16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90650A Series

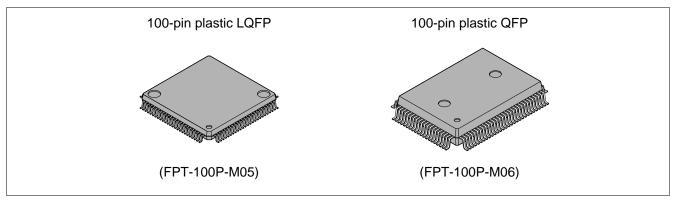
MB90652A/653A/P653A/654A/F654A

■ DESCRIPTION

The MB90650A series are 16-bit microcontrollers designed for high speed real-time processing in consumer product applications such as controlling celluar phones, CD-ROMs, or VTRs. Based on the F²MC^{*1}-16L CPU core, an F²MC-16L is used as the CPU. This CPU includes high-level language-support instructions and robust task switching instructions, and additional addressing modes. In order to reduce the consumption current, dual-clock (main/sub) is used. Furthermore, low consumption power supply is achieved by using stop mode, sleep mode, watch mode, pseudo-watch mode, CPU intermittent operation mode.

Microcontrollers in this series have built-in peripheral resources including 10-bit A/D converter, 8-bit D/A converter, UART, 8/16-bit PPG, 8/16-bit up/down counter/timer, I²C interface⁻², 8/16-bit I/O timer (input capture, output compare, and 16-bit free-run timer).

- *1:F2MC stands for FUJITSU Flexible Microcontroller.
- *2:Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.


■ FEATURES

F²MC-16L CPU

- Minimum execution time: 62.5 ns/4 MHz oscillation (Uses PLL clock multiplication) maximum multiplier = 4
- Instruction set optimized for controller applications
 Object code compatibility with F²MC-16(H)

(Continued)

■ PACKAGE

(Continued)

Wide range of data types (bit, byte, word, and long word) Improved instruction cycles provide increased speed

Additional addressing modes: 23 modes

High code efficiency

Access methods (bank access, linear pointer)

High precision operations are enhanced by use of a 32-bit accumulator Extended intelligent I/O service (access area extended to 64 Kbytes)

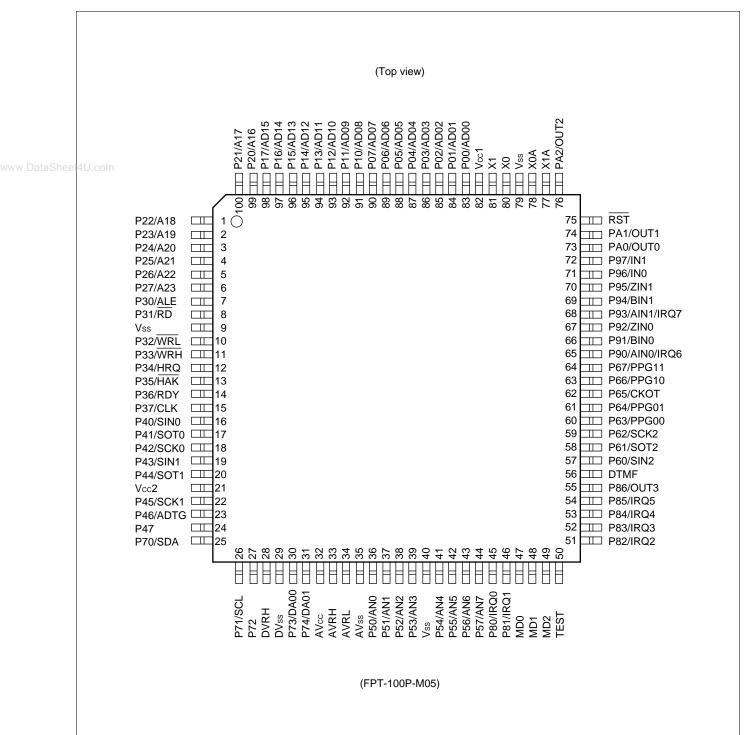
Maximum memory space: 16 Mbytes

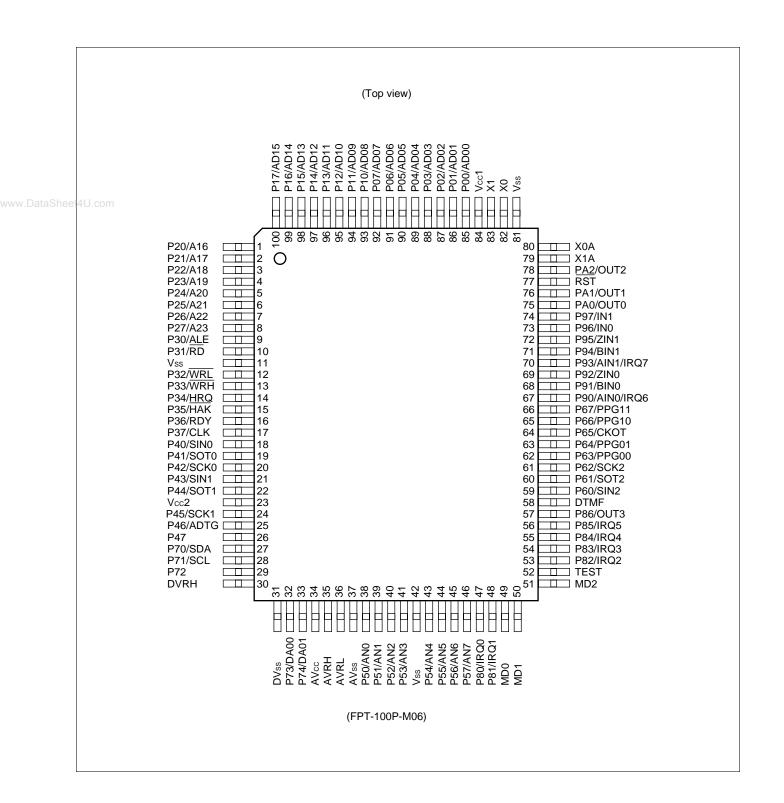
• Enhanced high level language (C) and multitasking support instructions Use of a system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function that does not use instruction (extended I²OS)


■ PRODUCT LINEUP


Part number	MB90652A	MB90653A	MB90P653A	MB90V650A	MB90654A	MB90F654A		
Classification	Mask RC	OM product	OTPROM product	For evaluation	Mask ROM product	FLASH product		
ROM size	64 Kbytes	128	Kbytes —		256 Kbytes			
RAM size	3 Kbytes		5 Kbytes		8 KI	bytes		
Power supply voltage	2.2 V	to 3.6 V	2.7 V to	5.5 V	2.2 V to 3.6 V	2.4 V to 3.6 V		
CPU functions	Instructi Instructi Data bit Minimur	nber of instructio on bit length: on length: length: n execution time t processing time	:	340 8/16 bits 1 to 7 bytes 1/4/8/16/32 bits 62.5 ns/4 MHz (P 1.0 μs/16 MHz (n				
Ports		s (N-channel ope s (CMOS):		4 75 (Input pull-up Can be set a 79	resistors available s N-channel oper			
A/D converter	10-bit r Conversion t	s : 8 channels esolution ime : minimum /16 MHz	Analog inputs 10-bit res Conversion time : µs/8 N	solution minimum 12.25	Analog inputs : 8 channels 10-bit resolution Conversion time : minimum 6.13 µs/16 MHz			
D/A converter		2 channels (independent), 8-bit resolution, R-2R type						
8/16-bit up/down counter/timer		16 b	oits × 1 channel/8 bit Includes reload and	d compare function				
I ² C interface				nannel Ive mode available	9			
UART			1 ch Clock synchrono	nannel ous communication ous communication	n			
I/O extended serial interface		8 bits × 2 channels LSB-first or MSB-first operation selecable						
8/16-bit PPG		8 bit	ts × 2 channels/16 b	oits \times 1 channel se	electable			
16-bit I/O timer	(Input ca	apture \times 2 chann	1 ch els, output compare	nannel $e imes 4$ channels, an	d free-run timer ×	< 1 channel)		
DTP/external interrupt				nputs				
Timer functions			ner (18-bit)/watchdo					
DTMF generator		Supports every ITU-T (CCITT) tone for output (Internal 16 MHz shall be used for DTMF generator).						
Low-power consumption modes	CPU intermittent operation mode, sub clock mode, stop mode, sleep mode, watch mode, pseudo-watch mode							
PLL function	(S	et a multiplier th		ultiplier: 1/2/3/4 the assured opera	ation frequency ra	ange.)		
Other	(Set a multiplier that does not exceed the assured operation frequency range.) VPP is shared with the MD2 pin (for EPROM programming)							
Package	FPT-	100P-M05, FPT-	100P-M06	PGA-256C-A02	FPT-100P-M05	, FPT-100P-M06		

Notes: • MB90V650A device is assured only when operate with the tools, under the condition of power supply voltage: 2.7 V to 3.3 V, operating temparature: 0°C to 70°C and operating frequency: 1.5 MHz to 8MHz

• For more information about each package, see seciton "PACKAGE DIMENSIONS".

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

	Pin no.		D'	Circuit	Eunation		
	LQFP*1	QFP*2	Pin name	type	Function		
	80	82	X0	Α	Crystal oscillator pin		
	81	83	X1	Α	Crystal oscillator pin		
	77	79	X1A	В	Crystal oscillatort pins (32 kHz)		
	78	80	X0A	В	Crystal oscillatort pins (32 kHz)		
www.DataSheel	47 to 49	49 to 51	MD0 to MD2	D	Operating mode selection pins Connect directly to Vcc or Vss.		
	50	52	TEST	D	Test input pin This pin must always be fixed to "H".		
	75	77	RST	С	Reset input pin		
	83 to 90 85 to 92		P00 to P07	E (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD07 to RD00 = "1") using the pull-up resistor setting register (RDR0). The setting does not apply for ports set as outputs (D07 to D00 = "1": invalid at the output setting).		
			AD00 to AD07		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).		
	91 to 98	93 to 100	P10 to P17	E (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD17 to RD10 = "1") using the pull-up resistor setting register (RDR1). The setting does not apply for ports set as outputs (D17 to D10 = "1": invalid at the output setting).		
			AD08 to AD15		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).		
	99, 100, 1 to 6	1, 2, 3 to 8	P20, P21, P22 to P27	(STBC)	General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the HACR register is "0" function as the P20 to P27 pins.		
			A16, A17, A18 to A23		In external bus mode, pins for which the corresponding bit in the HACR register is "1" function as the upper address output pins (A16 to A23).		
	7	9	P30	I (STBC)	General-purpose I/O port Functions as the ALE pin in external bus mode.		
			ALE		Functions as the address latch enable signal.		
	8	10	P31	I (STBC)	General-purpose I/O port Functions as the RD pin in external bus mode.		
			RD		Functions as the read strobe output (RD).		
	10	12	P32	I (STBC)	General-purpose I/O port Functions as the WRL pin in external bus mode if the WRE bit in the ECSR register is "1".		
			WRL		Functions as the lower data write strobe output (WRL).		

*1: FPT-100P-M05

*2: FPT-100P-M06

(Continued)

Pin	no.	D:	Circuit	Formation
LQFP*1	QFP*2	Pin name	type	Function
11	13	P33	I (STBC)	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the ECSR register is "1".
		WRH		Functions as the upper data write strobe output (WRH).
12	14	P34	I (STBC)	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the ECSR register is "1".
		HRQ		Functions as the hold request input pin (HRQ).
13	15	P35	(STBC)	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the ECSR register is "1".
		HAK		Functions as the hold acknowledge output (HAK) pin.
14	16	P36	I (STBC)	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the ECSR register is "1".
		RDY		Functions as the external ready input (RDY) pin.
15	17	P37	I (STBC)	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the ECSR register is "1".
		CLK		Functions as the machine cycle clock output (CLK) pin.
16	18	P40	H (STBC)	General-purpose I/O port When UART0 is operating, the data at the pin is used as the serial input (SIN0). Can be set as an open-drain output port (OD40 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D40 = "0": invalid at the input setting).
		SIN0		Functions as the UART0 serial input (SIN0).
17	19	P41	G (STBC)	General-purpose I/O port Functions as the SOT0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD41 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D41 = "0": invalid at the input setting).
		SOT0		Functions as the UART0 serial data output pin (SOT0).

*1: FPT-100P-M05

*2: FPT-100P-M06

(Continued)

Pin	no.		Circuit		
LQFP*1	QFP*2	Pin name	type	Function	
18	20	P42	H (STBC)	General-purpose I/O port When UART0 is operating in external shift clock mode, the data at the pin is used as the clock input (SCK0). Also, functions as the SCK0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD42 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D42 = "0" invalid at the input setting).	
		SCK0		Functions as the UART0 serial clock I/O pin (SCK0).	
19	21	P43	H (STBC)	General-purpose I/O port	
		SIN1		Functions as the serial input for I/O extended serial data.	
20	22	P44	G (STBC)	General-purpose I/O port Functions as the SOT1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD44 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D44 = "0": invalid at the input setting).	
		SOT1		Functions as the output pin (SOT1) for I/O extended serial data.	
22	24	P45	H (STBC)	General-purpose I/O port When I/O extended serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK1). Also, functions as the SCK1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD45 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D45 = "0": invalid at the input setting).	
		SCK1		Functions as the I/O extended serial clock I/O pin (SCK1).	
23	25	P46	G (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD46 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D46 = "0": invalid at the input setting).	
		ADTG		Functions as the external trigger input pin for the A/D converter.	
24	26	P47	K (NMOS/H) (STBC)	Open-drain type general-purpose I/O port	

^{*1:} FPT-100P-M05

(Continued)

^{*2:} FPT-100P-M06

Pin	no.		Circuit		
LQFP*1	QFP*2	Pin name	type	Function	
36 to 39, 41 to 44	38 to 41, 43 to 46	P50 to P53, P54 to P57	L (STBC)	General-purpose I/O ports	
		AN0 to AN3, AN4 to AN7		The pins are used as analog inputs (AN0 to AN7) when the A/D converter is operating.	
57 el4U.com	59	P60	F (STBC)		
		SIN2		Functions as a data input pin (SIN2) for I/O extended serial.	
58	60	P61	E (STBC)	General-purpose I/O port Function as the SOT2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD61 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D61 = "1": invalid at the output setting).	
		SOT2		Functions as an output pin (SOT2) for I/O extended serial data.	
59	61	P62	F (STBC)	General-purpose I/O port	
		SCK2		Functions as the I/O extended serial clock I/O pin (SCK2).	
60	62	P63	E (STBC)	General-purpose I/O port	
		PPG00		Functions as the PPG00 output when PPG output is enabled.	
61	63	P64	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD64 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D64 = "1": invalid at the output setting).	
		PPG01		Functions as the PPG01 output when PPG output is enabled.	

*1: FPT-100P-M05

*2: FPT-100P-M06

(Continued)

Pin	no.	Din	Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function	
62	64	P65	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD65 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D65 = "1": invalid at the output setting).	
		СКОТ		Functions as the CKOT output when CKOT is operating.	
63 4U.com	65	P66	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD66 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D66 = "1": invalid at the output setting).	
		PPG10		Functions as the PPG10 output when PPG output is enabled.	
64	66	P67	E (STBC) General-purpose I/O port A pull-up resistor can be set (RD67 = "1") using the pull resistor setting register (RDR6). The setting does not apply for ports set as outputs (D67 invalid at the output setting).		
		PPG11		Functions as the PPG11 output when PPG output is enabled.	
25	27	P70	K	Open-drain type I/O port	
		SDA	(NMOS/H) (STBC)	I ² C interface data I/O pin This function is valid when I ² C interface operations are enabled. Set port output to Hi-Z (PDR = 1) during I ² C interface operations.	
26	28	P71	K	Open-drain type I/O port	
		SCL	(NMOS/H) (STBC)	I ² C interface clock I/O pin This function is valid when I ² C interface operations are enabled. Set port output to Hi-Z (PDR = 1) during I ² C interface operations.	
27	29	P72	K (STBC)	Open-drain type I/O port	
30	32	P73	M (STBC)	Open-drain type I/O port Functions as a D/A output pin when DAE0 = "1" in the D/A control register (DACR).	
		DA00		Functions as D/A output 0 when the D/A converter is operating.	
31	33	P74	M (STBC)	General-purpose I/O port Functions as a D/A output pin when DAE1 = "1" in the D/A control register (DACR).	
		DA01		Functions as D/A output 1 when the D/A converter is operating.	
45	47	P80	J	General-purpose I/O port	
		IRQ0		Functions as external interrupt request I/O 0.	

*1: FPT-100P-M05

*2: FPT-100P-M06

(Continued)

Pin	no.		Circuit				
LQFP*1	QFP*2	Pin name	type	Function			
46	48	P81	J	General-purpose I/O port			
		IRQ1		Functions as external interrupt request I/O 1.			
51	53	P82	J	General-purpose I/O port			
		IRQ2		Functions as external interrupt request I/O 2.			
52	54	P83	J	General-purpose I/O port			
14U.com		IRQ3		Functions as external interrupt request I/O 3.			
53	55	P84	J	General-purpose I/O port			
		IRQ4	_	Functions as external interrupt request I/O 4.			
54	56	P85	J	General-purpose I/O port			
		IRQ5		Functions as external interrupt request I/O 5.			
55	57	P86	(STBC)	General-purpose I/O port This applies in all cases.			
		OUT3		Event output for channel 3 of the output compare			
65	67	P90	J	General-purpose I/O port			
		AIN0		Input to channel 0 of the 8/16-bit up/down counter/timer			
		IRQ6		Functions as an interrupt request input.			
66	68	P91	J	General-purpose I/O port			
		BIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down counter/timer			
67	69	P92	J	General-purpose I/O port			
		ZIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down counter/timer			
68	70	P93	J	General-purpose I/O port			
		AIN1		Input to channel 1 of the 8/16-bit up/down counter/timer			
		IRQ7		Functions as an interrupt request input.			
69	71	P94	J	General-purpose I/O port			
		BIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down counter/timer			
70	72	P95	J	General-purpose I/O port			
		ZIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down counter/timer			
71	73	P96	J	General-purpose I/O port			
		IN0	(STBC)	Trigger input for channel 0 of the input capture			
72	74	P97	J (STBC)	General-purpose I/O port			
		IN1	(STBC)	Trigger input for channel 1 of the input capture			
73	75	PA0	(STDC)	General-purpose I/O port			
		OUT0	(STBC)	Event output for channel 0 of the output compare			

*1: FPT-100P-M05

*2: FPT-100P-M06

(Continued)

(Continued)

Pin	no.	Pin name	Circuit	Function		
LQFP*1	QFP*2	Fin name	type	Function		
74	76	PA1	I (OTDO)	General-purpose I/O port		
		OUT1	(STBC)	Event output for channel 1 of the output compare		
76	78	PA2	I (OTDO)	General-purpose I/O port		
		OUT2	(STBC)	Event output for channel 2 of the output compare		
82	84	Vcc1	_	Power supply (3.0 V) input pin		
21	23	Vcc2	_	Power supply (3.0 V/5.0 V) input pin		
9, 40,	11, 42,	Vss	Power supply (0.0 V) input pin			
79	81 [°]					
32	34	AVcc	_	A/D converter power supply pin		
33	35	AVRH	_	A/D converter external reference power supply pin		
34	36	AVRL	_	A/D converter external reference power supply pin		
35	37	AVss	_	A/D converter power supply pin		
28	30	DVRH	D/A converter external reference power supply pin			
29	31	DVss	_	D/A converter power supply pin		
56	58	DTMF	N	DTMF output pin		

*1: FPT-100P-M05 *2: FPT-100P-M06

Note: STBC = Incorporates standby control NMOS = N-ch open-drain output

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A a14U.com	X1 X0 X0 Standby control signal	Oscillation feedback resistance : Approx. 1 $M\Omega$
В	X1A X0A Standby control signal	• Oscillation feedback resistance : Approx. 10 $\mbox{M}\Omega$
С	R Hysteresis input	• Hysteresis input with pull-up Resistance approx. 50 $\mbox{k}\Omega$
D	Hysteresis input R	Hysteresis input port
E	CMOS	 Incorporates pull-up resistor control (for input) CMOS level I/O Resistance approx. 50 kΩ
F	CTL Hysteresis input R	 Incorporates pull-up resistor control (for input) CMOS level output Hysteresis input Resistance approx. 50 kΩ

(Continued)

Туре	Circuit	Remarks
G	Open-drain control signal CMOS R	CMOS level I/O Incorporates open-drain control
H ^{4U.com} H	Open-drain control signal Hysteresis input R	CMOS level output Hysteresis input Incorporates open-drain control
I	CMOS R	CMOS level I/O
J	Hysteresis input	CMOS level output Hysteresis input
К	Digital output Hysteresis input R	Hysteresis input N-ch open-drain output
L	CMOS R Analog input	CMOS level I/O Analog input

(Continued)

(Continued)

Туре	Circuit	Remarks
M eei4U.com	D/A output CMOS R	CMOS level I/O Analog output Shared with D/A outputs
N	R W R R	DTMF analog output

■ HANDLING DEVICES

1. Preventing Latch-up

Latch-up occurs in a CMOS IC if a voltage greater than Vcc or less than Vss is applied to an input or output pin or if the voltage applied between Vcc and Vss exceeds the rating.

