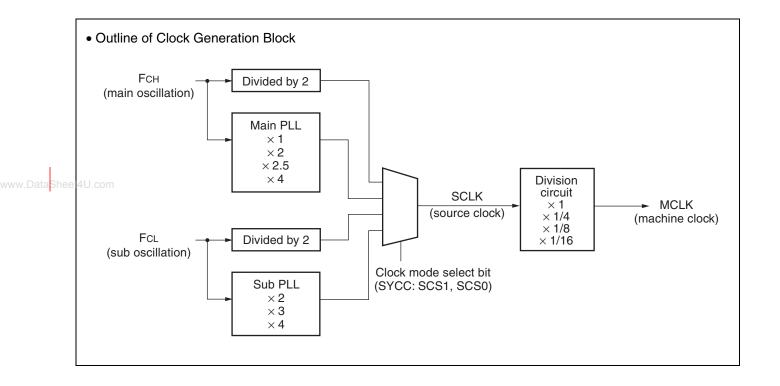

(1) Clock Timing

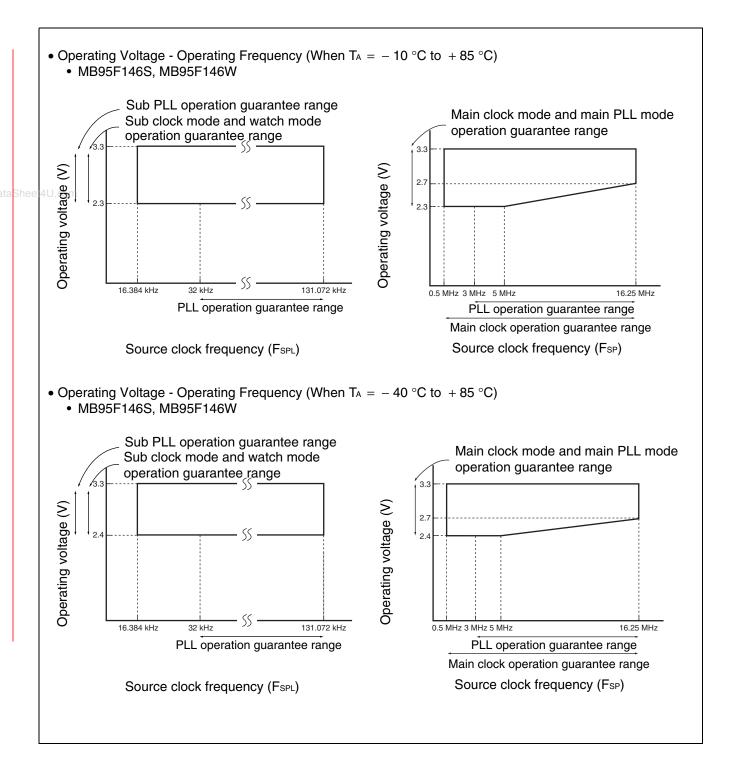

	_	Sym-	Pin name	Conditions -	Value				,	
	Parameter	bol			Min	Тур	Max	Unit	Remarks	
		Fсн	X0, X1		1.00	_	16.25	MHz	When using main oscillation circuit	
	4U.com Clock frequency				1.00		32.50	MHz	When using external clock	
www.DataShee					3.00		10.00	MHz	Main PLL multiplied by 1	
					3.00		8.13	MHz	Main PLL multiplied by 2	
					3.00		6.50	MHz	Main PLL multiplied by 2.5	
					3.00		4.06	MHz	Main PLL multiplied by 4	
		Fc∟					When using sub oscillation circuit			
			X0A, X1A			32.768		kHz	When using sub PLL Flash memory product : $V_{cc} = 2.3 V$ to 3.3 V	
	Clock cycle time	t HCYL	X0, X1		100	_	1000	ns	When using main oscillation circuit	
					50		1000	ns	When using external clock	
		t lcyl	X0A, X1A			30.5		μs	When using sub oscillation circuit, When using external clock	
	Input clock pulse	twн1 tw∟1	X0	-	10	_		ns	When using external clock Duty ratio is about 30% to	
	width	twн₂ tw∟₂	X0A			15.2		μs	70%.	
	Input clock rise time and fall time	tcr tcr	X0, X0A			_	10	ns	When using external clock	