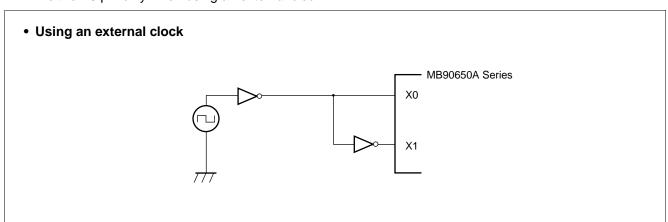
If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.

For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input


To reliably reset the controller by inputting an "L" level to the RST pin, ensure that the "L" level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all Vcc pins are at the same voltage. The same applies for the Vss pins.

5. Precautions when Using an External Clock

Drive the X0 pin only when using an external clock.

6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always turn off the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before turning off the digital power supply (Vcc).

When turning the power on or off, ensure that AVRH does not exceed AVcc.

Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AVcc.

7. Turn-on Sequence for D/A Converter Power Supply

Always turn on the D/A converter power supply (DVR), after turning off the digital power supply (Vcc).

And in the turning off the power supply sequence always turn off the digital power supply (Vcc) after turning off the D/A converter power supply (DVR).

8. Initializing

In this device there are some kinds of inner resisters which are initialized only by power on reset. It is possible to initialize these resisters by turning on the power supply again.

9. Power Supply Pins

When there are several V_{CC} and V_{SS} pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to Vcc and Vss with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about 0.1 μ F between Vcc and Vss near this device as a bypass capacitor.

10.Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible, and that the wiring does not closs the other wirings.

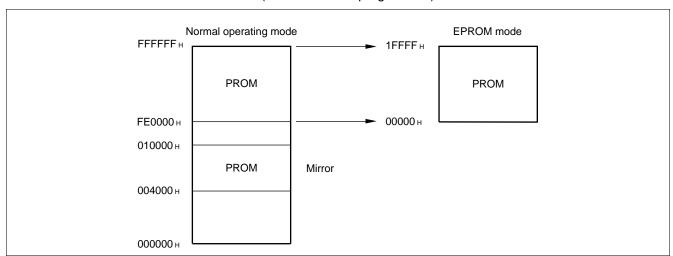
In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

11. About 2 Power Supplies

The MB90650A series usually uses the 3-V power supply as the main power source. With Vcc1 = 3 V and Vcc2 = 5 V, however, it can interface with P20 to P27, P30 to P37, P40 to P47, and P70 to P72 for the 5-V power supply separately from the 3-V power supply. Note, however, that the analog power supplies such as A/D and D/A can be used only as 3-V power supplies.

■ PROGRAMMING FOR MB90P653A

In EPROM mode, the MB90P653A functions equivalent to the MBM27C1000/1000A. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).


1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits (128 K \times 8 bits) in the MB90P653A are in the "1" state. Data is written to the ROM by selectively programming "0" into the desired bit locations. Bits cannot be set to "1" electrically.

2. Programming Procedure

- (1) Set the EPROM programmer to MBM27C1000/1000A.
- (2) Load program data into the EPROM programmer at 00000h to 1FFFFh.

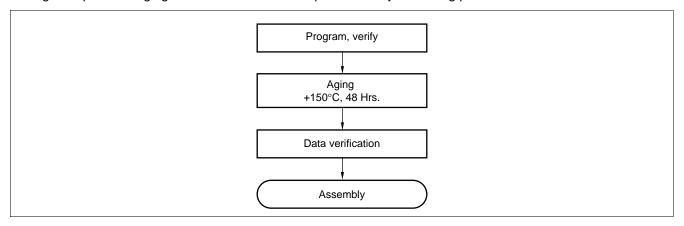
Note that ROM addresses FE0000_H to FFFFFF_H in the operation mode in the MB90P653A series assign to 00000_H to 1FFFF_H in the EPROM mode (on the EPROM programmer).

The 00 bank PROM mirror is 48 Kbytes. (This is a mirror for FF4000_H to FFFFFF_H.)

- (3) Mount the MB90P653A on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
- (4) Start programming the program data to the device.
- (5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 μ F between Vcc and GND, between VPP and GND.

Note: The mask ROM products (MB90653A, MB90652A) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

3. EPROM Programmer Socket Adapter


Part no.	MB90652APFV	MB90653APFV	MB90P653APFV	MB90652APF	MB90653APF	MB90P653APF	
Package		LQFP-100		QFP-100			
Compatible socket adapter Sun Hayato Co., Ltd.	ROM	1-100SQF-32DF	P-16L	RO	M-100QF-32DP-	-16L	

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

eet4U.com

4. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

5. Programming Yeild

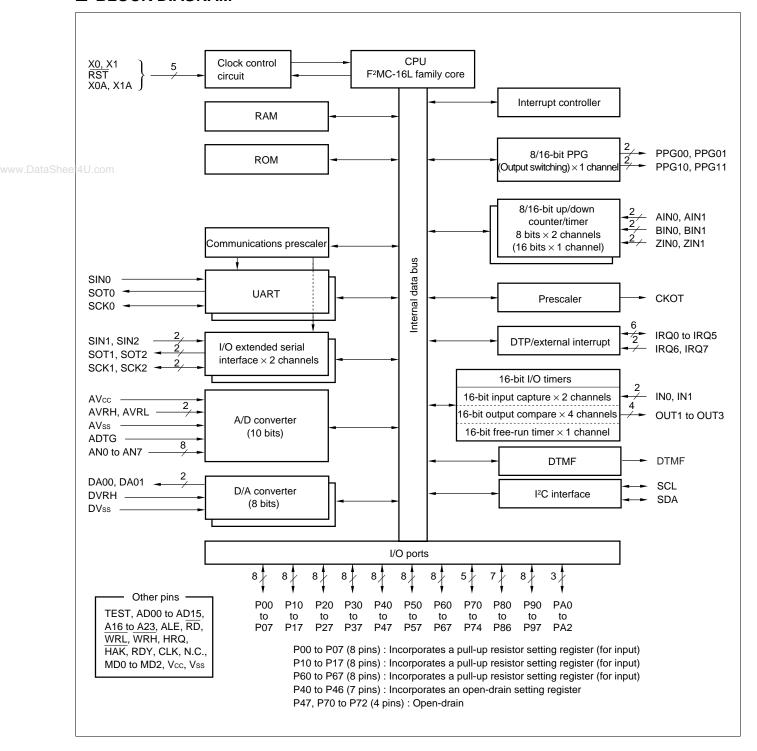
MB90P653A cannot be write tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

6. EPROM Mode Pin Assignments

• MBM27C1000/1000A compatible pins

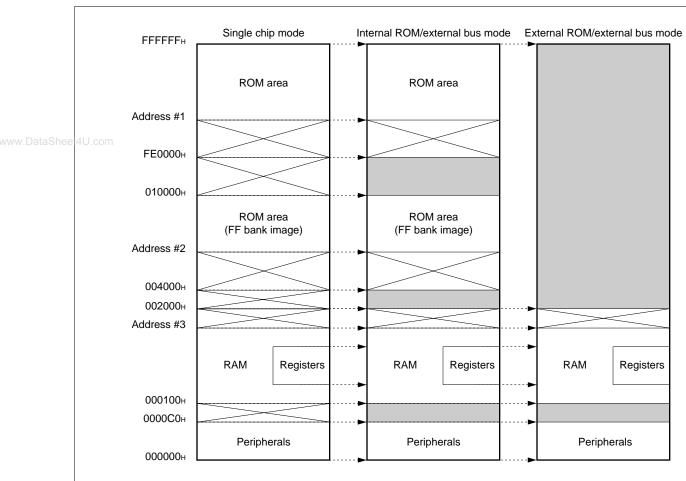
MBM27C1	MBM27C1000/1000A		P653A
Pin no.	Pin name	Pin no.	Pin name
1	V _{PP}		MD2
2	ŌĒ		P32
3	A15		P17
l.com 4	A12	È	P14
5	A07	See "PIN ASSIGNMENT"	P27
6	A06	NZ U	P26
7	A05	SSI	P25
8	A04	∢ Z	P24
9	A03	Ē.	P23
10	A02	See	P22
11	A01		P21
12	A00		P20
13	D00		P00
14	D01		P01
15	D02		P02
16	GND		Vss

MBM27C1	1000/1000A	MB90	P653A
Pin no.	Pin name	Pin no.	Pin name
32	Vcc		Vcc
31	PGM		P33
30	N.C.		_
29	A14	Ļ	P16
28	A13	"PIN ASSIGNMENT"	P15
27	A08	N O N	P10
26	A09	SSI	P11
25	A11	∢ Z	P13
24	A16	Ē	P30
23	A10	See	P12
22	CE		P31
21	D07		P07
20	D06		P06
19	D05		P05
18	D04		P04
17	D03		P03


• Non-MBM27C1000/1000A compatible pins

Pin no.	Pin name	Treatment
	MD0 MD1 X0 X0A	Connect a pull-up resistor of 4.7 k Ω .
	X1 to X1A	OPEN
See "PIN ASSIGN- MENT"	AVcc AVRH P37 P40 to P47 P50 to P57 P60 to P67 P70 to P74 P80 to P86 P90 to P97 PA0 to PA2 N.C. TEST	Connect a pull-up resistor of about 1 M Ω to each pin.

• Power supply, GND connection pins


Classification	Pin no.	Pin name
Power supply	See "PIN ASSIGNMENT"	HST Vcc DVRH
GND	See "PIN ASSIGNMENT"	P34 P35 P36 RST AVRL AVss DVss Vv

■ BLOCK DIAGRAM

■ MEMORY MAP

MB90652, MB90653, MB90P653

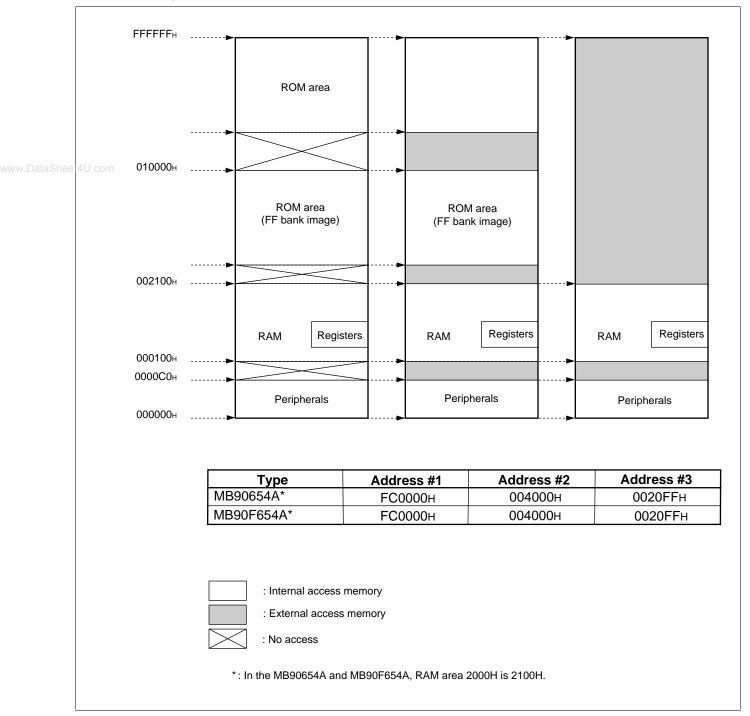
Туре	Address #1 *	Address #2 *	Address #3 *
MB90652	FF0000H	004000н	000СFFн
MB90653	FE0000H	004000н	0014FFH
MB90P653	FE0000H	004000н	0014FFн

: Internal access memory

: External access memory

: No access

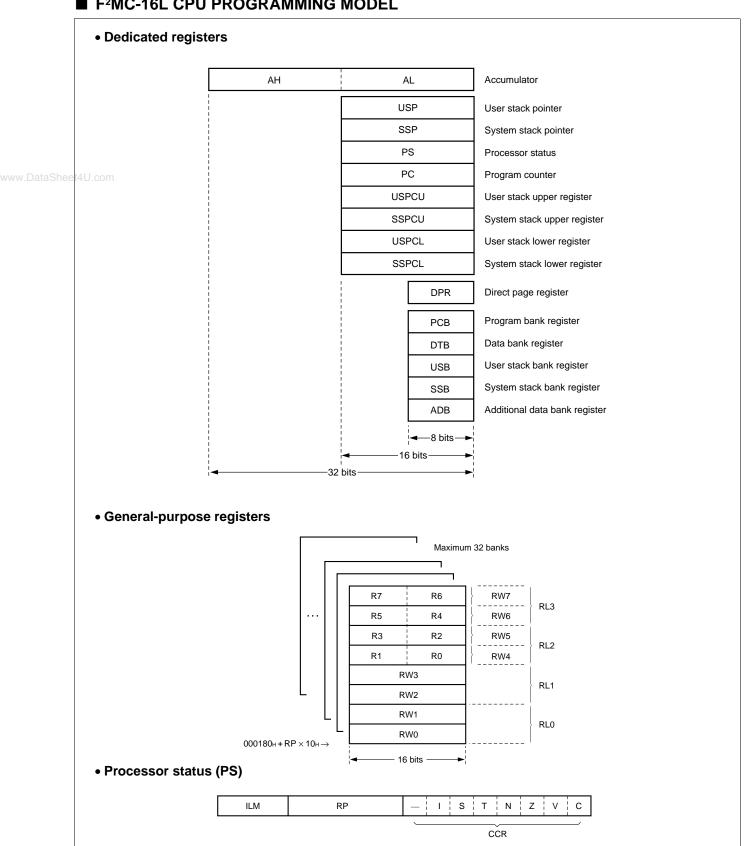
Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.


For example, to access to 00C000H is to access to the ROM content of FFC000H in practice.

Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00.

So, the image for FF4000H to FFFFFFH can be seen in bank 00, while FE0000H to FF3FFFH can only be seen in bank FF and FE.

^{*:} Address #1, #2, and #3 are different owing to their devices respectively.


MB90654A, MB90F654A

Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.

For example, to access to $00C000_{
m H}$ is to access to the ROM content of FFC000_H in practice. Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00. So, the image for FF4000_H to FFFFFFH can be seen in bank 00, while FE0000_H to FF3FFFH can only be seen in bank FF and FE.

■ F²MC-16L CPU PROGRAMMING MODEL

■ I/O MAP

A	ddress	Register	Register name	Read/ write	Resource name	Initial value						
	00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX						
	01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX						
	02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX						
	03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX						
	04н	Port 4 data register	name write Resource frame PDR0 R/W Port 0 PDR1 R/W Port 1 PDR2 R/W Port 2	1XXXXXXXB								
Shee 4U.	05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXXB						
	06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX						
	07н	Port 7 data register	PDR7	R/W	Port 7	 ХХ111в						
	08н	Port 8 data register	PDR8	R/W	Port 8	-XXXXXXXB						
	09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXXB						
	ОАн	Port A data register	PDRA	R/W	Port A	ХХХв						
0B	ь to 0Fн		(Reserved area)									
	10н	Port 0 direction register	DDR0	R/W	Port 0	0000000в						
	11н	Port 1 direction register	DDR1	R/W	Port 1	0000000в						
	12н	Port 2 direction register	DDR2	R/W	Port 2	0000000в						
	13н	Port 3 direction register	DDR3	R/W	Port 3	0000000в						
	14н	Port 4 direction register	DDR4	R/W	Port 4	-0000000в						
	15н	Port 5 direction register	DDR5	R/W	Port 5	0000000в						
	16н	Port 6 direction register	DDR6	R/W	Port 6	0000000в						
	17н	Port 7 direction register	DDR7	R/W	Port 7	00в						
	18н	Port 8 direction register	DDR8	R/W	Port 8	-0000000в						
	19н	Port 9 direction register	DDR9	R/W	Port 9	0000000в						
	1Ан	Port A direction register	DDRA	R/W	Port A	000в						
	1Вн	Port 4 pin register	ODR4	R/W	Port 4	-0000000в						
	1Сн	Port 0 resistance register	RDR0	R/W	Port 0	0000000в						
	1D _H	Port 1 resistance register	RDR1	R/W	Port 1	0000000в						
	1Ен	Port 6 resistance register	RDR6	R/W	Port 6	0000000в						
	1F _H	Analog input enable register	ADER	R/W	Port 5, A/D	111111111						
	20н	Serial mode register 0	SMR0	R/W		0000000в						
	21н	Serial control register 0	SCR0	R/W	UART0	00000100в						
	22н	Serial input register/ serial output register 0	SIDR/ SODR0	R/W	21	XXXXXXXXB						

(Continued)

พพพ.DataSheet4๒๕๐m

Address	Register	Register name	Read/ write	Resource name	Initial value			
23н	Serial status register 0	SSR0	R/W	UART0	00001-00			
24н	Serial mode control status register 0	SMCS0	R/W		0000			
25н	Serial mode control status register 0	SMCS0	R/W	I/O extended serial interface 0	00000010			
26н	Serial data register 0	SDR0	R/W	interface o	XXXXXXXX			
27н	Clock division control register	CDCR	R/W	Communications prescaler	01111			
28н	Serial mode control status register 1	SMCS1	R/W		0000			
^{4U.com} 29 н	Serial mode control status register 1	SMCS1	R/W	I/O extended serial interface 1	00000010			
2Ан	Serial data register 1	SDR1	R/W	interface i	XXXXXXXX			
2Вн to 2Fн		(Rese	rved area)				
30н	Interrupt/DTP enable register	ENIR	R/W		00000000			
31н	Interrupt/DTP source register	EIRR	R/W	D-T-2	00000000			
32н	B	ELV/D	D // //	DTP/external interrupts	00000000			
33н	Request level setting register	ELVR	R/W		00000000			
34н to 35н		(Rese	rved area)				
36н	Control status register 1	ADCS1	D // /		00000000			
37н	Control status register 2	ADCS2	R/W		00000000			
38н	Data register 1	ADCR1	_	A/D converter	XXXXXXXX			
39н	Data register 2	ADCR2	R		XXXXXXX			
ЗАн	D/A converter data register 0	DAT0	R/W		XXXXXXX			
3Вн	D/A converter data register 1	DAT1	R/W		XXXXXXX			
3Сн	D/A control register channel 0	DACR0	R/W	D/A converter	0			
3Dн	D/A control register channel 1	DACR1	R/W		0			
3Ен	Clock control register	CLKR	R/W	Clock output control register	0000			
3Fн	(Reserved area)							
40н	Reload register lower channel 0	PRLL0	R/W		XXXXXXXX			
41н	Reload register upper channel 0	PRLH0	R/W		XXXXXXX			
42н	Reload register lower channel 1	PRLL1	R/W		XXXXXXX			
43н	Reload register upper channel 1	PRLH1	R/W		XXXXXXXX			
44н	PPG0 operation mode control register channel 0	PPGC0	R/W	8/16-bit PPG	0X000XX1			
45н	PPG1 operation mode control register channel 1	PPGC1	R/W		0X000001			
46н	PPG0, PPG1 output control register channel 0, channel 1	PPGOE	R/W		00000000			
47н to 4Fн		(Rese	rved area)	•			
50н	Lower compare register channel 0	OCCP0	R/W	16-bit I/O timer output compare (channel 0 to channel 3)	xxxxxxx			

(Continued)

Address	Register	Register name	Read/ write	Resource name	Initial value
51н	Upper compare register channel 0	OCCP0	R/W		XXXXXXX
52н	Lower compare register channel 1	00001	DAM	a) 16-bit I/O timer Output compare (channel 0 to channel 3) 16-bit I/O timer Input capture (channel 0, channel 1) a) 16-bit I/O timer Free-run timer a) 8/16-bit up/down counter/timer	XXXXXXX
53н	Upper compare register channel 1	OCCP1	R/W		XXXXXXX
54н	Lower compare register channel 2	00000	DAM		XXXXXXX
55н	Upper compare register channel 2	OCCP2	R/W		XXXXXXX
56н	Lower compare register channel 3	OCCD2	R/W		XXXXXXX
57н	Upper compare register channel 3	OCCP3	K/VV	(channel 0 to channel 3)	XXXXXXX
58н	Compare control status register channel 0	OCS0	R/W	16-bit I/O timer Input capture	000000E
59н	Compare control status register channel 1	OCS1	R/W		00000E
5Ан	Compare control status register channel 2	OCS2	R/W		000000
5Вн	Compare control status register channel 3	OCS3	R/W		00000E
5Сн to 5Fн		(Rese	rved area	a)	-
60н	Lower input capture register channel 0	IPCP0	R		XXXXXXX
61н	Upper input capture register channel 0	IPCPU	R	16-hit I/O timer	XXXXXXX
62н	Lower input capture register channel 1	IPCP1	R	Input capture	XXXXXXX
63н	Upper input capture register channel 1	IPCPT	R	(channel 0, channel 1)	XXXXXXX
64н	Input capture control status register	ICS0, 1	R/W		0000000E
65н		(Rese	rved area	a)	I.
66н	Lower timer data register	TCDTL	R/W		00000000
67н	Upper timer data register	TCDTH	R/W		00000001
68н	Timer control status register	TCCS	R/W		0000000E
69н to 6Fн		(Rese	rved area	a)	1
70н	Up/down count register channel 0	UDCR0	R		00000000
71н	Up/down count register channel 1	UDCR1	K		0000000E
72н	Reload compare register channel 0	RCR0	W		00000001
73н	Reload compare register channel 1	RCR1	VV		00000000
74н	Counter status register channel 0	CSR0	R/W		00000001
75н		(Rese	rved area	a)	1
76н	Counter control register shapped of	CCRL0	D/\\/		00001000
77н	Counter control register channel 0	CCRH0	R/W	8/16-bit up/down counter/timer	00000001
78н	Counter status register channel 1	CSR1	R/W	55357,57	00000001
79н		(Rese	rved area	a)	•
7Ан	Counter control register channel 1	CCRL1	R/W	8/16-bit up/down counter/timer	0000000