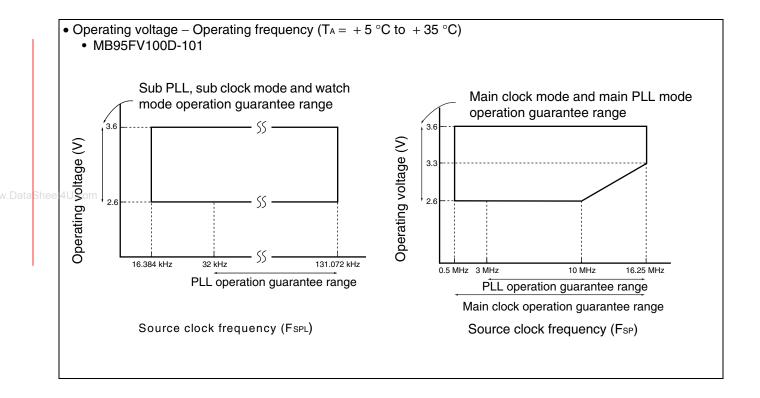
$(V_{CC} = 3.3 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}$	$A = -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C}$
--	--

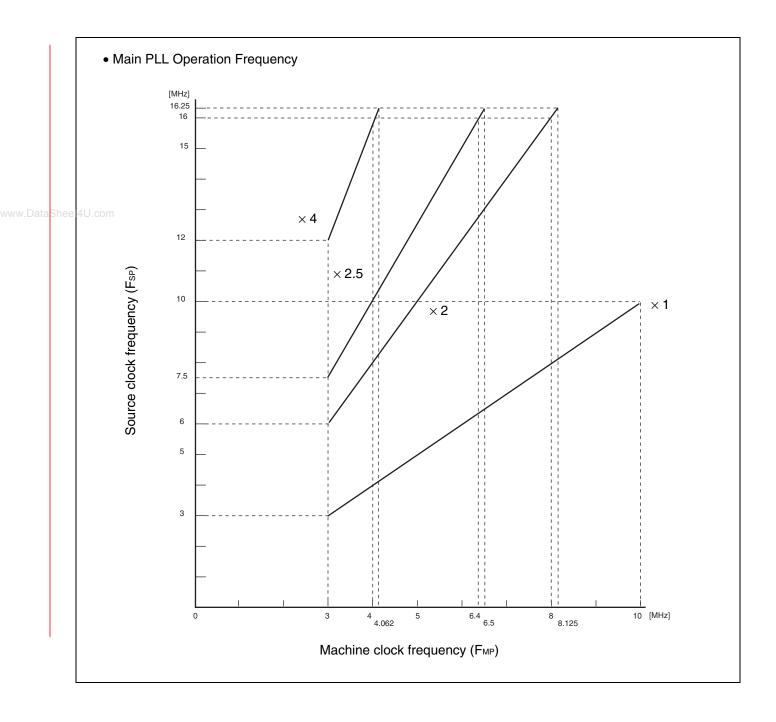
(2) Source Clock/Machine Clock

$(V_{cc} = 3.3 \text{ V}, \text{ AV}_{ss} = \text{V}_{ss} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$								
Parameter	Sym-	Pin name	Value			Unit	Remarks	
Farameter	bol		Min	Тур	Max	onit		
Source clock cycle time*1 (Clock before setting	tsclк		61.5		2000	ns		
division)	ISCLK		7.6		61.0	μs	When using sub clock Min : Fc∟ = 32 kHz, PLL multiplied by 4 Max : Fc∟ = 32 kHz, divided by 2	
Source clock frequency	Fsp		0.5		16.25	MHz	When using main clock	
Source clock frequency	FSPL		16.384		131.072	kHz	When using sub clock	
Machine clock cycle time*2 (Minimum instruction	2 tmclk	_	100		32000	ns	When using main clock Min : $F_{SP} = 16.25$ MHz, no division Max : $F_{SP} = 0.5$ MHz, divided by 16	
execution time)			7.6		976.5	μs	When using sub clock Min : $F_{SPL} = 131$ kHz, no division Max : $F_{SPL} = 16$ kHz, divided by 16	
Machine clock frequency	Fмp		0.031		16.250	MHz	When using main clock	
Inachine Clock nequelicy	FMPL		1.024		131.072	kHz	When using sub clock	


*1 : Clock before setting division due to machine clock division ratio selection bits (SYCC : DIV1 and DIV0) . This source clock is divided by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.


- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)


*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.

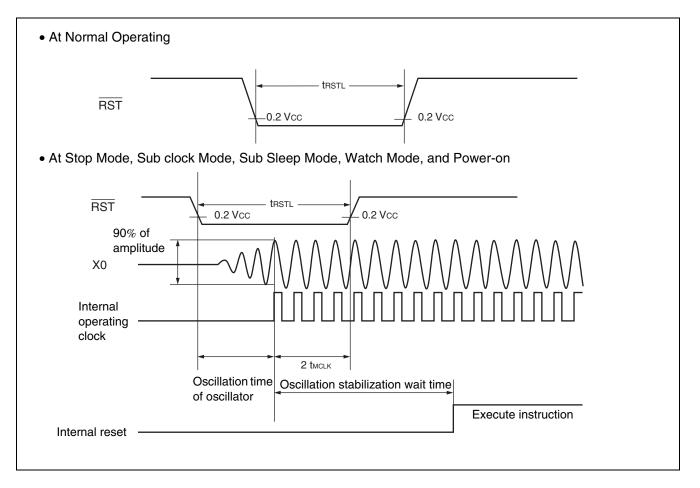

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

1

10 00 to . 05 00)