(Continued)

Address	Register	Register name	Read/ write	Resource name	Initial value						
7Вн	Counter control register channel 1	CCRH1	R/W	8/16-bit up/down counter/timer	Х0001000в						
7Сн to 7Fн		(Reserved area)									
80н	I ² C bus status register	IBSR	R		0000000в						
81н	I ² C bus control register	IBCR	R/W		0000000в						
82н	I ² C bus clock control register	ICCR	R/W	I ² C interface	0XXXXXB						
4U.c 83 н	I ² C bus address register	IADR	R/W		-XXXXXXXB						
84н	I ² C bus data register	IDAR	R/W		XXXXXXXX						
85н to 87н		(Reserved area)									
88н	DTMF control register	DTMC	_	_	0000000в						
89н	DTMF data register	DTMD	_	_	000Х0000в						
8A to 9Ен	(Reserved area) (Accessing 90н to 9Ен is prohibited)										
9Fн	Delayed interrupt generation/ release register	DIRR	R/W	Delayed interrupt generation module	Ов						
А0н	Low-power consumption mode control register	LPMCR	R/W	Low-power consumption mode	00011000в						
А1н	Clock selection register	CKSCR	R/W	Low-power consumption mode	11111100в						
А2н to А4н		(Rese	rved area	a)							
А5н	Auto-ready function selection register	ARSR	W	External bus pin control circuit	001100в						
А6н	External address output control register	HACR	W	External bus pin control circuit	00000000в						
А7н	Bus control signal selection register	ECSR	W	External bus pin control circuit	0000*00-в						
А8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXX111 _B						
А9н	Timebase timer control register	TBTC	R/W	Timebase timer	100000в						
ААн	Watch timer control register	WTC	R/W	Watch timer	1Х-00000в						
ABн to AFн		(Rese	rved area	a)							

(Continued)

(Continued)

Address	Register	Register name	Read/ write	Resource name	Initial value
В0н	Interrupt control register 00	ICR00	R/W		00000111в
В1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W		00000111в
ВЗн	Interrupt control register 03	ICR03	R/W		00000111в
В4н	Interrupt control register 04	ICR04	R/W		00000111в
В5н	Interrupt control register 05	ICR05	R/W		00000111в
^{е[4U.С} В6 н	Interrupt control register 06	ICR06	R/W		00000111в
В7н	Interrupt control register 07	ICR07	R/W	Interrupt controller	00000111в
В8н	Interrupt control register 08	ICR08	R/W	Interrupt controller	00000111в
В9н	Interrupt control register 09	ICR09	R/W		00000111в
ВАн	Interrupt control register 10	ICR10	R/W		00000111в
ВВн	Interrupt control register 11	ICR11	R/W		00000111в
ВСн	Interrupt control register 12	ICR12	R/W		00000111в
ВОн	Interrupt control register 13	ICR13	R/W		00000111в
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в
ВГн	Interrupt control register 15	ICR15	R/W		00000111в
C0н to FFн		(Exte	rnal area)	

About Programming

R/W: Readable and writable

R : Read only W : Write only

Explanation of initial values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- *: The initial value of this bit is "0" or "1".
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.

Note: Areas below address 0000FF_H not listed in the table are reserved areas. These addresses are accessed by internal access. No access signals are output on the external bus.

www.DataSheet4b.gom

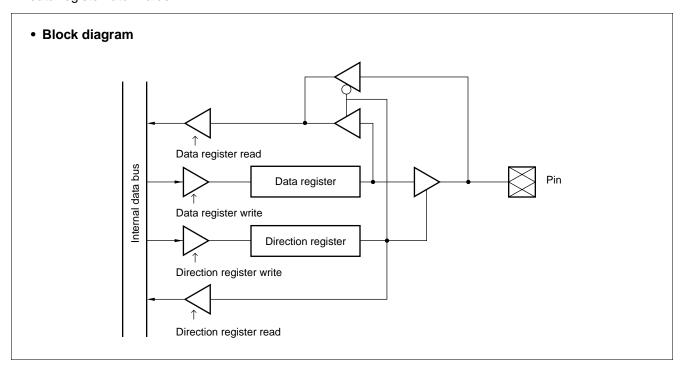
■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO **INTERRUPT SOURCES**

Interrupt course	I ² OS	Interru	ot vector	Interrupt control register		
Interrupt source	support	Number	Address	Number	Address	
Reset	×	#08	FFFFDC _H	_	_	
INT 9 instruction	×	#09	FFFFD8 _H	_	_	
Exception	×	#10	FFFFD4 _H	_	_	
A/D converter	0	#11	FFFFD0 _H	ICR00	0000B0	
Timebase timer interval interrupt	×	#12	FFFFCC _H	ICRUU	0000В0н	
DTP/external interrupt 0 (External interrupt 0)	0	#13	FFFFC8 _H	ICR01	0000В1н	
16-bit free-run timer (I/O timer) overflow	0	#14	FFFFC4 _H	ICRUI	0000БТН	
I/O extended serial interface 1	0	#15	FFFFC0 _H	ICR02	0000В2н	
DTP/external interrupt 1 (External interrupt 1)	0	#16	FFFFBC _H	ICR02	0000Б2н	
I/O extended serial interface 2	0	#17	FFFFB8 _H	ICR03	0000ВЗн	
DTP/external interrupt 2 (External interrupt 2)	0	#18	FFFFB4 _H	ICKUS	ООООВЗН	
DTP/external interrupt 3 (External interrupt 3)	0	#19	FFFFB0⊦	ICR04	0000В4н	
8/16-bit PPG 0 counter borrow	0	#20	FFFFACH	10104	0000Б4н	
8/16-bit up/down counter/timer 0 compare	0	#21	FFFFA8 _H			
8/16-bit up/down counter/timer 0 underflow/overflow, up/down invert	0	#22	FFFFA4 _H	ICR05	0000В5н	
8/16-bit PPG 1 counter borrow	0	#23	FFFFA0 _H	ICR06	0000В6н	
DTP/external interrupt 4/5 (External interrupt 4/5)	0	#24	FFFF9C _H	ICRU	ООООВОН	
Output compare (channel 2) match (I/O timer)	0	#25	FFFF98 _H	ICR07	0000В7н	
Output compare (channel 3) match (I/O timer)	0	#26	FFFF94 _H	ICKU	0000B7H	
Watch prescaler	×	#27	FFFF90 _H	ICR08	0000В8н	
DTP/external interrupt 6 (External interrupt 6)	0	#28	FFFF8C _H	ICKU	ООООВОН	
8/16-bit up/down counter/timer 1 compare	0	#29	FFFF88 _H			
8/16-bit up/down counter/timer 1 underflow/overflow, up/down invert	0	#30	FFFF84 _H	ICR09	0000В9н	
Input capture (channel 0) read (I/O timer)	0	#31	FFFF80 _H	ICR10	0000ВАн	
Input capture (channel 1) read (I/O timer)	0	#32	FFFF7C _H	ICKIU	UUUUDAH	
Output compare (channel 0) match (I/O timer)	0	#33	FFFF78 _H	ICR11	0000ВВн	
Output compare (channel 1) match (I/O timer)	0	#34	FFFF74 _H	ICKII	ООООВВН	
Completion of flash memory write/erase	×	#35	FFFF70 _H	ICR12	0000ВСн	
DTP/external interrupt 7 (External interrupt 7)	0	#36	FFFF6C _H	IONIZ	ООООВСН	
UART0 receive complete	0	#37	FFFF68 _H	ICR13	0000ВДн	
UART0 transmit complete	0	#39	FFFF60 _H	ICR14	0000ВЕн	
I ² C interface	×	#41	FFFF58 _H	ICR15	0000ВГн	
Delayed interrupt generation module	×	#42	FFFF54 _H	101(13	ООООБІ Н	

 [:] Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal.
 : Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal (stop request present).
 : Indicates that the interrupt request flag is not cleared by the I²OS interrupt clear signal.

Note: For resources in which two interrupt sources share the same interrupt number, the I2OS interrupt clear signal clears both interrupt request flags.

■ PERIPHERAL RESOURCES


1. Parallel Ports

(1) I/O Ports

Each port pin can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.

When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data register before switching a pin from input to output, the instruction reads the input level at the pin and not the data register latch value.

(2) Port Direction Registers

Port 0 data register (PDR)	0)										
	•	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000000 _H	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXB	R/W*
Port 1 data register (PDR)	1)										
	•	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
	Address : 000001H	P17	P16	P15	P14	P13	P12	P11	P10	XXXXXXXXB	R/W*
Port 2 data register (PDR)	2)										
t4U.com		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000002H	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXB	R/W*
Port 3 data register (PDR:	3)										
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
	Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB	R/W*
Port 4 data register (PDR)	4)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address: 000004H	P47	P46	P45	P44	P43	P42	P41	P40	1XXXXXXXB	R/W*
Port 5 data register (PDR)	5)	12.45	10.44	1 11 40	1 11 40	1 % 44	1 % 40	1 ' 0	1 '' 0		
	4.1.	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
D	Address : 000005H	P57	P56	P55	P54	P53	P52	P51	P50	XXXXXXX	R/W*
Port 6 data register (PDR)	6)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXX	R/W*
Port 7 data register (PDR)		F 07	F 00	F 0.5	F 04	F 03	F 02	FUI	F 00	XXXXXXXB	IX/VV
VI OIL / data register (I DIC	,,	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
	Address : 000007 _H	_	_	_	P74	P73	P72	P71	P70	XX111в	R/W*
Port 8 data register (PDR)	8)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address : 000008н	_	P86	P85	P84	P83	P82	P81	P80	- XXXXXXXB	R/W*
Port 9 data register (PDR)	9)										
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
	Address : 000009н	P97	P96	P95	P94	P93	P92	P91	P90	XXXXXXXXB	R/W*
Port A data register (PDR	(A)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
	Address: 00000AH			_	_	_	PA2	PA1	PA0	XXX _B	R/W*

R/W : Readable and writable

: Unused
 X : Indeterminate

*: The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.

• Input mode

Read: Reads the corresponding pin level.

Write: Writes to the output latch.

• Output mode

Read: Reads the value of the data register latch.

Write: The value is output from the corresponding pin.

(3) Port Direction Registers

Port 0 direction regis	ster (DDR0)	h;+ 7	hit o	k:+ =	hit 4	hit o	hit O	hit 4	hi+ 0	Initial
	Address : 000010н	bit 7	bit 6	bit 5 D05	bit 4	bit 3	bit 2 D02	bit 1	bit 0	Initial value
	Address : 0000 TOH	D07	D06	D05	D04	D03	D02	D01	D00	00000001
Port 1 direction regis	ster (DDR1)	bii 4e	Lit 4.4	h:: 40	h:: 40	lete a a	bit 40	b.:. 0	h:: 0	laitial calca
	Address : 000011н	bit 15 D17	bit 14 D16	bit 13	bit 12 D14	bit 11 D13	bit 10 D12	bit 9 D11	bit 8	Initial value
		L D17	D10	D13	D14	D13	DIZ	DII	D10	00000000
Port 2 direction regis	ster (DDR2)	L:1 7	h :4 C	b:4 F	b:4 4	b :4.0	L :4 0	h:4 4	h:+ 0	Initial value
	Address : 000012н	bit 7	bit 6 D26	bit 5 D25	bit 4	bit 3 D23	bit 2 D22	bit 1 D21	bit 0	Initial value
	Address . 000012H	D21	D20	D25	D24	D23	DZZ	DZI	D20	0000000
Port 3 direction regis	ster (DDR3)	bii 4e	Lit 4.4	h:: 40	h:: 40	lete a a	bit 40	b.:. 0	h:: 0	laitial valva
	Address : 000013н	bit 15 D37	bit 14	bit 13	bit 12	bit 11	bit 10 D32	bit 9 D31	bit 8	Initial value
	Address : 000013H	D37	D30	D33	D34	D33	D32	DST	D30	0000000
Port 4 direction regis	ster (DDR4)	h:+ 7	hit C	hi+ F	bit 4	hit 2	hi+ O	hi+ 1	hit O	Initial value
	Address : 000014н	bit 7	bit 6 D46	bit 5 D45	bit 4	bit 3 D43	bit 2 D42	bit 1 D41	bit 0	-0000000B
	Address : 000014h		D40	D43	044	D43	D4Z	D41	D40	-0000000
Port 5 direction regis	ster (DDR5)	bit 15	bit 14	bit 13	hit 10	hi+ 11	bit 10	bit 9	bit 8	Initial value
	Address : 000015н	D57	D56	D55	bit 12 D54	bit 11 D53	D52	D51	D50	00000000
	Address : 000013H		200	200	501	200	D02	501	200	0000000
Port 6 direction regis	ster (DDR6)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	Address : 000016н	D67	D66	D65	D64	D63	D62	D61	D60	00000000E
										2 2 2 2 2 2 2 2 2 2
Port 7 direction regis	ster (DDR7)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Address : 000017 _H		_	_	D74	D73	_	—		00в
	7.00.000 7.71		1	l	1		l			
Port 8 direction regis	ster (DDR8)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	Address : 000018н		D86	D85	D84	D83	D82	D81	D80	-0000000
							_	-		
Port 9 direction regis	ster (DDR9)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Address : 000019н	D97	D96	D95	D94	D93	D92	D91	D90	00000000
							_	-		
Port A direction regis	ster (DDRA)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	Address : 00001Ан					_	DA2	DA1	DAO	000в
			1							
	R/W: Readable and	writable								

(Continued)

- *: The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.
 - Input mode
 - Read: Reads the corresponding pin level.
 - Write: Writes to the output latch.
 - · Output mode
 - Read: Reads the value of the data register latch.
 - Write: The value is output from the corresponding pin.

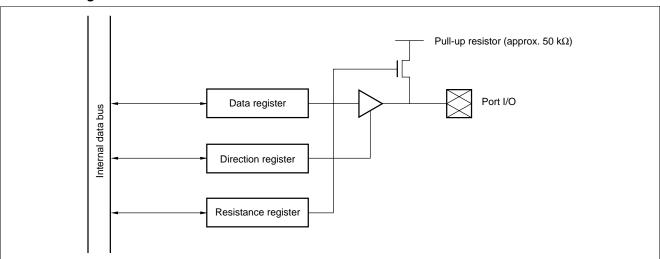
When pins are used as ports, the register bits control the corresponding pins as follows.

- 0: Input mode
- www.DataSheet4U.com 1: Output mode

Bits are set to "0" by a reset.

• P47, P70 to P72

No DDR for this port. Data is always available in this port, so when using P70 and P71 as I2C pin, set PDR value to "1". (Otherwise when using P70 and P71 by themselves, turn off the I2C.)


As this port is open-drain output style, so when using this port as an input port, in order to turn off the output transister, set the output data resister value to "1" and add the pull up resister to the external pin.

(4) Port Resistance Registers

• Register configuration

Port 0 resistance register (RDR0)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value Access
	Address: 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000в R/W
Port 1 resistance registe	r (RDR1)									
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value Access
	Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	00000000B R/W
U.com • Port 6 resistance register (RDR6)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value Access
	Address: 00001EH	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	00000000в R/W
R/W : Readable and writable										

Block diagram

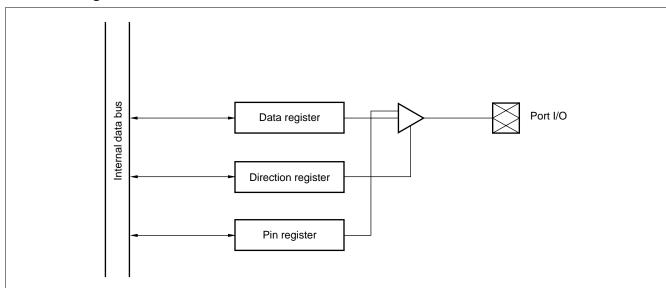
Notes: • Input resistance register R/W

Controls the pull-up resistor in input mode.

- 0: Pull-up resistor disconnected in input mode.
- 1: Pull-up resistor connected in input mode.

The setting has no meaning in output mode (pull-up resistor disconnected).

The direction register (DDR) sets input or output mode.


- The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).
- This function is disabled when using an external bus mode. In this case, do not write to this register.

(5) Port Pin Register

Register configuration

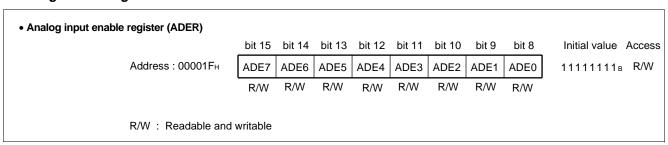
• Port 4 pin register (ODR4) bit 7 bit 6 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value Access Address: 00001BH **OD46 OD45** OD44 OD43 **OD42** OD41 **OD40** -0000000в R/W Readable and writable Unused R/W

www.DataSheet4U. OBlock diagram

Notes: • Pin register R/W

Performs open-drain control in output mode.

- 0: Operate as a standard output port in output mode.
- 1: Operate as an open-drain output port in output mode.


The setting has no meaning in input mode (output Hi-z).

The direction register (DDR) sets input or output mode.

• This function is disabled when using an external bus mode. In this case, do not write to this register.

(6) Analog Input Enable Register

Register configuration

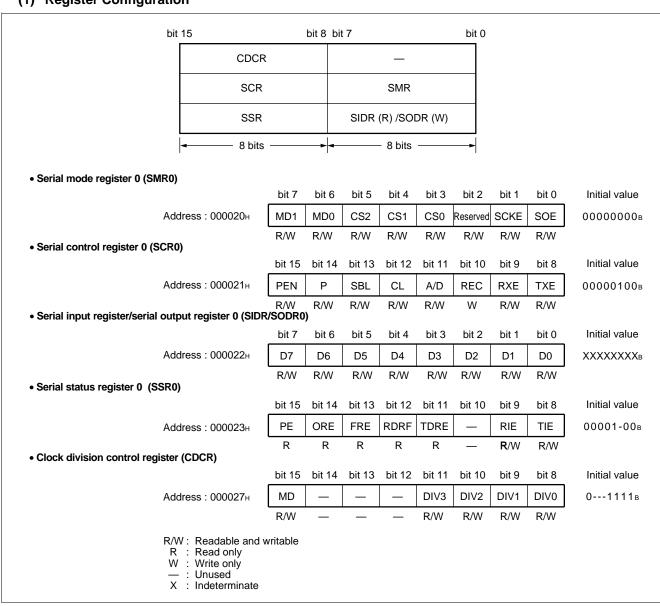
Controls each port 5 pin as follows.

0: Port input mode

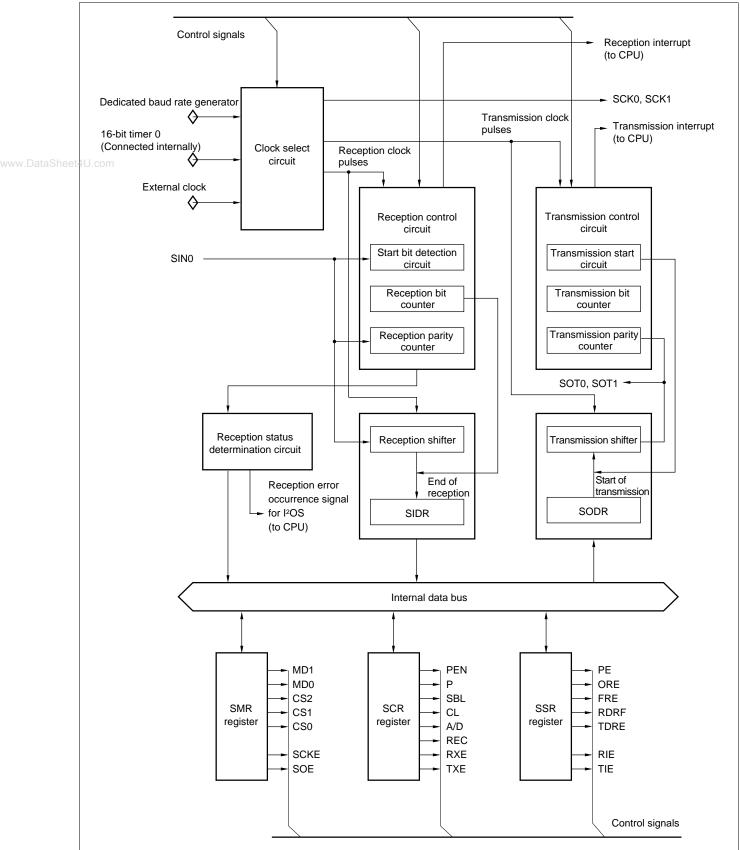
1: Analog input mode

Set to "1" by a reset.