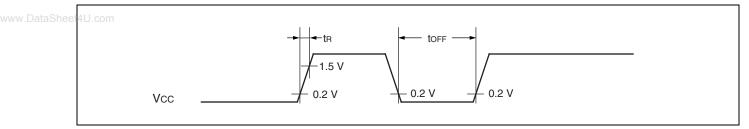
<u>о о у и т</u>

(3) External Reset

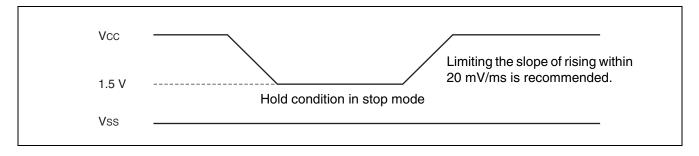

		(Vcc =	3.3 V, AV	ss = Vs	s = 0.0 V, IA = -40 °C to +85 °C	
Parameter	Symbol	Value		Unit	Remarks	
Parameter Sym		Min	Max	Unit	nellialks	
RST "L" level pulse		2 tмськ*1		ns	At normal operating	
width	t RSTL	$ \begin{array}{c} Oscillation time of oscillator^{\star_2} \\ + 2 \ t_{\text{MCLK}^{\star_1}} \end{array} $		ns	At stop mode, sub clock mode, sub sleep mode, and watch mode	

^ /

0 0 1/ 11/


*1 : Refer to " (2) Source Clock/Machine Clock" for tMCLK.

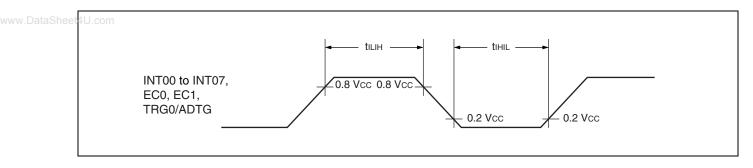
Www.DataShee *2 : Oscillation start time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μs and several ms. In the external clock, the oscillation time is 0 ms.



(4) Power-on Reset

			(AVss	s = Vss = 0.0	V, TA =	- 40 °C to + 85 °C)	
Parameter	Symbol	mbol Conditions		lue	Unit	Remarks	
Faialletei	Parameter Symbol		Min	Max	Unit		
Power supply rising time	tR			36	ms		
Power supply cutoff time	toff		1	_	ms	Waiting time until power-on	

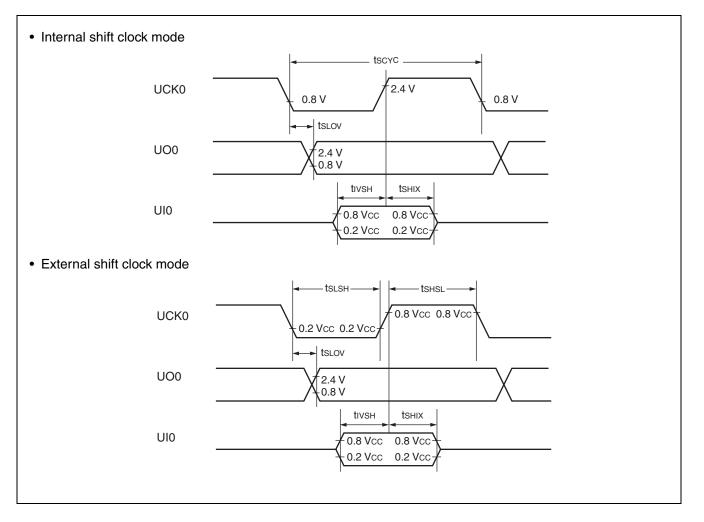
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 20 mV/ms as shown below.



(5) Peripheral Input Timing

 $(V_{CC} = 3.3 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name Value		ue	Unit	
Falameter	Symbol	Fill liallie	Min	Мах	Unit
Peripheral input "H" pulse width	tiliн	INT00 to INT07,	2 t MCLK*		ns
Peripheral input "L" pulse width	tını∟	EC0, EC1, TRG0/ADTG	2 t MCLK*		ns

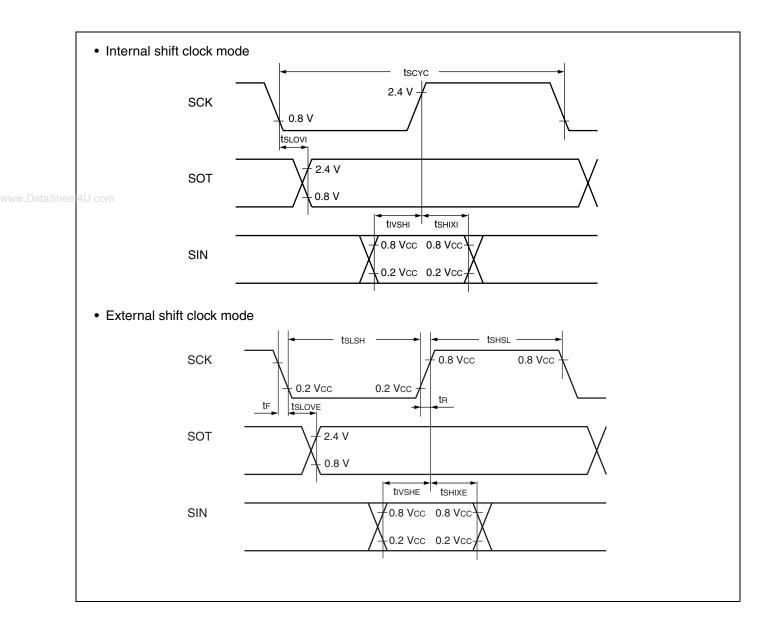

* : Refer to " (2) Source Clock/Machine Clock" for tMCLK.

(6) UART/SIO, Serial I/O Timing

	Parameter	Symbol	Pin name	Conditions	Va	Unit	
	Parameter	Symbol	Fin name	Conditions	Min	Max	Unit
	Serial clock cycle time	tscyc	UCK0	Internal clock	4 t мськ*		ns
	UCK $\downarrow \rightarrow$ UO time	tslov	UCK0, UO0	operation	- 190	+ 190	ns
	Valid UI \rightarrow UCK \uparrow	tıvsн	UCK0, UI0	output pin :	2 t мськ*	—	ns
	UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCK0, UI0	$C_L = 80 \text{ pF} + 1 \text{TTL}.$	2 t мськ*		ns
aShee	Serial clock "H" pulse width	tshsl	UCK0		4 t мськ*		ns
	Serial clock "L" pulse width	tslsh	UCK0	External clock	4 t мськ*	—	ns
	$UCK \downarrow \rightarrow UO \text{ time}$ tsuc		UCK0, UO0	operation output pin :	0	190	ns
	Valid UI \rightarrow UCK \uparrow	alid UI \rightarrow UCK \uparrow t _{IVSH} UCK0, U		$C_L = 80 \text{ pF} + 1\text{TTL}.$	2 t мськ*	—	ns
	JCK $\uparrow \rightarrow$ valid UI hold time t _{SHIX}		UCK0, UI0		2 t MCLK*		ns

* : Refer to " (2) Source Clock/Machine Clock" for tmclk.

(7) LIN-UART Timing


Sampling at the rising edge of sampling clock^{*1} and prohibited serial clock delay^{*2} (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0) $(V_{CC} = 3.3 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

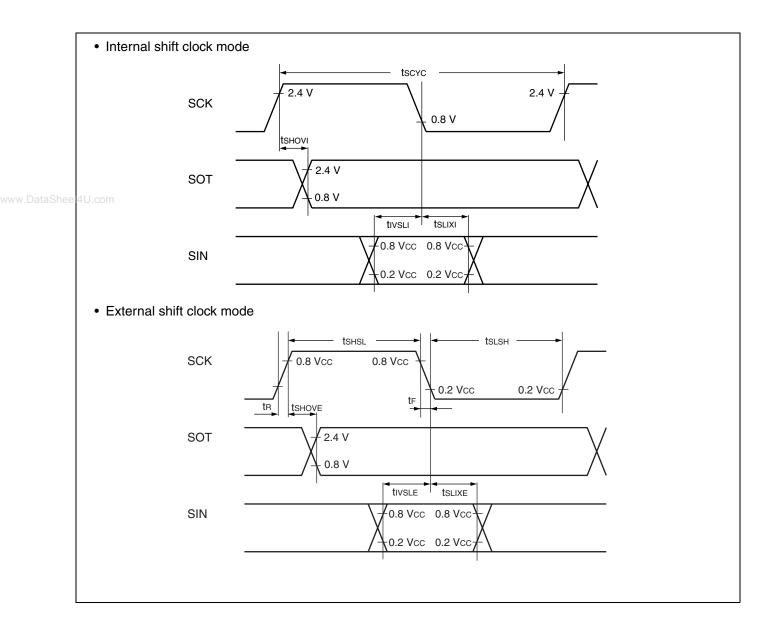
Deremeter	Sym-	Din nome	Conditions	Va	lue	Unit	
Parameter	Parameter bol		Pin name Conditions —		Max	Unit	
Serial clock cycle time	tscyc	SCK		5 t MCLK ^{*3}		ns	
$SCK \downarrow \to SOT$ delay time	tslovi	SCK, SOT	Internal clock	-95	+ 95	ns	
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN	operation output pin : $C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ*3 + 190		ns	
$SCK \uparrow \to valid \ SIN \ hold \ time$	tshixi	SCK, SIN		0		ns	
Serial clock "L" pulse width	tslsh	SCK		$3 t_{\text{MCLK}^{\star 3}} - t_{\text{R}}$		ns	
Serial clock "H" pulse width	tshsl	SCK		t мськ* ³ + 95		ns	
$SCK \downarrow \to SOT$ delay time	t SLOVE	SCK, SOT	External clock		2 tмськ* ³ + 95	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tivshe	SCK, SIN	operation output pin :	190		ns	
$SCK \uparrow \to valid \ SIN \ hold \ time$	tshixe	SCK, SIN	C∟ = 80 pF + 1 TTL.	t мськ* ³ + 95		ns	
SCK fall time	t⊧	SCK			10	ns	
SCK rise time	t₽	SCK			10	ns	