2. UART


The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous communications. The UART has the following features.

- Full duplex, double buffered
- Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer
- Supports multi-processor mode
- Built-in dedicated baud rate generator


Asynchronous : 9615 bps, 31250 bps, 4808 bps, 2404 bps and 1202 bps For a 6, 8, 10, 12, or 16 MHz CLK synchronous : 1 Mbps, 500 kbps, 250 kbps, 125 kbps, 115.2 kbps and 62.5 kbps clock.

- www.DataSheet4U. Supports flexible baud rate setting using an external clock
 - Error detect function (parity, framing, and overrun)
 - NRZ type transmission signal
 - Intelligent I/O service support

(1) Register Configuration

(2) Block Diagram

3. I/O Extended Serial Interface

I/O extended serial interface consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSB-first or MSB-first data transfer can be selected.

The following two serial I/O operation modes are available.

- Internal shift clock mode: Data transfer is synchronized with the internal clock.
- External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By manipulating the general-purpose port that shares the external pin (SCK), this mode also enables the data transfer operation to be driven by CPU instructions.

(1) Register Details

• Serial mode control status register 0, 1 (SMCS0, SMCS1)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 Initial value Address: 000025H SMD1 SMD0 BUSY STOP **STRT** 0000010в SMD2 SIE SIR 000029н R/W R/W R/W R/W*1 R/W R/W*2 R/W R hit 7 hit 6 bit 5 hit 4 hit 3 bit 2 bit 1 bit 0 Initial value Address: 000024H ----ООООВ MODE BDS SOE SCOE 0000284 R/W R/W R/W R/W

• Serial data register 0, 1 (SDR0, SDR1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value Address: 000026н D7 D6 D5 D4 D3 D2 D1 D0 XXXXXXXX_B 00002AH R/W R/W R/W R/W R/W R/W R/W R/W

R/W: Readable and writable

R : Read only— : UnusedX : Indeterminate

*1: Only "0" can be written.

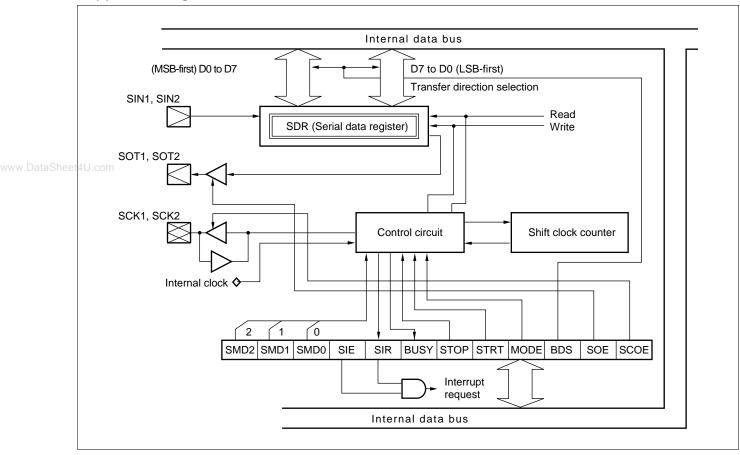
*2: Only "1" can be written. Reading always returns "0".

This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.

bit 3: Serial mode selection bit (MODE)

This bit selects the conditions for starting operation from the halted state. Changing the mode during operation is prohibited

MODE Operation							
0	Start when STRT is set to "1". [Initial value]						
1	Start on reading from or writing to the serial data register.						


The bit is initialized to "0" by a reset. The bit is readable and writable. Set to "1" when using the intelligent I/O service.

bit 2: Transfer direction selection bit (BDS: Bit Direction Select)

Selects as follows at the time of serial data input and output whether the data are to be transferred in the order from LSB to MSB or vice versa.

MODE	Operation					
0	LSB-first [Initial value]					
1	MSB-first					

(2) Block Diagram

4. A/D Converter

The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of 5.2 μs per channel (for a 16 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit resolution
- Eight program-selectable analog input channels

Single conversion mode: Selectively convert a one channel.

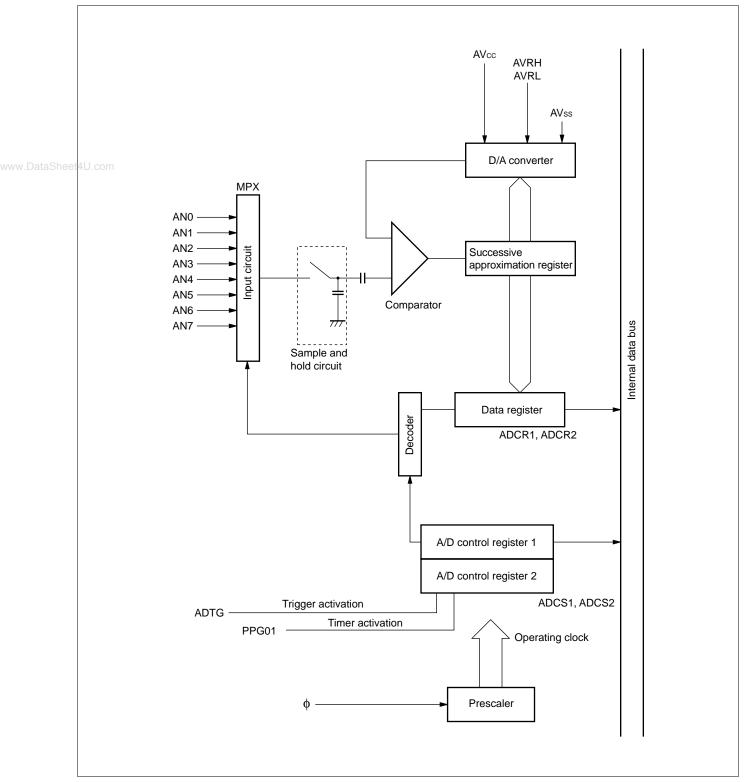
Scan conversion mode: Continuously convert multiple channels. Maximum of 8 program-

selectable channels.

Continuous conversion mode: Repeatedly convert specified channels.

Stop conversion mode: Convert one channel then halt until the next activation. (Enables

synchronization of the conversion start timing.)

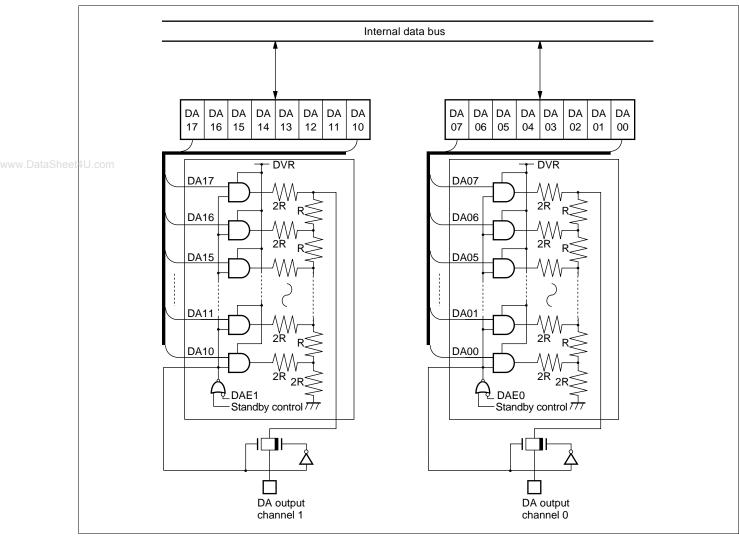

• An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D conversion. This interrupt can activate I²OS to transfer the result of A/D conversion to memory and is suitable for continuous operation.

• Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

	bit	15			bit 8	bit 7			bit 0	
		ADCS2				ADCS1				
			ADC	R2		ADCR1				
		4	8 bi	ts —	-	4	8 bit	s —	-	
Control status register 1 (ADCS1)									
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	Address : 000036н	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	0000000в
Control status register 2 (ADCS2)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Address: 000037H	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	DA	0000000в
Data register 1 (ADCR1)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	Address: 000038H	7	6	5	4	3	2	1	0	XXXXXXXXB
Data register 2 (ADCR2)		R	R	R	R	R	R	R	R	
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	Address : 000039н	_	_	_	_	_	_	9	8	XXXXXXXXB
		R	R	R	R	R	R	R	R	
	R/W: Readable and w R: Read only X: Indeterminate	ritable								

(2) Block Diagram


5. D/A Converter

D/A converter is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.

(1) Register Configuration

	D/A converter data register 0 (DAT0)										
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
	Address : 00003AH	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	XXXXXXXXB	
	D/A converter data register 1 (DAT1)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
et4		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	
	Address: 00003B _H	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	XXXXXXXXB	
	D/A control register channel 0 (DACR0)		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
	Address: 00003CH	_	_	_		_	_	_	DAE0	Ов	
	D/A control register channel 1 (DACR1)	_	_	_	_	_	_	_	R/W		
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	
	Address: 00003DH	_	_		l	-	_	_	DAE1	Ов	
		_	_	_	_	_	_	_	R/W		
	R/W: Readable and wr —: Unused X: Indeterminate	itable									

(2) Block Diagram

6. 8/16-bit PPG

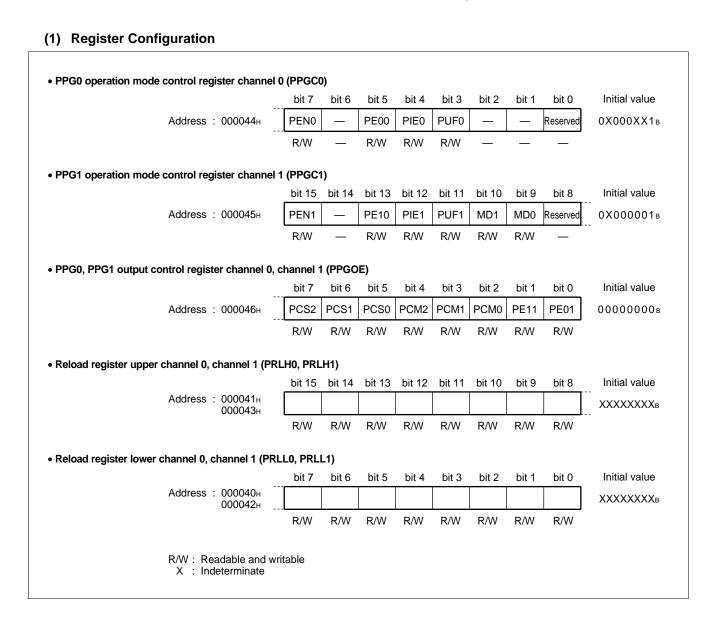
8/16-bit PPG is an 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.

The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

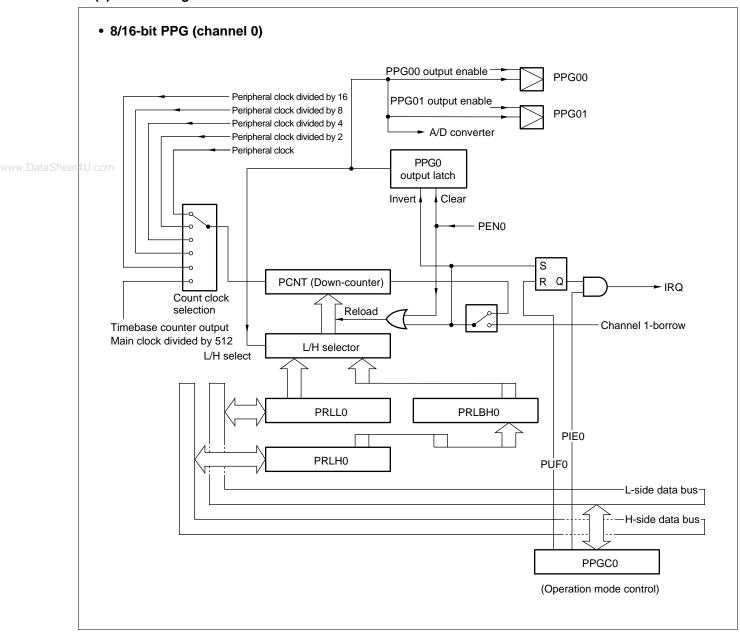
• 8-bit PPG output in two channels independent operation mode:

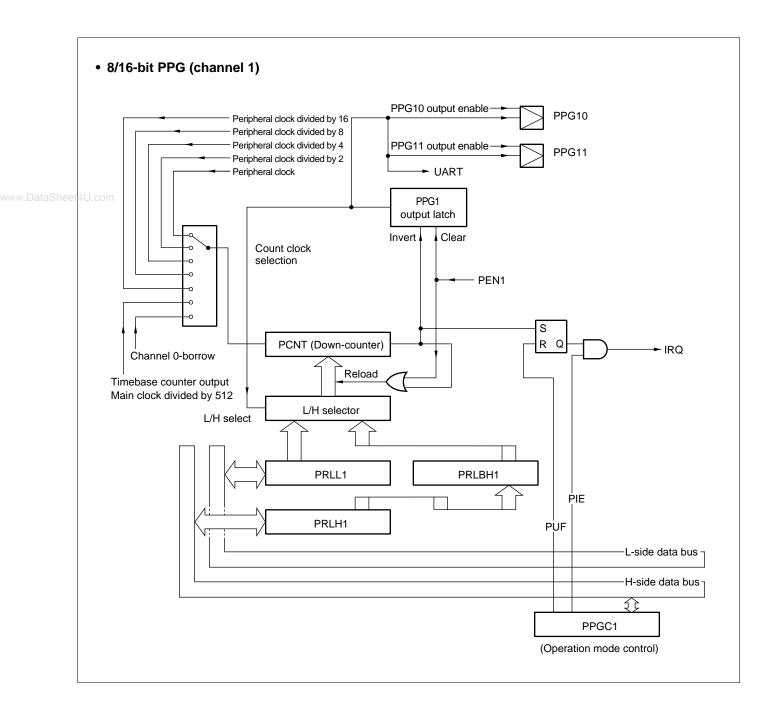
Two independent PPG output channels are available.

16-bit PPG output operation mode :


One 16-bit PPG output channel is available.

• 8 + 8-bit PPG output operation mode: Variable-period 8-bit PPG output operation is available by using the


output of channel 0 as the clock input to channel 1.


• PPG output operation : Outputs pulse waveforms with variable period and duty ratio. Can be

used as a D/A converter in conjunction with an external circuit.

(2) Block Diagram

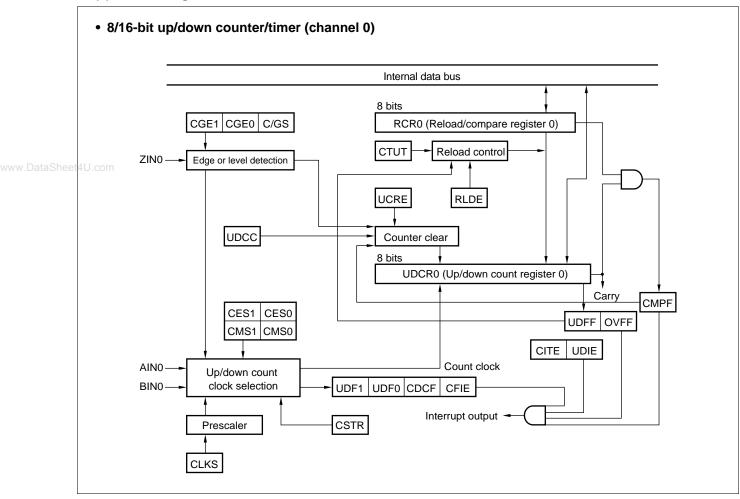
7. 8/16-bit Up/Down Counter/Timer

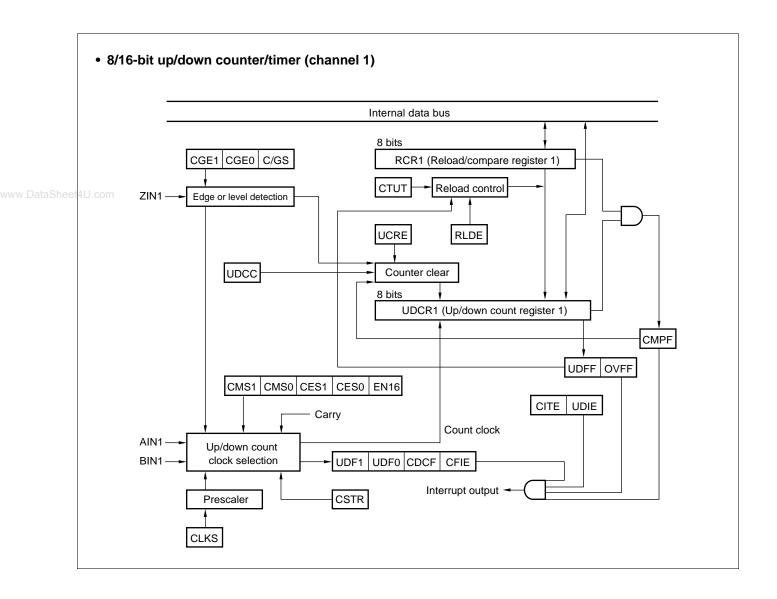
8/16-bit up/down counter/timer is an up/down counter/timer and consists of six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, and their control circuits.

(1) Main Functions

 The 8-bit count register can count in 	the range 0 to 256 (or 0 to 65535 in 1 $ imes$ 16-bit operation mode).
 The count clock selection can select 	t between four different count modes.
Count modes —	Timer mode
	Up/down counter mode
	Phase difference count mode (x 2)
	Phase difference count mode (× 8)
 Two different internal count clocks a 	re available in timer mode.
Count clock (at 16 MHz operation)	125 ns (8 MHz: Divide by 2)
` '	0.5 μs (1 MHz: Divide by 8)
 In up/down count mode, you can se 	lect which edge to detect on the external pin input signal.
•	Detect falling edges
20.00.00 00.90	Detect rising edges
	Detect both rising and falling edges
	Edge detection disabled
 Phase difference count mode is suita 	ible for motor encoder counting. By inputting the A, B, and Z phase outputs
	otational angle, speed, or similar count can be implemented simply.
 Two different functions can be select 	
ZIN pin	Counter clear function
F	Gate function
 Compare and reload functions are a 	available and can be used either independently or together. A variable-
width up/down count can be perform	
Compare/reload function ———	,
Compare/relead fulletion	occurs.)
	Compare function (Output an interrupt and clear the
	counter when a compare occurs.)
	Reload function (Output an interrupt and reload when
	an underflow occurs.)
	Compare/reload function
	(Output an interrupt and clear the counter when a
	compare occurs. Output an interrupt and reload when
	an underflow occurs.)

• Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set independently.


Compare/reload disabled


- The previous count direction can be determined from the count direction flag.
- An interrupt can be generated when the count direction changes.

(2) Register Configuration

bit 1	5	bit 8 bit 7 bit								
	UD	CR1		UDCR0 RCR0						
	RC	CR1								
	ed area)		CS	R0					
	CC	RH0			CCI	RL0				
om	m (Revers)		cs	R1				
	CC	RH1			CCI	RL1				
-	8	bits —	-	-	—-8 t	oits —	•	-		
Up/down count register channel 0	(UDCR0)									
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	: 000070н	D07	D06	D05	D04	D03	D02	D01	D00	0000000в
Up/down count register channel 1	(UDCR1)	R	R	R	R	R	R	R	R	
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	: 000071н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в
 Reload compare register channel ((RCR0)	R	R	R	R	R	R	R	R	
,	/	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	: 000072н	D07	D06	D05	D04	D03	D02	D01	D00	0000000в
Reload compare register channel 1	(RCR1)	W	W	W	W	W	W	W	W	
- Roloda compare register charmer	(itoiti)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	: 000073н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в
- Countar atatua register chan10	obonnel 4 (CC	W	W	W	W	W	W	W	W	
Counter status register channel 0,	CHAIHELT (CS	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	s : 000074н 000078н	CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R	R	
Counter control register channel 0.	, cnannel 1 (C	bit 7	CRL1) bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	S: 000076H			UCRE		UDCC		CGE1	CGE0	00001000в
	00007Ан	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	00000000в
Counter control register channel 0	(CCRH0)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	з : 000077н	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	00000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Counter control register channel 1	(CCRH1)	hit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	: 00007Вн	bit 15	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	Initial value X0001000в
Addiess			R/W	R/W	R/W	R/W	R/W	R/W	R/W	YOOGIOOOB
R : R W : W - : U	eadable and w ead only 'rite only nused ndeterminate	vritable								

(3) Block Diagram

8. Clock Output Control Register

Clock output control register outputs the divided machine clock.

(1) Register Configuration

• Clock control register (CLKR)

www.DataSheet4U.com

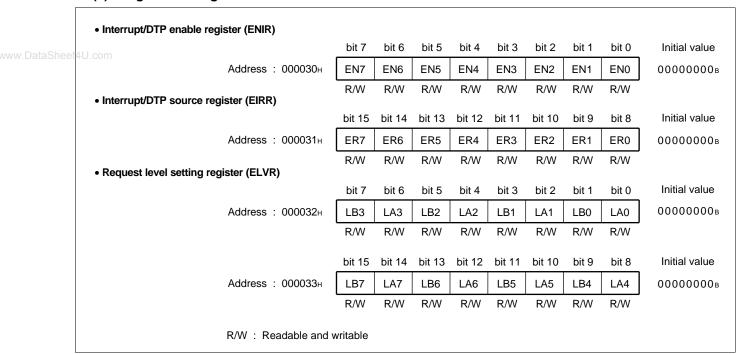
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value Address: 00003EH CKEN FRQ2 FRQ1 FRQ0 ----0000в R/W R/W R/W R/W

R/W: Readable and writable

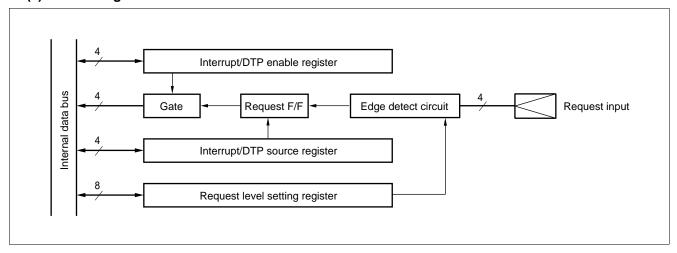
— : Unused

bit 3: Clock output enable bit (CKEN)

MODE	Operation						
0	Operate as a standard port.						
1	Operate as the clock output.						

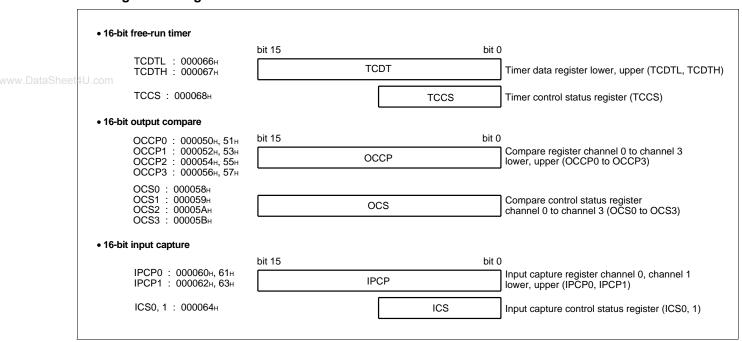

bit 2 to bit 0: Clock output frequency select bit (FRQ2 to FRQ0)

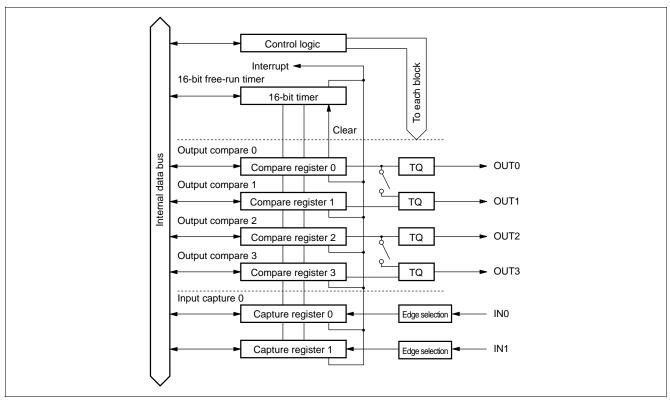
FRQ2	FRQ1	FRQ0	Output clock	φ = 16 MHz	φ = 8 MHz	$\phi = 4 \text{ MHz}$
0	0	0	φ/21	125 ns	250 ns	500 ns
0	0	1	φ/ 2 ²	250 ns	500 ns	1 μs
0	1	0	ф/ 2 ³	500 ns	1 μs	2 μs
0	1	1	φ/2 ⁴	1 μs	2 μs	4 μs
1	0	0	φ/ 2 ⁵	2 μs	4 μs	8 µs
1	0	1	ф/2 ⁶	4 μs	8 µs	16 μs
1	1	0	φ/27	8 µs	16 μs	32 μs
1	1	1	φ/2 ⁸	16 μs	32 μs	64 μs


9. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F²MC-16L CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on "H" and "L" levels can be selected, giving a total of four types.

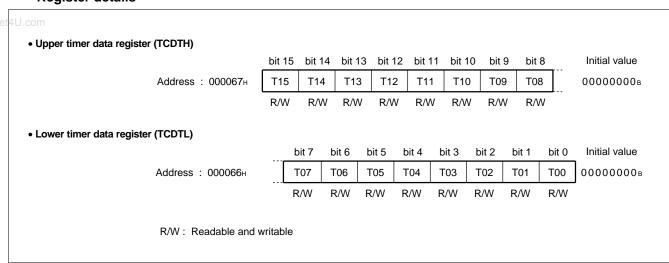
(1) Register Configuration


(2) Block Diagram


10. 16-bit I/O Timer

The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare, and two input capture modules. Based on the 16-bit free-run timer, these functions can be used to generate two independent waveform outputs and to measure input pulse widths and external clock periods.

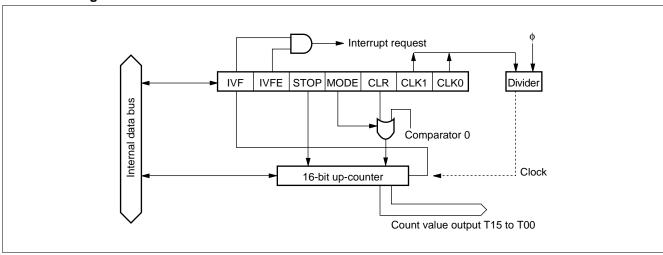
• Register configuration


Block diagram

(1) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the timer/counter is used as the base time for the input capture and output compare.

- The operating clock for the counter can be selected from four different clocks. Four internal clocks ($\phi/4$, $\phi/16$, $\phi/32$, $\phi/64$)
- Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs (the appropriate mode must be set for a compare match).
- The counter can be initialized to 0000_H by a reset, software clear, or compare match with compare register 0.
- · Register details

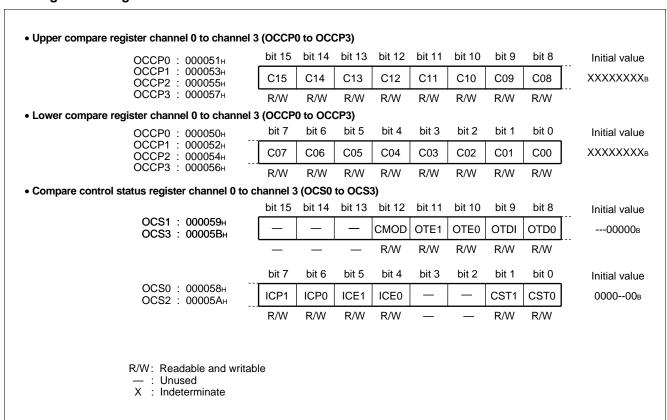


The count value of the 16-bit free-run timer can be read from this register. The count is cleared to " 0000_B " by a reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted (STOP = "1"). Always use word access.

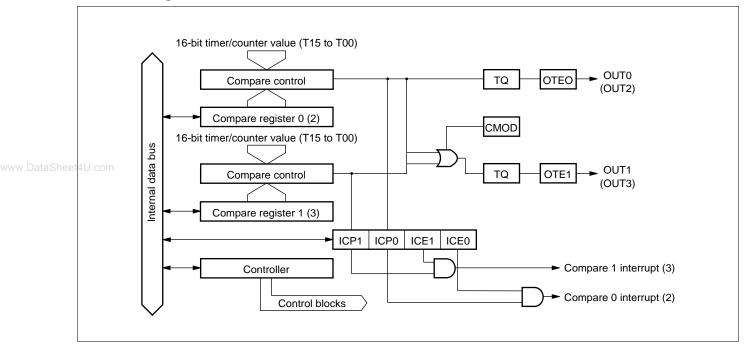
The 16-bit free-run timer is initialized by the following.

- Reset
- The clear bit (CLR) of the control status register
- A match between the timer/counter value and compare register 0 of the output compare (if the appropriate mode is set)

· Block diagram



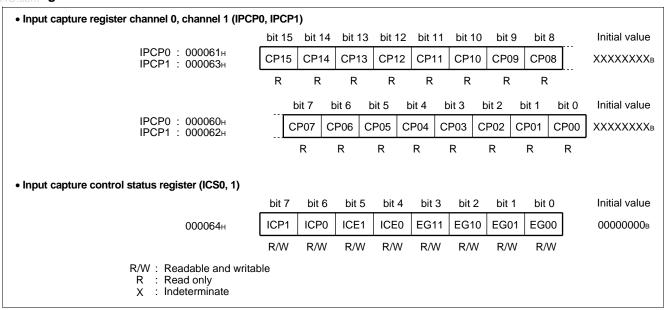
(2) Output Compare


The output compare consists of two 16-bit compare registers, compare output latches, and control registers. The modules can invert the output level and generate an interrupt when the 16-bit free-run timer value matches the compare register value.

- The four compare registers can be operated independently.
 Each compare register has a corresponding output pin and interrupt flag.
- The four compare registers can be paired to control the output pins. Invert the output pins using the four compare registers.
- Initial values can be set for the output pins.
- An interrupt can be generated when a compare match occurs.

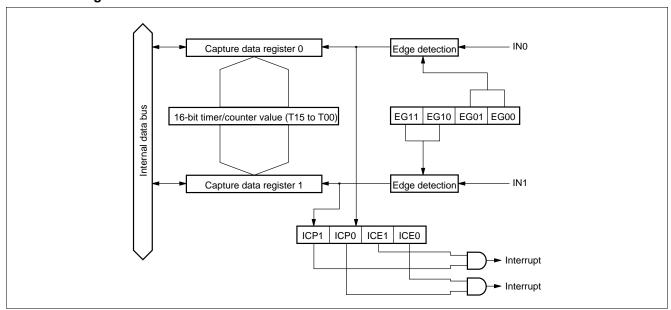
• Register configuration

• Block diagram


(3) Input Capture

The input capture consists of two independent external input pins, their corresponding capture registers, and a control register. The value of the 16-bit free-run timer can be stored in the capture register and an interrupt generated when the specified edge is detected on the signal from the external input pin.

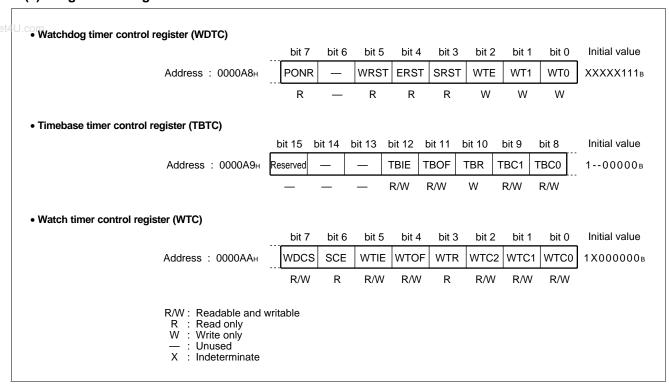
- The edge to detect on the external input signal is selectable.
 Detection of rising edges, falling edges, or either edge can be specified.
- The two input capture channels can operate independently.
- An interrupt can be generated on detection of the specified edge on the external input signal.


The input capture interrupt can activate the intelligent I/O service.

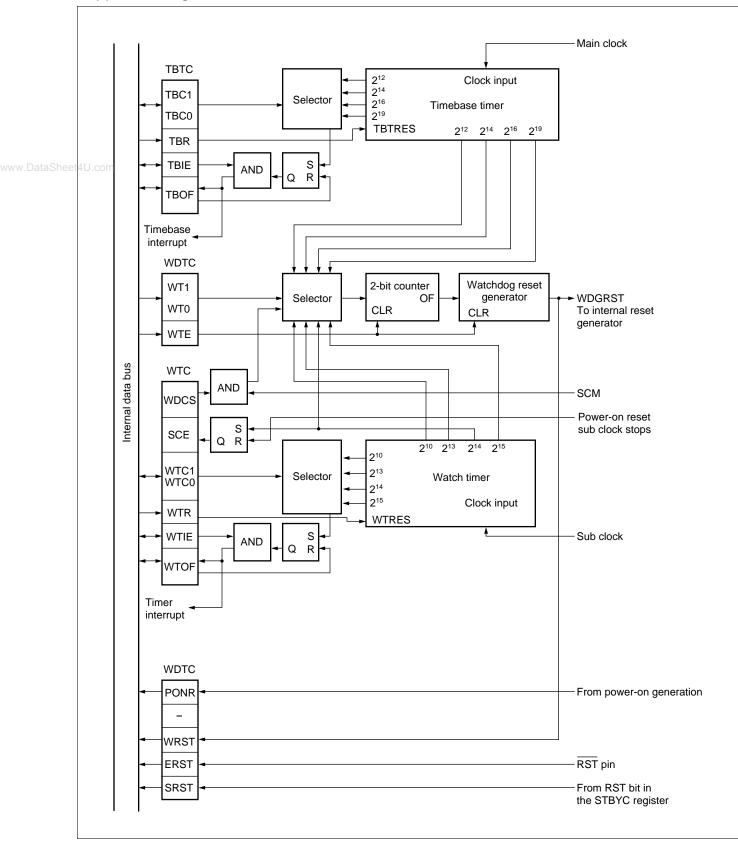
Register details

The 16-bit free-run timer value is stored in these registers when the specified edge is detected on the input waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)

Block diagram


11. Watchdog Timer, Timebase Timer, and Watch Timer

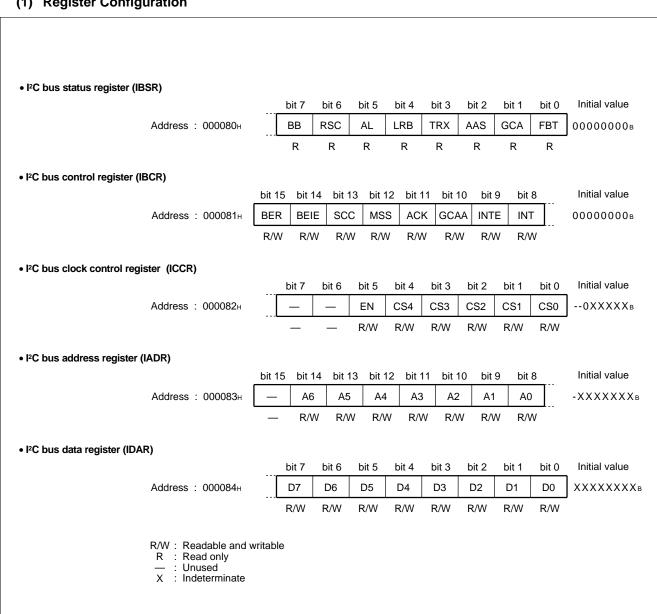
The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase timer or the 15-bit watch timer as aclock source, a control register, and a watchdog reset controller.


The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase timer uses the main clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.

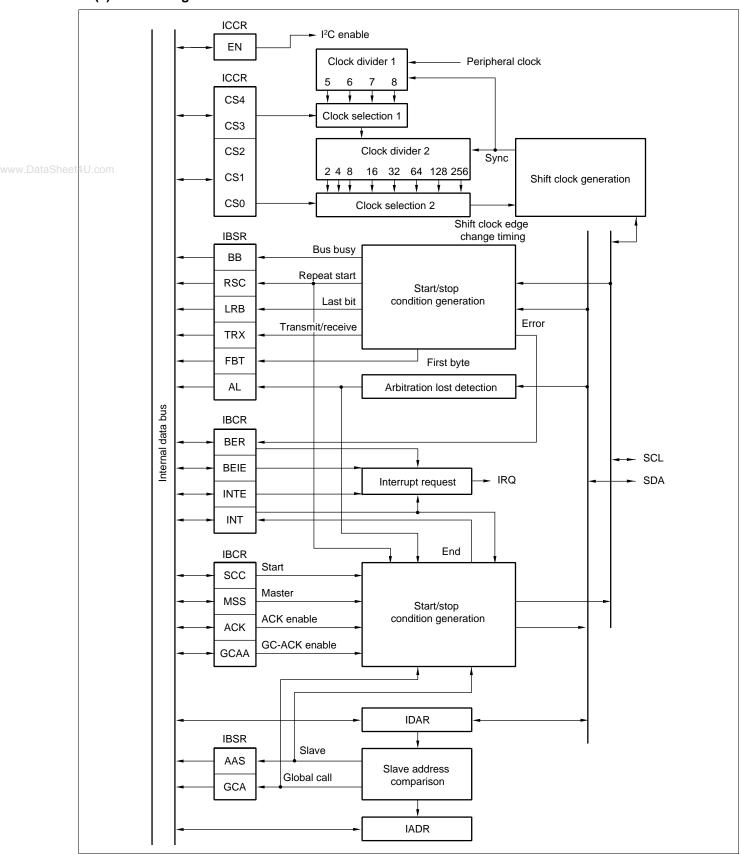
The watch timer consists of a 15-bit timer and a circuit that controls interval interrupts. Note that the watch timer uses the sub clock, regardless of the setting of the MCS bit SCS bit in CKSCR.

(1) Register Configuration

(2) Block Diagram

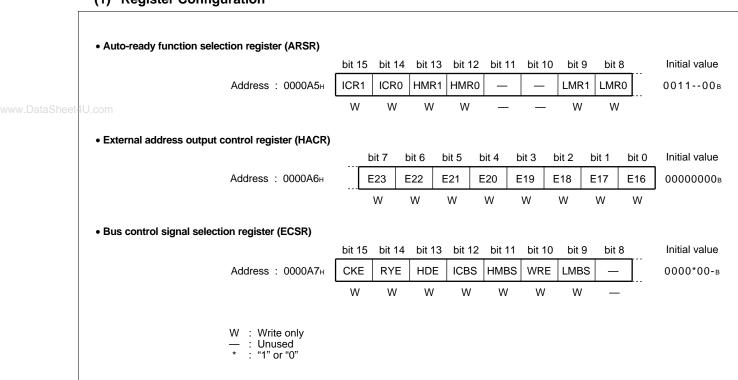


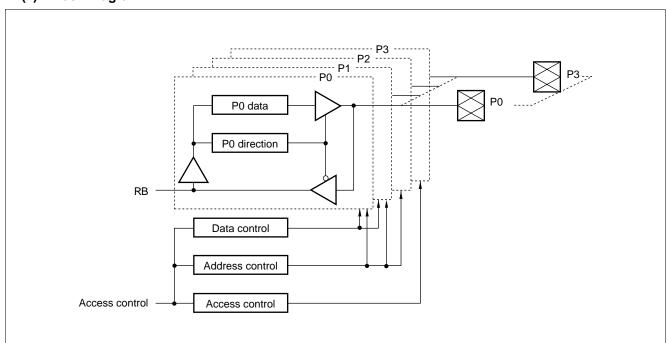
12. I²C Interface


The I²C interface is a serial I/O port that supports the Inter-IC bus and operates as a master/slave device on the I²C bus. This module has the following features:

- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transfer direction detection function
- Start condition repeat generation and detection function
- · Bus error detection function

(1) Register Configuration


(2) Block Diagram


13. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins required to extend the CPU's address/data bus outside the device.

(1) Register Configuration

(2) Block Diagram

Low-power Consumption Mode (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, Clock Multiplier Function)

The following are the operating modes: PLL clock mode, PLL sleep mode, PLL watch mode, pseudo-watch mode, main clock mode, main sleep mode, main watch mode, main stop mode, sub clock mode, sub sleep mode, sub watch mode, and sub stop mode. Aside from the PLL clock mode, all of the other operating modes are low-power consumption modes.

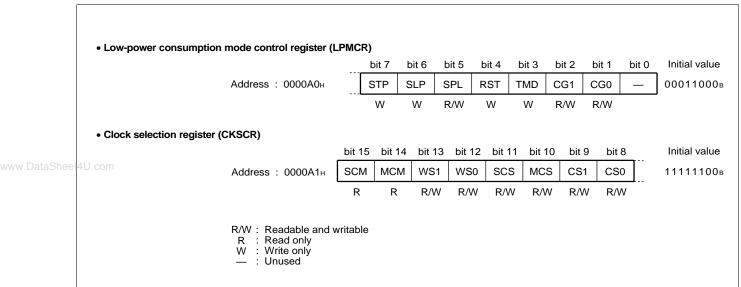
In main clock mode and main sleep mode, the main clock (main OSC oscillation clock) and the sub clock (sub OSC oscillation clock) operate. In these modes, the main clock divided by 2 is used as the operation clock, the sub clock (sub OSC oscillation clock) is used as the timer clock, and the PLL clock (VCO oscillation clock) is stopped.

In sub clock mode and sub sleep mode, only the sub clock operates. In these modes, the sub clock is used as the operation clock, and the main clock and PLL clock are stopped.