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tmcLK.

Sampling at the falling edge of sampling $clock^{*1}$ and prohibited serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

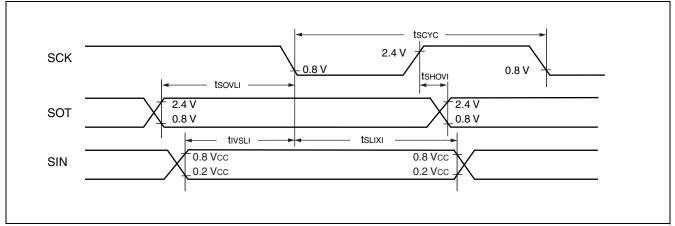

 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
Farameter	bol	Fin hame	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t MCLK ^{*3}		ns
SCK $\uparrow \rightarrow$ SOT delay time	t shovi	SCK, SOT	Internal clock operation output pin :	-95	+ 95	ns
$Valid\;SIN\toSCK\;\!\downarrow$	tivsli	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ* ³ + 190		ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixi	SCK, SIN		0		ns
Serial clock "H" pulse width	tsнs∟	SCK		3 tmclk ^{*3} – tr		ns
Serial clock "L" pulse width	t s∟sн	SCK		tмськ*3 + 95		ns
SCK $\uparrow \rightarrow$ SOT delay time	t shove	SCK, SOT	External clock		2 tмськ*3 + 95	ns
$Valid\ SIN \to SCK \downarrow$	tivsle	SCK, SIN	operation output pin :	190		ns
$SCK \downarrow \to valid \ SIN \ hold \ time$	tslixe	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	t мськ* ³ + 95		ns
SCK fall time	t⊧	SCK			10	ns
SCK rise time	tR	SCK			10	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for t_{MCLK.


Sampling at the rising edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

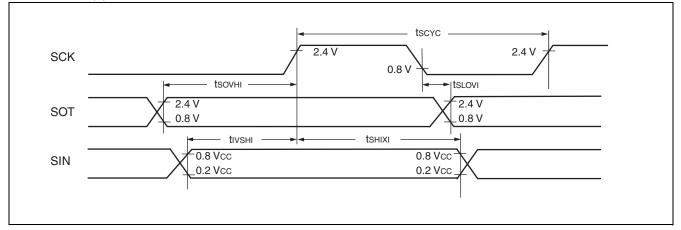
		•	(Vcc = 3.3 V, AVss =	= Vss = 0.0 V, T	$A = -40 ^{\circ}\text{C}$ to	+ 85 °C)	
Parameter	Sym-	Pin name	Conditions	Valu	e	Unit	
Parameter	bol	Fin name	Conditions	Min	Max	Unit	
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns	
SCK $\uparrow \rightarrow$ SOT delay time	t shovi	SCK, SOT	Internal clock	-95	+ 95	ns	
Valid SIN $ ightarrow$ SCK \downarrow	tivsli	SCK, SIN	operation output pin :	tмськ*3 + 190	_	ns	
$SCK \downarrow \to valid SIN hold time$	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL.	0		ns	
$SOT \to SCK \downarrow delay time$	tsovu	SCK, SOT			4 t MCLK* ³	ns	

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tMCLK.