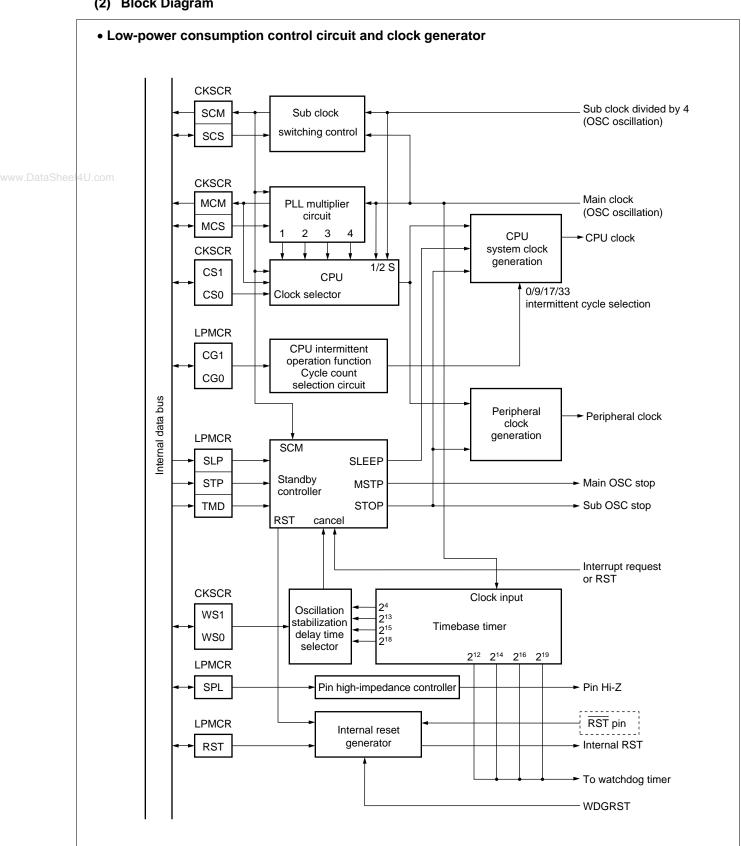
In PLL sleep mode and main sleep mode, only the CPU's operation clock is stopped; all clocks other than the CPU clock operate.

In pseudo-watch mode, only the watch timer and timebase timer operate.

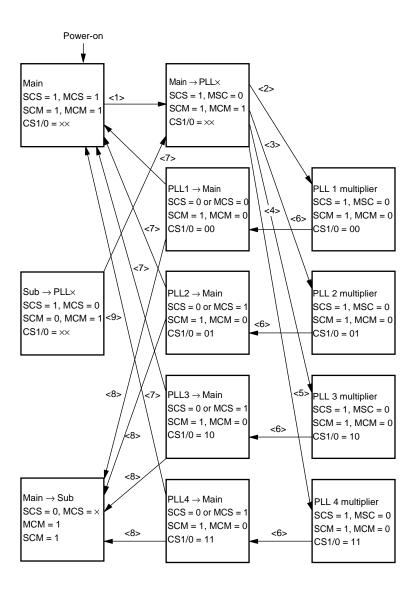
In PLL watch mode, main watch mode, and sub watch mode, only the watch timer operates. In this mode, only the sub clock is used for operation, while the main clock and the PLL clock are stopped (the difference between the PLL watch mode, the main watch mode and the sub watch mode is that it resumes operation after an interrupt in the PLL clock mode, the main clock mode, and the sub clock mode respectively, and there is no reference concerning about clock mode operation).

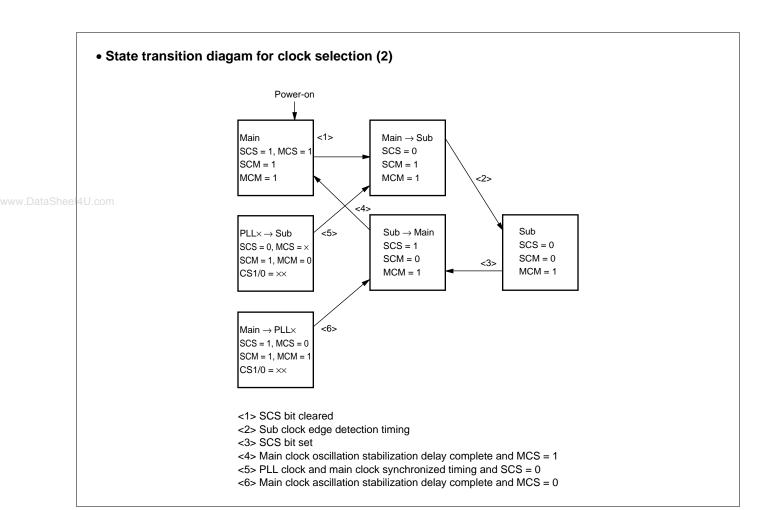

The main stop mode, sub stop mode, and hardware standby mode stop oscillation, making it possible to retain data while consuming the least amount of power. (The difference between the main stop mode and the sub stop mode is that it resumes operation in the main clock mode and the sub clock mode respectively, and there is no reference concerning about stop mode operation).

The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power consumption by reducing the execution speed of the CPU while supplying a high-speed clock and using on-chip resources.

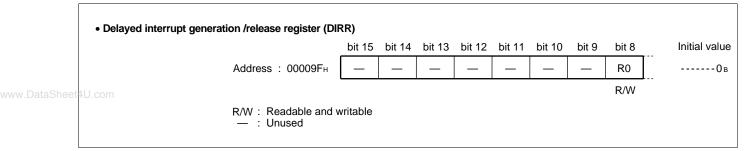

The PLL clock multiplier can be selected as either 2, 4, 6, or 8 by setting the CS1 and CS0 bits. These clocks are divided by 2 to be used as a machine clock.

The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode is woken up.

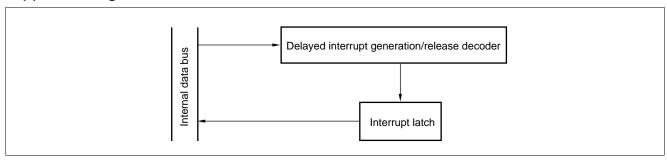

(1) Register Configuration


(2) Block Diagram

• State transition diagram for clock selection (1)


- <1> MCS bit cleared and SCS bit set
- <2> PLL clock oscillation stabilization delay complete and CS1/0 = 00
- <3> PLL clock oscillation stabilization delay complete and CS1/0 = 01
- <4> PLL clock oscillation stabilization delay complete and CS1/0 = 10
- <5> PLL clock oscillation stabilization delay complete and CS1/0 = 11
- <6> MCS bit set or SCS bit cleared
- <7> PLL clock and main clock synchronized timing and SCS = 1
- <8> PLL clock and main clock synchronized timing and SCS = 0
- <9> Main clock oscillation stabilization delay complete and MCS = 0

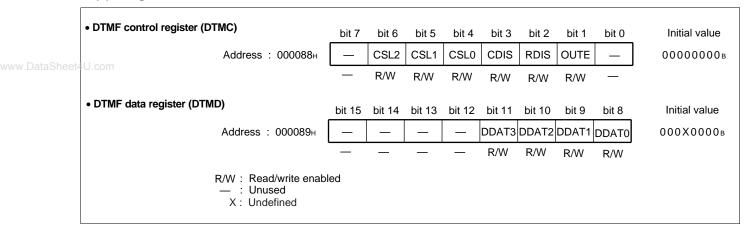
15. Delayed Interrupt Generation Module


The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F²MC-16L CPU can be generated and cleared by software using this module.

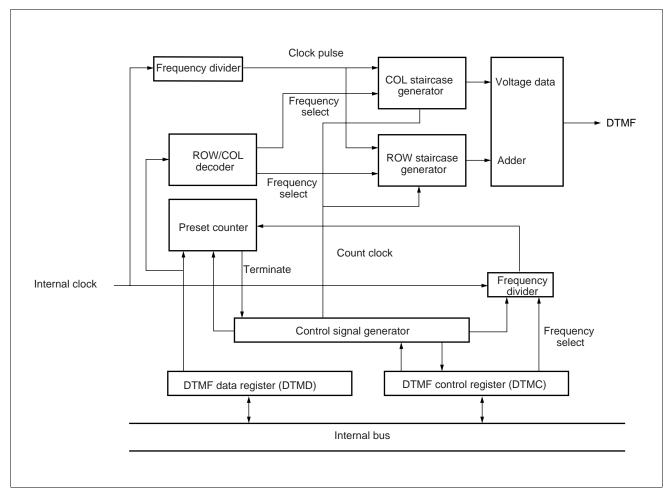
(1) Register Details

The DIRR register controls generation and clearing of delayed interrupt requests. Writing "1" to the register generates a delayed interrupt request. Writing "0" to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either "0" or "1" can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.

(2) Block Diagram


16. DTMF Generator

The DTMF (dual tone multifrequency) generator is a module that can generate a series of audio tones as heard from a push-button telephone or a radio transceiver with a keypad. It has the following features:


Capable of generating DTMF tones continuously (or even a single tone)

Capable of generating all CCITT tones: 0 to 9, *, #, A to D

(1) Register list

(2) Block diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

•	Bananadan	Comple of	Va	lue	I I m !4	Domonico		
	Parameter	Symbol	Min.	Max.	Unit	Remarks		
•		Vcc1	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A,		
		Vcc2	Vss - 0.3	Vss + 7.0	V	MB90F654A		
www.DataShee	4U.com	Vcc (Vcc1 = Vcc2)	Vss - 0.3	Vss + 7.0	V	MB90P653A		
		AVcc	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A, MB90F654A *1		
	Power supply voltage		Vss - 0.3	Vss + 7.0	V	MB90P653A *1		
		AVRH	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A, MB90F654A		
		AVRL	Vss - 0.3	Vss + 7.0	V	MB90P653A		
		DVRH	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A, MB90F654A		
			Vss - 0.3	Vss + 7.0	V	MB90P653A		
	Input voltage	Vı	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A, MB90F654A *2		
			Vss - 0.3	Vss + 7.0	V	MB90P653A *2,*6		
	Output voltage	Vo	Vss - 0.3	Vss + 4.0	V	MB90652A/653A/654A, MB90F654A *2		
	- a-p a a a a a a g a		Vss - 0.3	Vss + 7.0	V	MB90P653A *2,*6		
	"L" level maximum	loL	_	10	mA	MB90652A/653A/654A, MB90F654A *3		
	output current		_	15	mA	MB90P653A *3		
	"L" level average output current	lolav	_	3	mA	MB90652A/653A/654A, MB90F654A *4		
			_	4	mA	MB90P653A *4		
	"L" level total maximum	ΣΙοι	_	60	mA	MB90652A/653A/654A, MB90F654A		
	output current		_	100	mA	MB90P653A		
	"L" level total average	ΣΙΟΙΑΥ	_	30	mA	MB90652A/653A/654A, MB90F654A *5		
	output current		_	50	mA	MB90P653A *5		
	"H" level maximum	Іон	_	-10	mA	MB90652A/653A/654A, MB90F654A *3		
	output current		_	-15	mA	MB90P653A *3		

(Continued)

(Continued)

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks		
Parameter	Symbol	Min.	Max.	Ullit	Remarks		
"H" level average output current	І онаv	_	-3	mA	MB90652A/653A/654A, MB90F654A *4		
output current		_	-4	mA	MB90P653A *4		
"H" level total maximum	ΣІон	_	-60	mA	MB90652A/653A/654A, MB90F654A		
output current		_	-100	mA	MB90P653A		
"H" level total average output current	ΣΙομαν	_	-30	mA	*5		
Power consumption	P _D	_	200	mW			
Operating temperature	TA	-40	+85	°C			
Storage temperature	Tstg	- 55	+150	°C			

^{*1:} AVcc, AVRH, AVRL and DVRH must not exceed Vcc (Vcc1 and Vcc2 are contained). Similarly, AVRL must not exceed AVRH.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V₁ and V₀ must not exceed V_{CC} (V_{CC1} and V_{CC2} are contained) + 0.3 V.

^{*3:} Maximum output current specifies the peak value or one corresponding pin.

^{*4:} The average output current is the rating for the current from an individual pin averaged over 100 ms.

^{*5:} The average total output current is the rating for the current from all pins averaged over 100 ms.

^{*6:} Applies to the P47 and P70 to P72 on the MB90652A/653A/654A and MB90F654A.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Ollit	Remarks
		2.2	3.6	V	For normal operation (MB90652A/653A/654A)
	Vcc1	2.7	3.6	V	For normal operation (MB90P653A)
		2.4	3.6	V	For normal operation (MB90F654A)
et4U.com		2.2	5.5	V	For normal operation (MB90652A/653A/654A)
	Vcc2	2.7	5.5	V	For normal operation (MB90P653A)
		2.4	5.5	V	For normal operation (MB90F654A)
Power supply voltage		1.8	3.6	V	To maintain statuses in stop mode (MB90652A/653A/654A)
	Vcc1	1.8	5.5	V	To maintain statuses in stop mode (MB90P653A)
		1.8	3.6	V	To maintain statuses in stop mode (MB90F654A)
		1.8	5.5	V	To maintain statuses in stop mode (MB90652A/653A/654A)
	Vcc2	1.8	5.5	V	To maintain statuses in stop mode (MB90P653A)
		1.8	5.5	V	To maintain statuses in stop mode (MB90F654A)
	VIH	0.7 Vcc	Vcc + 0.3	V	Pins other than V _{IHS} and V _{IHM}
"H" level input voltage	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins
Tr lever input voltage	VIHM	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	VIHT	2.4	Vcc + 0.3	V	TTL input pins
	VIL	Vss - 0.3	0.3 Vcc	V	PIns other than VILS and VILM
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
L level iliput voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILT	Vss - 0.3	0.8	V	TTL input pins
Operating temperature	TA	-40	+85	°C	

Note: I²C must be used at above 2.7 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(MB90652A/653A/654A: Vcc = 2.2 V to 3.6 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$) (MB90P653A: Vcc = 2.7 V to 3.3 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$) (MB92F654A: Vcc = 2.4 V to 3.6 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

			ъ.		Va	lue			
	Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	"H" level	Maria	Pins except	Vcc2 = 4.5 V, $IoH = -4.0 mA$	Vcc2- 0.5		_	V	When the 5-V power supply is used
	output voltage*2	Vон	P47, P70 to P72	$V_{CC} = 2.7 \text{ V},$ $I_{OH} = -1.6 \text{ mA}$	Vcc1- 0.3			V	When the 3-V power supply is used *1
www.DataShee	"L" level output	Vol	All output	Vcc2 = 4.5 V, IoL = 4.0 mA	_		0.4	V	When the 5-V power supply is used
	voltage*2	VOL	pins	Vcc = 2.7 V, $IoL = 2.0 mA$	_		0.4	٧	When the 3-V power supply is used
	Input leakage current	ĪĿ	Except P50 to P57, P90, P91	Vcc = 3.3 V, Vss < Vı < Vcc	-10		10	μΑ	
				When Vcc = 3.0 V,	40	80	400	$k\Omega$	MB90P653A
	Pull-up resistor	RPULL	_	$T_A = +25^{\circ}C$	20	65	200	kΩ	MB90652A/653A/654A, MB90F654A
	Open-drain output leakage current	leak	P40 to P47, P70 to P72		_	0.1	10	μΑ	
		Icc			_	10	20	mA	MB90652A/653A/654A: During normal operation
		Icc	_	When Vcc = 3.0 V Internal 8 MHz	_	17	24	mA	MB90652A/653A/654A: In A/D operation
		Icc	_	operation	_	19	26	mA	MB90652A/653A/654A: In D/A operation
	Power supply	Iccs			_	2.5	5	mA	MB90652A/653A/654A: During sleep
	current	Icc			_	20	27	mA	MB90P653A: During normal operation
		Icc		When Vcc = 3.0 V Internal 8 MHz	_	24	31	mA	MB90P653A: In A/D operation
		Icc		operation	_	26	33	mA	MB90P653A: In D/A operation
		Iccs			_	4.2	10	mA	MB90P653A: During sleep

^{* 1 :} P40 to P46 are N-ch open-drain pins to be controlled and are usually used as CMOS devices.

(Continued)

^{* 2 :} When the device is used with dual power supplies, the P20 to P27, P30 to P37, P40 to P47, and P70 to P72 are the 5 V pins and the rest are the 3 V pins.

(Continued)

(MB90652A/653A/654A: Vcc = 2.2 V to 3.6 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$) (MB90P653A: Vcc = 2.7 V to 3.3 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$) (MB90F654A: Vcc = 2.4 V to 3.6 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$)

Donomoton		Din mana			alue	· ·		D
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	Icc			_	20	35	mA	MB90652A/653A/654A: During normal operation
eei4U.com	Icc			_	27	45	mA	MB90F654A: During normal operation
99.40.COM	Icc	_	When Vcc = 3.0 V Internal 16 MHz operation	_	33	50	mA	MB90F654A: Flash write/erase
	Icc		of common	_	31	41	mA	MB90652A/653A/654A: In A/D operation
	Icc			_	34	42	mA	MB90652A/653A/654A: In D/A operation
	Iccs		When Vcc = 3.0 V Internal 16 MHz	_	4.8	10	mA	MB90652A/653A/654A: During sleep
	Iccs	_	operation	_	6.2	12	mA	MB90F654A: During sleep
Power supply current	Іссн		T _A = +25°C	_	0.1	20	μА	MB90652A/653A/654A: During stop
	Іссн		When Vcc = 3.0 V	_	0.2	40	μА	MB90F654A: During stop
	IccL	_	Vcc = 3.0 V, T _A = +25°C External 32 kHz	_	16	140	μΑ	MB90652A/653A/654A, MB90F654A: In sub operation
	ICCL		operation (Internal 8 MHz operation)	_	4.4	6	mA	MB90P653A: In sub operation
	Ісст		Vcc = 3.0 V,	_	10	30	μА	MB90652A/653A/654A: In watch mode
	Ісст	_	T _A = +25°C External 32 kHz	_	15	30	μА	MB90F654A: In watch mode
	Ісст		operation	_	15	60	μА	MB90P653A: In watch mode
Input capacitance	Cin	Except AVcc, AVss, Vcc, Vss	_	_	10	80	pF	

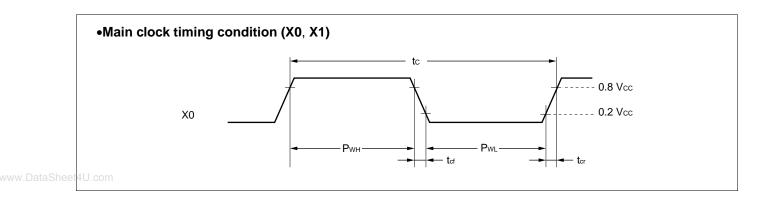
Note: Vcc = Vcc1 = Vcc2

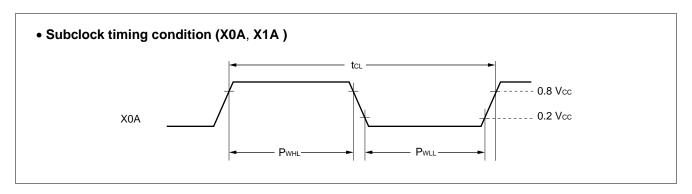
4. AC Characteristics

(1) Clock Timing

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	-	Value		Unit	Remarks
Faranietei	Symbol	name	Condition	Min.	Тур.	Max.	Oint	Nemarks
	Fсн	X0, X1	_	3	_	32	MHz	MB90652A/653A/ 654A,MB90F654A
Clock frequency				3	_	16	MHz	MB90P653A
el4U.com	FcL	X0A, X1A	_	_	32.768	_	kHz	
	tc	X0, X1	_	31.25	_	333	ns	MB90652A/653A/ 654A,MB90F654A
Clock cycle time			_	62.5	_	333	ns	MB90P653A
	t cL	X0A, X1A	_	_	30.5	_	μs	
	Pwh Pwl	X0	_	5	_	_	ns	MB90652A/653A/ 654A,MB90F654A*2
Input clock pulse width	FWL		_	10	_	_	ns	MB90P653A *2
	Pwlh Pwll	X0A	_	_	15.2	_	μs	*2
Input clock rise time and fall time	t _{cr}	X0	_	_	_	5	ns	External clock
Internal	fcp	_	_	1.5	_	16	MHz	MB90652A/653A/ 654A,MB90F654A
operating clock frequency			_	1.5	_	8	MHz	MB90P653A
,	f CPL	_	_	_	8.192	_	kHz	
Internal	t CP			62.5	_	666	ns	
operating clock cycle time	t CPL	_	_	_	122.1	_	μs	
Frequency fluctuation ratio	Δf	_	_	_	_	5	%	When locked *1

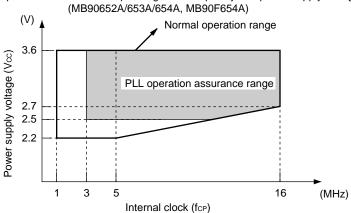

^{*1:} The frequency fluction ratio indicates the maximum fluctuation ratio from the set center frequency while locked when using the PLL multiplier.