Sampling at the falling edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)


 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Valu	le	Unit
Falameter	bol	Fin name	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t MCLK ^{*3}		ns
$SCK \downarrow \to SOT \text{ delay time}$	tslovi	SCK, SOT	Internal clock	-95	+ 95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN	operating output pin :	t мськ*3 + 190		ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	0		ns
$SOT \to SCK \uparrow delay time$	tsovнi	SCK, SOT			4 t MCLK*3	ns

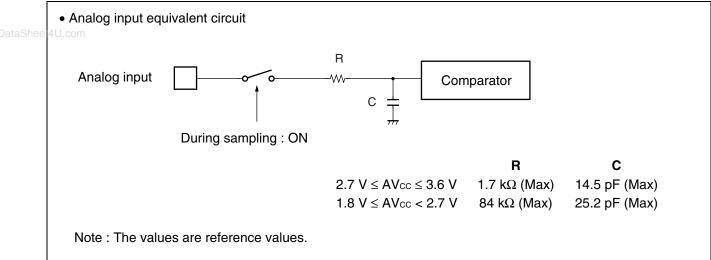
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

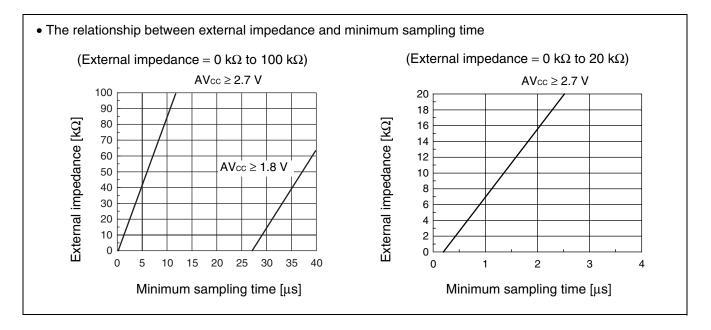
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tMCLK.

5. A/D Converter

(1) A/D Converter Electrical Characteristics


 $(AV_{CC} = V_{CC} = 1.8 \text{ V to } 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C})$

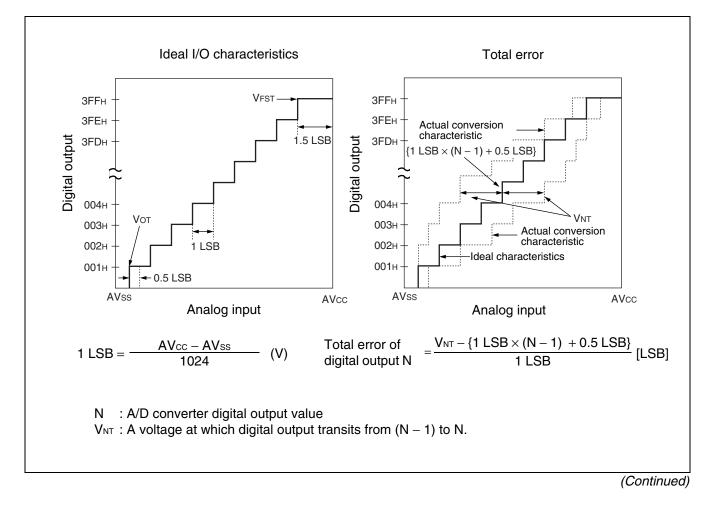

Deremeter	Sym-		Value		Unit	Remarks
Parameter	bol	Min	Min Typ Max		Unit	Remarks
Resolution				10	bit	
Total error		- 3.0		+ 3.0	LSB	
Linearity error	—	- 2.5		+ 2.5	LSB	
Differential linear error		- 1.9		+ 1.9	LSB	
Zero transition	Vот	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	$2.7 \text{ V} \leq AV \text{cc} \leq 3.3 \text{ V}$
voltage	VOI	AVss – 0.5 LSB	AVss + 1.5 LSB	AVss + 3.5 LSB	V	$1.8 \text{ V} \le \text{AV}_{\text{CC}} < 2.7 \text{ V}$
Full-scale transition	VFST	AVcc - 3.5 LSB	AVcc - 1.5 LSB	$AV_{CC} + 0.5 LSB$	V	$2.7 \text{ V} \le \text{AV}_{\text{CC}} \le 3.3 \text{ V}$
voltage	VFSI	AVcc - 2.5 LSB	AVcc - 0.5 LSB	AVcc + 1.5 LSB	V	$1.8 \text{ V} \leq \text{AV}_{\text{CC}} < 2.7 \text{ V}$
		0.6	—	140	μs	$2.7 \text{ V} \le \text{AV}_{\text{CC}} \le 3.3 \text{ V}$
Compare time		20	—	140	μs	$1.8 \text{ V} \le \text{AV}_{\text{CC}} < 2.7 \text{ V}$
Sampling time		0.4		8	μs	$\begin{array}{l} 2.7 \ V \leq AV_{CC} \leq 3.3 \ V \\ external \ impedance < \\ at \ 1.8 \ k\Omega \end{array}$
		30		8	μs	$1.8 V \le AV_{CC} < 2.7 V$ external impedance < at 14.8 k Ω
Analog input current	Iain	-0.3	—	+ 0.3	μA	
Analog input voltage	VAIN	AVss	—	AVcc	V	
Reference voltage	_	AVss + 1.8	—	AVcc	V	AVcc pin
Reference voltage	IR		400	600	μA	AVcc pin, During A/D operation
supply current	Irh			5	μA	AVcc pin, At stop mode