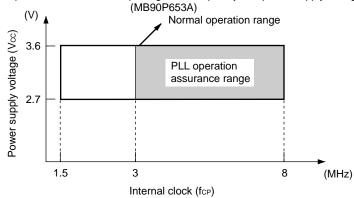

$$\Delta f = \frac{\mid \alpha \mid}{f_0} \times 100 \text{ (\%)}$$
 Center frequency
$$\begin{array}{c} +\alpha \\ f_0 \\ -\alpha \end{array}$$

Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately $CLK \times (1 CYC to 50 CYC)]$, the worst value is not maintained for long. (The pulse, if featured with the long period, would produce practically no error.)

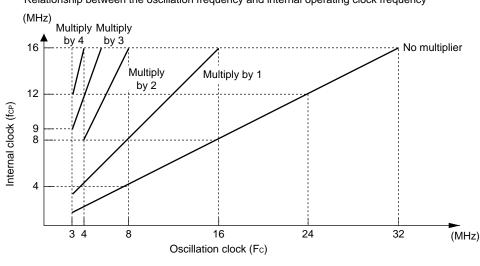
*2: The duty ratio should be in the range 30% to 70%.

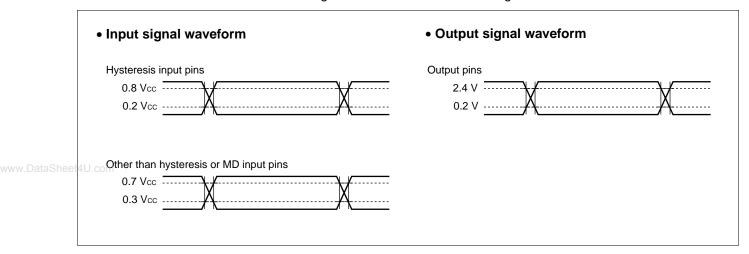
Note: Vcc = Vcc1 = Vcc2




• PLL operation assurance range

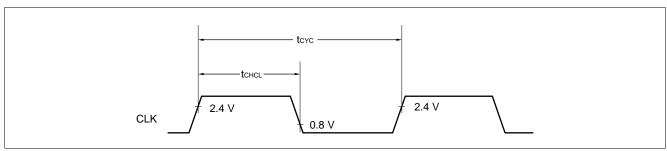
www.DataSheet4U.com


Relationship between the internal operating clock frequency and power supply voltage


Relationship between the internal oprating clock frequency and power supply voltage

Relationship between the oscillation frequency and internal operating clock frequency

The AC characteristics are for the following measurement reference voltages.

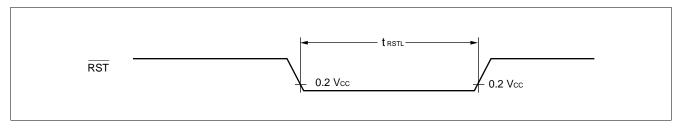

(2) Clock Output Timing

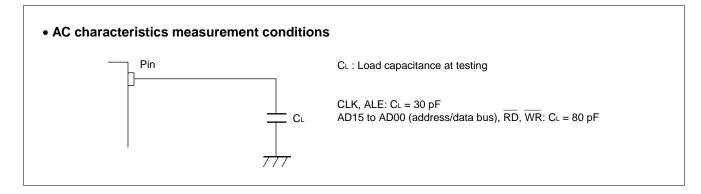
 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	name	Condition	Min.	Max.	Onit	Remarks
Cycle time	t cyc	CLK	_	t cp	_	ns	
				$t_{CP} / 2 - 20$	tcp / 2 + 20	ns	
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK	Vcc = 3.0 V ±10%	tcp / 2 - 64	tcp / 2 + 64	ns	In the external frequency of 5 MHz

tcp: See "(1) Clock Timing."

Note: Vcc = Vcc1 = Vcc2


(3) Reset Input Specifications

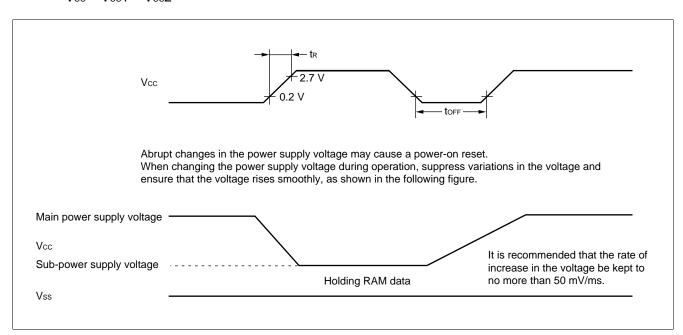

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	name	Condition	Min.	Max.	Oille	IVellia KS
Reset input time	t rstl	RST	_	16 tcp	1	ns	

tcp: See "(1) Clock Timing."

Note: Vcc = Vcc1 = Vcc2

(4) Power on Supply Specifications (Power-on Reset)

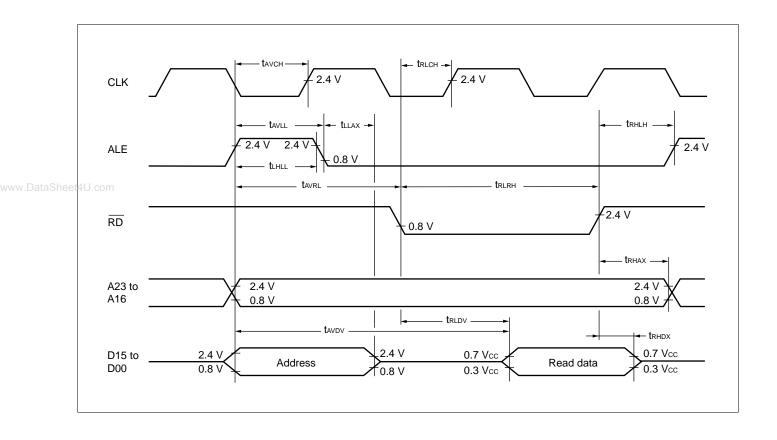

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
rarameter	Symbol	riii iiaiiie	Condition	Min.	Max.	Oilit	iveillai ks
Power supply rising time	t R	Vcc	_	_	30	ms	*
Power supply cut-off time	toff	Vcc	_	1	_	ms	Due to repeat operation

*: When the power rising, Vcc must be less than 0.2 V.

Notes: • The above standards are the values needed in order to activate a power-on reset.

- Activate a power-on reset by turning on the power supply again this in device.
- Vcc = Vcc1 = Vcc2

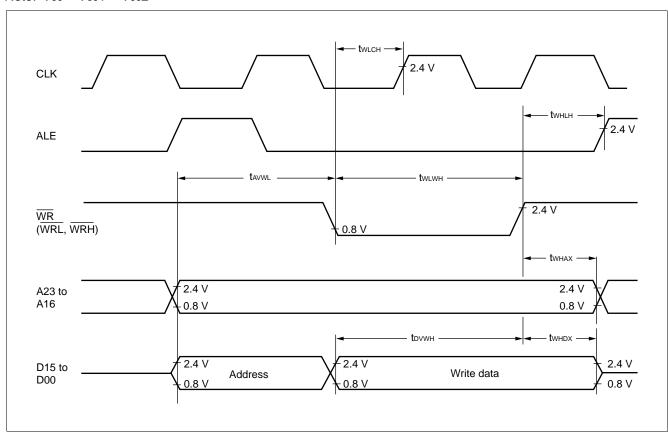

(5) Bus Read Timing

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V, Vss} = 0.0 \text{ V, T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
	Parameter	Syllibol	Fili Haille	Condition	Min.	Max.	Oill	Remarks
	ALE pulse width	tunu	ALE		$t_{CP}/2 - 20$		ns	MASK/FLASH
	ALL puise width	LHLL	ALL	_	$t_{CP} / 2 - 35$		ns	MB90P653A
	Valid address → ALE ↓ time	tavll	Multiplexed		$t_{CP} / 2 - 25$	1	ns	MASK/FLASH
		LAVLL	address	_	$t_{CP} / 2 - 40$	1	ns	MB90P653A
www.DataShee	^{4U.com} ALE ↓ → address valid time	tLLAX	Multiplexed address		tcp / 2 – 15	1	ns	
	Valid address \rightarrow $\overline{\text{RD}}$ \downarrow time	tavrl	Multiplexed address		tcp - 15	1	ns	
	Valid address → valid data	tavdv	Multiplexed		_	5 tcp / 2 - 60	ns	MASK/FLASH
	input	LAVDV	address	_	_	5 tcp / 2 - 80	ns	MB90P653A
	RD pulse width	t rlrh	RD		$3 \text{ t}_{\text{CP}} / 2 - 20$		ns	
	$\overline{RD} \downarrow \to valid \; data \; input$	t rldv	D15 to D00			$5 \text{ t}_{\text{CP}} / 2 - 60$	ns	MASK/FLASH
	ND V -7 valid data iliput	I RLDV	D 13 to D00		_	$5 \text{ t}_{\text{CP}} / 2 - 80$	ns	MB90P653A
	$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	D15 to D00	_	0	1	ns	
	$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	_	$t_{CP} / 2 - 15$	1	ns	
	$\overline{RD} \ \uparrow \to address \ valid \ time$	t RHAX	Address, RD		tcp / 2 - 10	1	ns	
	Valid address → CLK ↑ time	tavch	Address, CLK	_	t _{CP} / 2 –20	_	ns	
	$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK	_	tcp / 2 – 20	_	ns	

tcp: See "(1) Clock Timing."

Note: Vcc = Vcc1 = Vcc2

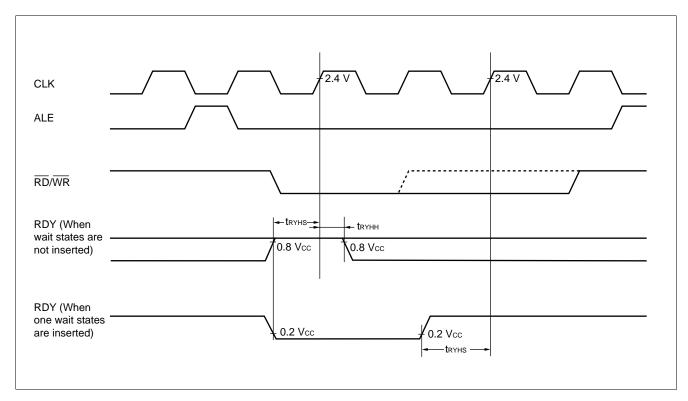

(6) Bus Write Timing

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Valu	ıe	Unit	Remarks
rarameter	Syllibol	Fili liaille	Condition	Min.	Max.	Oilit	Remarks
$Valid\;address\to\overline{WR}\;\!\downarrowtime$	tavwl	A23 to A00	_	tcp - 15	_	ns	
WR pulse width	twlwh	WR	_	3 tcp / 2 - 20	_	ns	
Valid data output $ ightarrow \overline{WR} \uparrow$ time	tоvwн	D15 to D00	_	3 tcp / 2 – 20	_	ns	
WR ↑ → data hold time	twhox	D15 to D00		20	_	ns	MASK/FLASH
WK 1 → data floid time	LWHDX	D 13 to D00	_	30	_	ns	MB90P653A
$\overline{ m WR} \uparrow ightarrow$ address valid time	twhax	A23 to A00	_	tcp / 2 - 10		ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE	_	tcp / 2 - 15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	t wlch	WR, ALE	_	tcp / 2 - 20		ns	

tcp: See "(1) Clock Timing."

Note: Vcc = Vcc1 = Vcc2


(7) Ready Input Timing

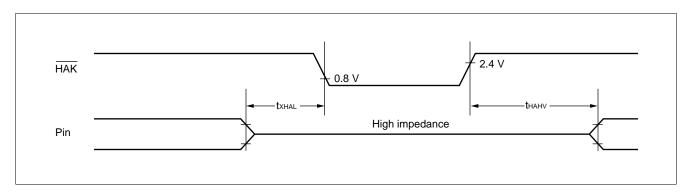
 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Faranietei	Symbol	Fill liallie	Condition	Min.	Max.	Oille	Remarks
RDY setup time	tovalo	RDY	_	45	_	ns	MASK/FLASH
KDT setup time	t RYHS	KDI	_	70	_	ns	MB90P653A
RDY hold time	t RYHH	RDY	_	0	_	ns	

Notes: • Use the auto-ready function if the RDY setup time is too short

www.DataSheet4U.com • Vcc = Vcc1 = Vcc2.

(8) Hold Timing

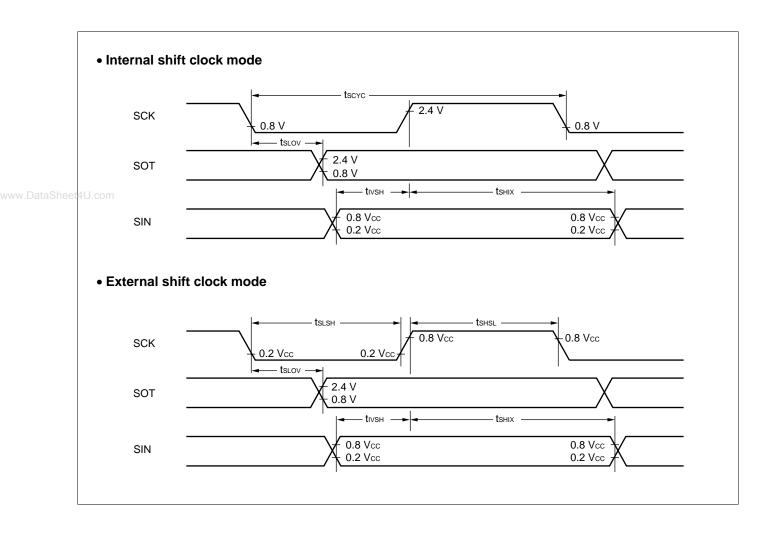

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
raiailletei	Symbol	Filitianie	Condition	Min.	Max.	Oiiit	Nemarks
Pin floating $\rightarrow \overline{HAK} \downarrow time$	txhal	HAK	_	30	t cp	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t HAHV	HAK	_	t CP	2 tcp	ns	

tcp: See "(1) Clock Timing."

Notes: • After reading HRQ, more than one cycle is required before changing HAK.

www.DataSheet4U.com • Vcc = Vcc1 = Vcc2

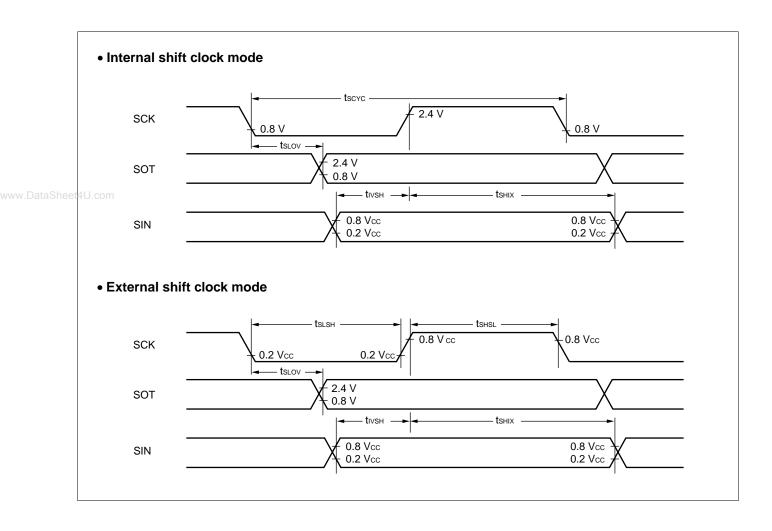

(9) UART Timing

 $(Vcc = 2.7 \text{ V to } 3.3 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Parameter	Symbol	Pin	Condition	Va	lue	Unit	t Remarks
	Parameter	Syllibol	name	Condition	Min.	Max.	Ullit	Remarks
	Serial clock cycle time	tscyc			8 tcp	_	ns	
	$SCK \downarrow \rightarrow SOT$ delay time	torov			-80	80	ns	MASK/FLASH
	30K ↓ → 30T delay time	L SLOV		$C_L = 80 \text{ pF} + 1 \text{ TTL}$ for the internal shift	-120	120	ns	MB90P653A
	Valid SIN → SCK ↑	tıvsh		clock mode output	100	_	ns	MASK/FLASH
ww.DataSneel4	Valid SIN → SCR 1 4U.com	UVSH	_	pin	200	_	ns	MB90P653A
	$\begin{array}{c} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	tshix	_		t CP	_	ns	
	Serial clock "H" pulse width	tshsl	_		4 tcp	_	ns	
	Serial clock "L" pulse width	tslsh	-		4 tcp	_	ns	
	$SCK \downarrow \rightarrow SOT$ delay time	to. o		C _L = 80 pF + 1 TTL	_	150	ns	MASK/FLASH
	\downarrow 301 delay liftle	I SLOV	_	for the external shift clock mode	_	200	ns	MB90P653A
Valid	Valid SIN → SCK ↑	tıvsh		output pin	60	_	ns	MASK/FLASH
	valid SIN — SCR	rivon.	_		120	_	ns	MB90P653A
	$SCK \uparrow \rightarrow valid SIN hold$	t shix			60	_	ns	MASK/FLASH
	time	LOHIX	_		120	_	ns	MB90P653A

Notes: • These are the AC characteristics for CLK synchronous mode.

- C_L is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- Vcc = Vcc1 = Vcc2

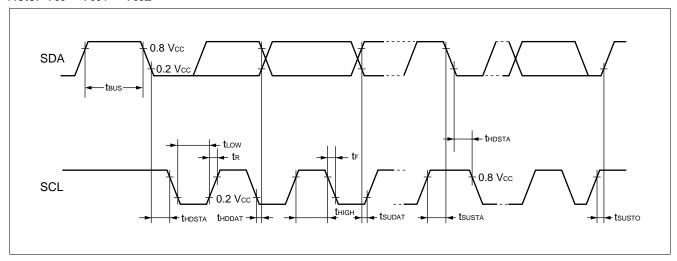

(10) I/O Extended Serial Timing

(Vcc = 2.7 V to 3.3 V, Vss = 0.0 V, $T_A = -40^{\circ}C$ to +85°C)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
Parameter	Syllibol	name	Condition	Min.	Min. Max.		Remarks
Serial clock cycle time	tscyc	_		8 tcp	_	ns	
$SCK \downarrow \rightarrow SOT$ delay time	tslov		C _L = 80 pF + 1 TTL	_	80	ns	MASK/FLASH
SCR ↓ → SOT delay time	L SLOV	_	for the internal shift	_	160	ns	MB90P653A
Valid SIN → SCK ↑	tivsh	_	clock mode output	t CP		ns	
$SCK \stackrel{\uparrow}{\longrightarrow} valid SIN hold time$	tsнıx	_		t cp	_	ns	
Serial clock "H" pulse	tshsl			230		ns	MASK/FLASH
width	ISHSL	_		460		ns	MB90P653A
Serial clock "L" pulse	tslsh		C _L = 80 pF + 1 TTL	230	_	ns	MASK/FLASH
width	L SLSH	_	for the external	460	_	ns	MB90P653A
$SCK \downarrow \to SOT$ delay time	tslov		shift clock mode output pin	2 tcp		ns	
Valid SIN →SCK ↑	tivsh	_	' '	t CP		ns	
$\begin{array}{c} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	t shix			2 tcp	_	ns	

Notes: • These are the AC characteristics for CLK synchronous mode.

- C_L is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- The values in the table are target values.
- Vcc = Vcc1 = Vcc2



(11) I²C Timing

(Vcc = 2.7 V to 3.3 V, Vss = 0.0 V, TA = $-40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$)

			,				
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	riii iiaiiie	Condition	Min.	Max.	Oilit	
SCL clock frequency	fscL	_	_	0	100	kHz	
Bus free time between stop and start conditions	t _{BUS}	_	_	4.7	_	μs	
Hold time (re-send) start	t hdsta	_	_	4.0	_	μs	The first clock pulse is generated after this period.
SCL clock L state hold time	tLOW	_	_	4.7	_	μs	
SCL clock H state hold time	t HIGH	_	_	4.0	_	μs	
Re-send start condition setup time	t susta	_	_	4.7	_	μs	
Data hold time	t hddat	_	_	0	_	μs	
Data setup time	t SUDAT	_	_	40	_	ns	
SDA and SCL signal rising time	tr	_	_	_	1000	ns	
SDA and SCL signal falling time	t⊧	_	_	_	300	ns	
Stop condition setup time	t susto	_	_	4.0	_	μs	

Note: Vcc = Vcc1 = Vcc2

5. A/D Converter Electrical Characteristics

Parameter	Parameter Symbol		Value				Remarks
Parameter	Syllibol	Pin name	Min.	Тур.	Max.	Unit	Remarks
Resolution	_	_	_	10	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Linearity error	_	_	_	_	±2.0	LSB	
Differential					±1.9	LSB	MASK/FLASH
linearity error	_	_			±1.5	LSB	MB90P653A
Zero transition voltage	Vот	AN0 to AN7	AVRL – 1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	mV	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH - 4.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	
Conversion time			6.125 ^{*1}	_	_	μs	MASK/FLASH
Conversion time	_	_	12.25*2	_	_	μs	MB90P653A
Analog port input current	IAIN	AN0 to AN7	_	0.1	10	μА	
Analog input voltage	Vain	AN0 to AN7	AVRL	_	AVRH	V	
		AVRH	AVRL + 2.7	_	AVcc	V	
Reference voltage	_	AVRL	0	_	AVRH – 2.7	V	
Power supply	IA	AVcc	_	3	_	mA	
current	I AH	AVcc	_	_	5*3	μΑ	
Reference voltage	IR	AVRH	_	200	_	μΑ	
supply current	I _{RH}	AVRH	_	_	5*3	μΑ	
Variation between channels	_	AN0 to AN7	_	_	4	LSB	

^{*1:} For a 16 MHz machine clock

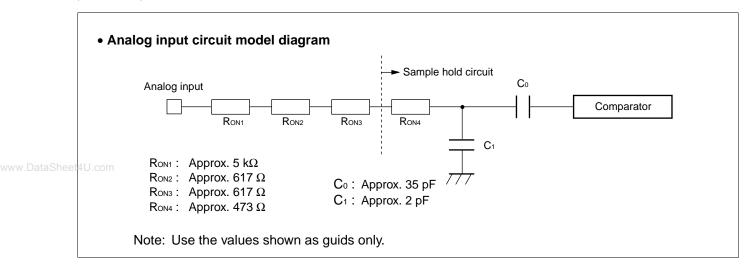
Notes: • The error increases proportionally as |AVRH – AVRL| decreases.