(2) Notes on Using A/D Converter

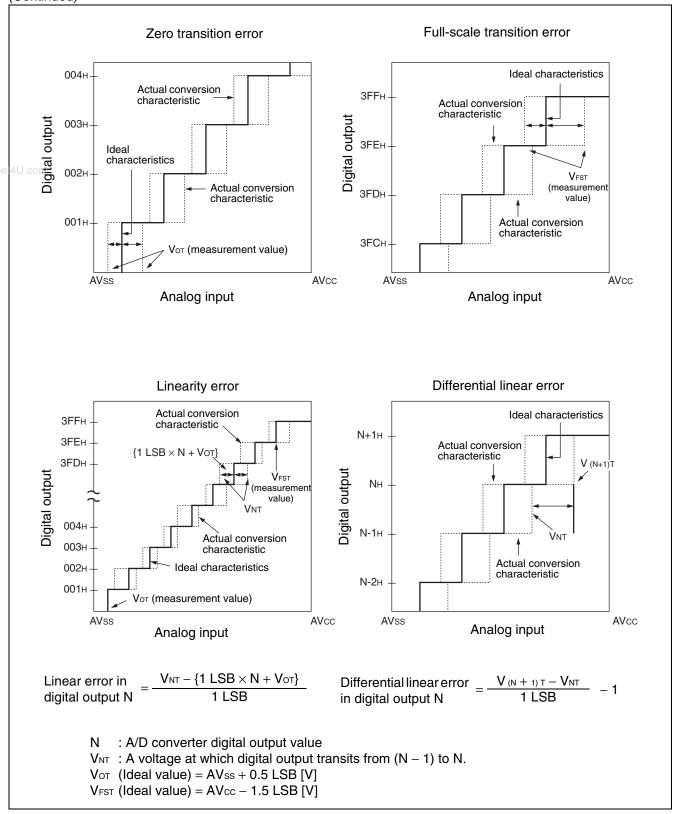
About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.

About errors


As IAVcc - AVssI becomes smaller, values of relative errors grow larger.

(3) Definition of A/D Converter Terms


- Resolution The level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.
- Linearity error (unit : LSB) The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" ← → "00 0000 0001") of a device and the full-scale transition point ("11 1111 1111" ← → "11 1111 1110") compared with the actual conversion values obtained.
- Differential linear error (Unit : LSB) Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

• Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

(Continued)

Parameter		Value		Unit	Remarks
Faianetei	Min Typ Max		Unit	nemarks	
Chip erase time	—	1 *1	1.5* ²	S	Excludes 00H programming prior erasure.
Byte programming time	_	32	3600*2	μs	Excludes system-level overhead time.
Program/erase cycle	10000			cycle	
Power supply voltage at program/erase	2.7		3.3	V	
Flash memory data retention time	20* ³			year	Average T _A = +85 °C

6. Flash Memory Program/Erase Characteristics

*1 : $T_{\text{A}}=~+~25~^{\circ}\text{C},~V_{\text{CC}}=3.0$ V, 10000 cycles

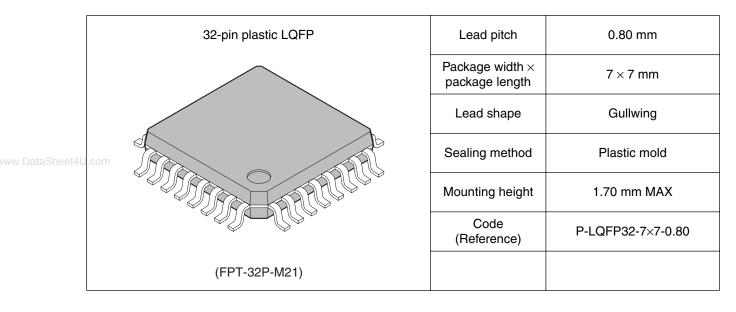
*2 : $T_{\text{A}}=~+$ 85 $^{\circ}\text{C},~V_{\text{CC}}=2.7$ V, 10000 cycles

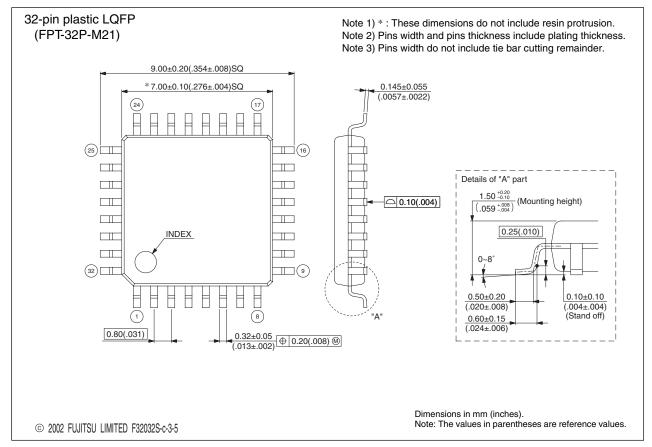
*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C) .

■ MASK OPTION

No.	Part number	MB95F146S	MB95F146W	MB95FV100D-101
NO.	Specifying procedure	Setting disabled	Setting disabled	Setting disabled
1	Clock mode select* • Single-system clock mode • Dual-system clock mode	Single-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2 14U.co	Low voltage detection reset* With low voltage detection reset Without low voltage detection reset 	No	No	No
3	Clock supervisor* • With clock supervisor • Without clock supervisor	No	No	No
4	 Selection of oscillation stabilization wait time Selectable the initial value of main clock oscillation stabilization wait time 	Fixed to oscillation stabilization wait time of (2 ¹⁴ – 2) /F _{CH}	Fixed to oscillation stabilization wait time of (2 ¹⁴ – 2) /F _{CH}	Fixed to oscillation stabilization wait time of $(2^{14} - 2)$ /F _{CH}

* : Low voltage detection reset and clock supervisor are options of 5-V products.


■ ORDERING INFORMATION


Part number	Package				
MB95F146SPFM MB95F146WPFM	32-pin plastic LQFP (FPT-32P-M21)				
MB2146-301A (MB95FV100D-101PBT)	MCU board (224-pin plastic PFBGA (BGA-224P-M08)				

ww.DataSheet4U.com

I

■ PACKAGE DIMENSIONS

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
		Preliminary Data Sheet→Data Sheet
	_	Changed the part number MB95FV100B-101→MB95FV100D-101
^{4U.(} 3 ^{:m}	■ PRODUCT LINEUP	CPU functions Minimum instruction execution time : 0.1 μ s (at machine clock frequency 10 MHz) \rightarrow Minimum instruction execution time : 61.5 ns (at machine clock frequency 16.25 MHz) Interrupt processing time : 0.9 μ s (at machine clock frequency 10 MHz) \rightarrow Interrupt processing time : 0.6 μ s (at machine clock frequency 16.25 MHz)
4		Added the description Flash memory
27	 ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings 	Changed under the table*3; $V_{11} \rightarrow V_1$
28	2. Recommended Operating Conditions	Changed the Min value of power supply voltage Vcc, AVcc. T _A = -10 °C to $+85$ °C $1.8\rightarrow2.3$
		$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C \ 2.0 \rightarrow 2.4$
29, 30	3. DC Characteristics	Moved "H" level input voltage and "L" level input voltage from the section "2. Recommended Operating Conditions".
		Added to $F_{MP} = 16$ MHz in the section of Icc, Iccs, IccMPLL of power supply voltage.
		Changed the Typ and Max values of Icts $0.4 \rightarrow 0.64$ (Typ value) $0.5 \rightarrow 0.80$ (Max value)
32	4. AC Characteristics (1) Clock Timing	Changed the Max values of clock frequency X0, X1. When using main oscillation circuit $10\rightarrow 16.25$ When using external clock $20\rightarrow 32.50$ Main PLL multiplied by 2 : $5\rightarrow 8.13$ Main PLL multiplied by 2.5 : $4\rightarrow 6.50$
		Added the Main PLL multiplied by 4
34	(2) Source Clock/Machine Clock	Changed source clock cycle time (when using main clock) Min : $F_{CH} = 10$ MHz, PLL multiplied by 1 \rightarrow Min : $F_{CH} = 8.125$ MHz, PLL multiplied by 2
		Changed the Max value of source clock frequency $F_{\text{SP}}.$ 10 \rightarrow 16.25
		Changed machine clock cycle time (when using main clock) Min : $F_{SP} = 10 \text{ MHz} \rightarrow \text{Min}$: $F_{SP} = 16.25 \text{ MHz}$
		Changed the Max value of machine clock frequency F_{MP} . 10.000 \rightarrow 16.250

(Continued)

(Continued)

Page	Section	Change Results
35		Changed the diagram of Outline of Clock Generation Block
36, 37	4. AC Characteristics (2) Source Clock/Machine Clock	Changed the diagram of • Operating voltage - Operating frequency
38		Changed the diagram of • Main PLL operation frequency range.
14U 49 m	5. A/D Converter (1) A/D Converter Electrical Characteristics	Changed the pin name in the value section of full-scale transition voltage; AVR→AVcc
55	■ ORDERING INFORMATION	The part number is revised as follows; MB2146-301 MB2146-301A

The vertical lines marked in the left side of the page show the changes.

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.