• The output impedance of the external circuits connected to the analog inputs should be in the following range.

The output impedance of the external circuit should be less than approximately 7 k Ω .

When using an external capacitor, it is recommended to have several thousand times the capacitance of the internal capacitor as a guid, if one takes into consideration the effect of the divided capacitance between the external capacitor and the internal capacitor.

• If the output impedance of the external circuit is too high, the sampling time might be insufficient (sampling time = $3.75 \mu s$ at a machine clock of 16 MHz).


• Vcc = Vcc1 = Vcc2

(Continued)

^{*2:} For an 8 MHz machine clock

^{*3:} The current when the A/D converter is not operating or the CPU is in stop mode (for $V_{CC} = AV_{CC} = AV_{RH} = 3.0 \text{ V}$).

(Continued)

6. D/A Converter Electrical Characteristics

(MB90652A/653A : Vcc = 2.2 V to 3.3 V, Vss = DVss = 0.0 V, $2.2 \text{ V} \leq DVRH - DVss$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$) (MB90F654A : Vcc = 2.4 V to 3.6 V, Vss = DVss = 0.0 V, $2.4 \text{ V} \leq DVRH - DVss$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$) (MB90F653A : Vcc = 2.7 V to 3.3 V, Vss = DVss = 0.0 V, $2.7 \text{ V} \leq DVRH - DVss$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$)

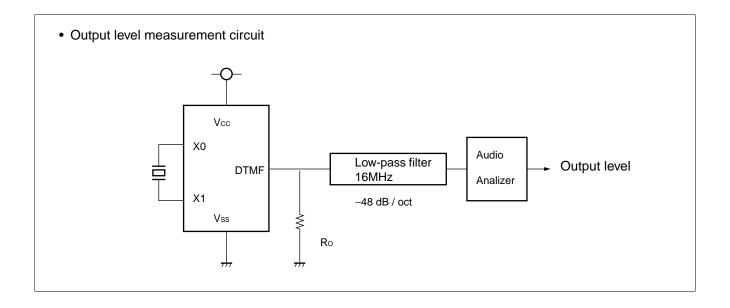
Doromotor	Symbol	Pin		Value		Unit	Remarks					
Parameter	Syllibol	name	Min.	Тур.	Max.	Ullit	Remarks					
Resolution	_	_	_	8	8	bit						
Differential linearity error	_	_	_	_	±0.9	LSB						
Absolute accuracy	_	_		_	1	%						
Linearity error	_	_	_	_	±1.5	LSB						
Conversion time	_	_	_	10.0	20.0	μs	*1					
Analog			2.2	_	Vcc	V	MB90652A/653A/654A*2					
reference power	_	_				_	DVRH	2.4	_	Vcc	V	MB90F654A *2
supply voltage			2.7	_	Vcc	V	MB90P653A *2					
Reference	Idvr	D) (D)	_	100	_	μΑ	*3					
voltage supply current	Idvrs	DVRH		_	5	μΑ	*4					
Analog output impedance	_	_		28	_	kΩ						

^{*1:} Conversion time is the value at the load capacitance = 20 pF.

Note: Vcc = Vcc1 = Vcc2

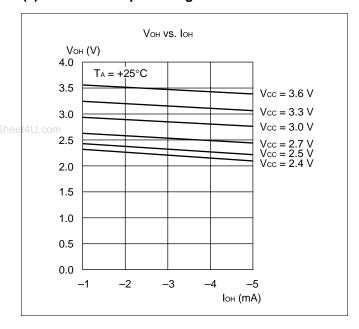
^{*2:} DVRH – DVss (AVss)

^{*3:} Current value at conversion

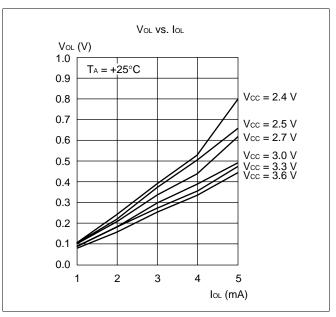

^{*4:} Current value when stopped

7. DTMF Electrical characteristics

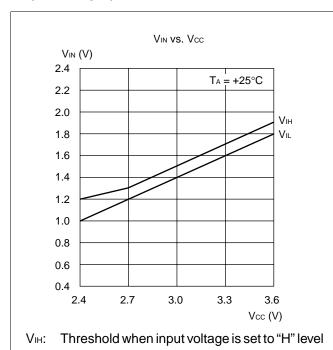
 $\begin{array}{l} (MB90652A/653A: Vcc = 2.2 \text{ V to } 3.3 \text{ V, Vss} = DVss = 0.0 \text{ V, } 2.2 \text{ V} \leq DVRH - DVss, } \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\ (MB90F654A: Vcc = 2.4 \text{ V to } 3.6 \text{ V, Vss} = DVss = 0.0 \text{ V, } 2.4 \text{ V} \leq DVRH - DVss, } \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\ (MB90P653A: Vcc = 2.7 \text{ V to } 3.3 \text{ V, Vss} = DVss = 0.0 \text{ V, } 2.7 \text{ V} \leq DVRH - DVss, } \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \\ \end{array}$


	Parameter	Symbol	Condition		Value		Unit	Remarks
	Parameter	Syllibol	Condition	Min.	Тур.	Max.	Ullit	Nemarks
	Output load condition	Ro		30 k	_	_	Ω	To be specified with DTMF pin pull-down resistor
et4t	OTMF output offset voltage At signal output)	Vмоғ		-	0.4	_	V	
a	OTMF output amplitude COL single tone)	Vмгс	$V_{CC} = 3 V$ $T_A = 25^{\circ}C$ Machine clock $f = 16 \text{ MHz}$	450	530	600	mV _{P-P}	When DTMF terminal is opened
á	OTMF output amplitude ROW single tone)	VmFor		330	440	500	mV _{P-P}	Ro = 200 kΩ
	COL/ROW level difference	Rмғ		1.6	2.0	2.4	dB	

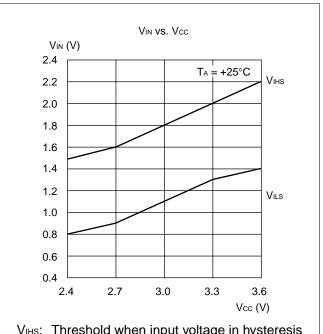
Note: Vcc = Vcc1 = Vcc2



■ EXAMPLE CHARACTERISTICS


(1) "H" Level Output Voltage

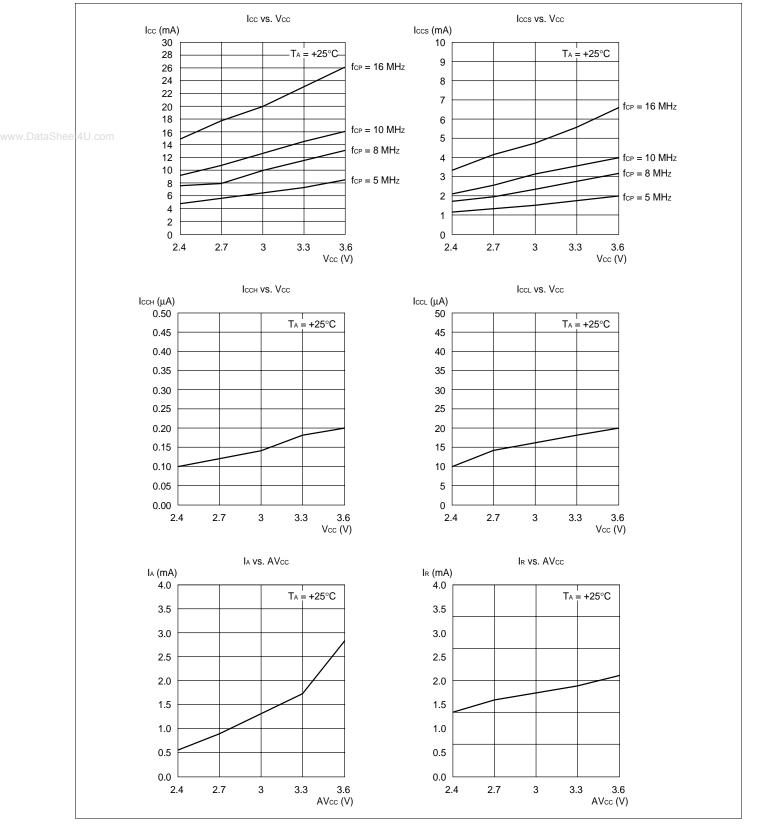
(2) "L" Level Output Voltage



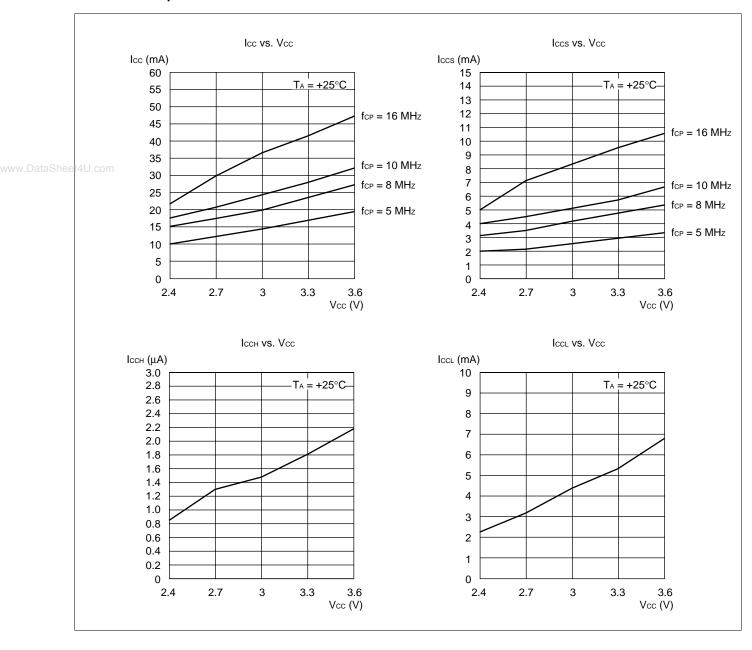
(3) "H" Level Input Voltage/"L" Level Input Voltage (COMS Input)

Threshold when input voltage is set to "L" level

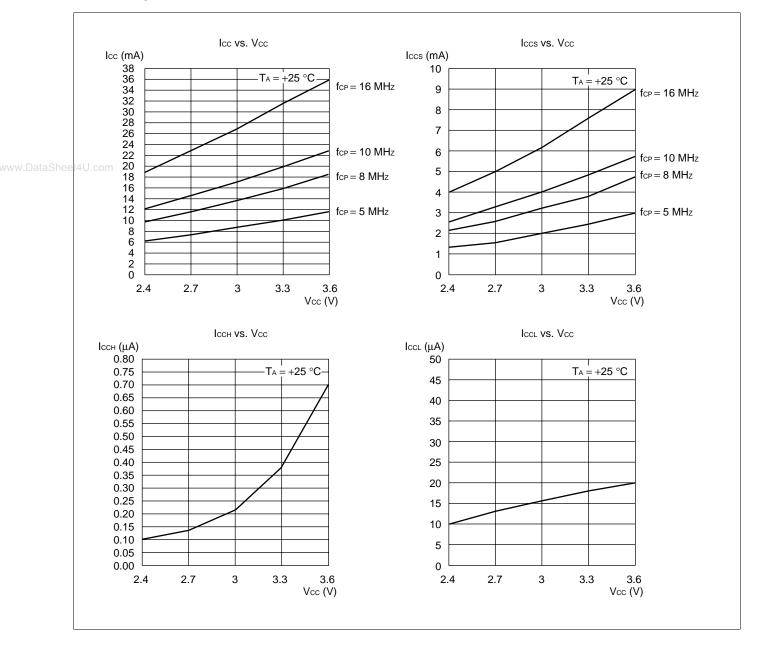
(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)



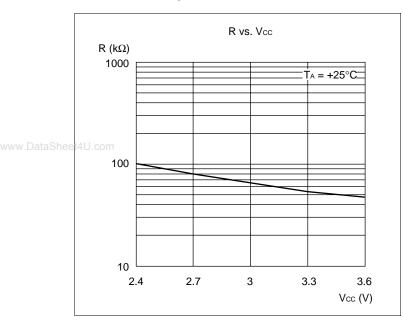
V_{IHS}: Threshold when input voltage in hysteresis characteristics is set to "H" level


VILS: Threshold when input voltage in hysteresis characteristics is set to "L" level

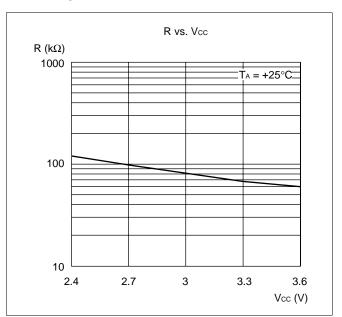
(5) Power Supply Current (fcp = Internal Operating Clock Frequency)


• Mask ROM products

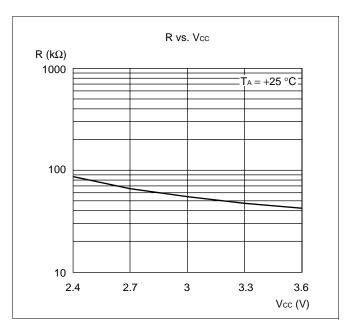
• OTPROM products



• FLAH products



(6) Pull-up Resistance


• Mask ROM products

• OTPROM products

• FLASH products

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~ ei4U.com	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

 Table 2
 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
А	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
_{4U.com} SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation		1	Address format	Number of bytes in address extension *		
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	_		
08 09 0A 0B	@RW0 @RW1 @RW2 @RW3		@RW1 @RW2			Register indirect	0
0C 0D 0E 0F	@RW0 + @RW1 + @RW2 + @RW3 +		@RW1 + @RW2 +			Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW5 + disp8		p8 p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1		
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16		@RW1 + disp16 displacement @RW2 + disp16		2		
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16		٧7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2		

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) byte		(c) v	vord	(d) long	
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

Mnemonio	; #	~	RG	В	Operation	LH	АН	ı	S	T	N	Z	٧	С	RMW
MOV A, dir MOV A, addr1 MOV A, Ri MOV A, ear MOV A, io MOV A, #imm MOV A, @A MOV A, @RLi MOVN A, #imm	1 2 2+ 2 3 2 2 +disp8 3	3 4 2 2 3+(a) 3 2 3 10	0 0 1 1 0 0 0 0 2	(b) (b) 0 (b) (b) 0 (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (imm8 byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RLi)+disp8) byte (A) \leftarrow imm4	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	* * * * * * * *			111111111	* * * * * * * * * * * * * * * * * * *	* * * * * * * * *		_ _ _ _ _ _	- - - - - - -
MOVX A, dir MOVX A, addr1 MOVX A, Ri MOVX A, ear MOVX A, io MOVX A, io MOVX A, #imm MOVX A, @A MOVX A, @RWi MOVX A, @RWi	2 2 2+ 2 3 2 2 +disp8 2	3 4 2 2 3+(a) 3 2 3 5 10	0 0 1 1 0 0 0 0 1 2	(b) (b) 0 (b) (b) 0 (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow imm8 byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RWi)+disp8) byte (A) \leftarrow ((RLi)+disp8)	X X X X X X X X	* * * * * * * *				* * * * * * * * * *	* * * * * * * * *			- - - - - - - - -
MOV dir, A MOV addr16, A MOV Ri, A MOV ear, A MOV io, A MOV @RLi+di MOV Ri, ear MOV Ri, ear MOV ear, Ri MOV ear, Ri MOV eam, Ri MOV eam, Ri MOV dir, #imm MOV dir, #imm MOV ear, #imi MOV ear, #imi MOV ear, #imi MOV ear, #imi MOV @AL, Ah	sp8, A 3 2 2+ 2 2+ 2 2+ 8 2 8 3 18 3 3 18 3 3 18 3 3+	3 4 2 2 3+(a) 3 10 3 4+(a) 4 5+(a) 2 5 5 2 4+(a) 3	0 0 1 1 0 0 2 2 1 2 1 1 0 0 0 1 0 0	(b) (b) 0 (b) (b) (b) 0 (b) 0 (b) 0 (b) (b)	byte (dir) \leftarrow (A) byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (eam) \leftarrow (A) byte (io) \leftarrow (A) byte (io) \leftarrow (A) byte (Ri) \leftarrow (ear) byte (Ri) \leftarrow (eam) byte (ear) \leftarrow (Ri) byte (eam) \leftarrow (Ri) byte (io) \leftarrow imm8 byte (io) \leftarrow imm8 byte (ear) \leftarrow imm8 byte (ear) \leftarrow imm8 byte (eam) \leftarrow imm8 byte (eam) \leftarrow imm8 byte (eam) \leftarrow imm8 byte (eam) \leftarrow imm8						* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * - *			
XCH A, ear XCH A, eam XCH Ri, ear XCH Ri, eam	2 2+ 2 2+	4 5+ (a) 7 9+ (a)	2 0 4 2	0	byte (A) \leftrightarrow (ear) byte (A) \leftrightarrow (eam) byte (Ri) \leftrightarrow (ear) byte (Ri) \leftrightarrow (eam)	Z Z -		- - -	_ _ _ _	1 1 1 1	1 1 1	- - -	_ _ _	_ _ _ _	- - -

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	_	*	_	1	_	*	*	1	_	_
MOVW A, addr16	3	4	0	(c)	word (A) ← (addr16)	_	*	_	_	_	*	*	_	_	-
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	_	*	_	_	_	*	*	_	_	_
MOVW A, RWi	1	2	1	0	word (A) \leftarrow (RWi)	_	*	_	_	_	*	*	_	_	-
MOVW A, ear	2	2	1	0	word (A) ← (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	_	*	_	_	_	*	*	_	_	_
MOVW A, io	2	3	0	(c)	word (A) \leftarrow (io)	_	*	_	_	_	*	*	_	_	_
MOVW A, @A	2	3	0	(c)	word (A) \leftarrow ((A))	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	0	0	word (A) \leftarrow imm16	_	*	_	_	_	*	*	_	_	_
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	_	*	_	_	_	*	*	_	_	_
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	-	*	-	_	-	*	*	_	-	-
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	-	_	*	*	_	_	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW SP, A	1	1	0	Ô	word (SP) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW ear, A	2	2	1	0	word (ear) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVW eam, A	2+	3+ (a)	0	(c)	word (eam) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, ear	2	3	2	(0)	word (RWi) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) ← (eam)	_	_	_	_	_	*	*	_	_	_
MOVW ear, RWi	2	4	2	Ô	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2	1	O	word (RWi) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	5	0	(c)	word (io) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	1	Ô	word (ear) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW eam, #imm16	4+	4+ (a)	0	(c)	word (eam) ← imm16	_	_	-	_	_	-	-	_	-	-
MOVW @AL, AH	2	3	0	(c)	word $((A)) \leftarrow (AH)$	-	_	-	-	-	*	*	-	-	-
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)	word $(A) \leftrightarrow (eam)$	_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	7 ′	4	0	word (RWi) ↔ (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	word (RWi) ↔ (eam)	_	_	-	_	_	-	-	_	-	-
MOVL A, ear	2	4	2	0	long (A) ← (ear)	_	_	_	_	_	*	*	_	-	-
MOVL A, eam	2+	5+ (a)	0	(d)	long (A) \leftarrow (eam)	_	_	-	_	_	*	*	_	_	_
MOVL A, #imm32	5	3	0	0	long (A) ← imm32	_	_	-	-	-	*	*	-	-	-
MOVL ear, A	2	4	2	0	long (ear) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) ← (A)	_	_	-	_	_	*	*	_	-	_

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	T	N	Z	٧	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) +(dir)	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, ear	2	3	1	0	byte (A) \leftarrow (A) +(ear)	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $+$ (eam)	Z	_	_	_	_	*	*	*	*	_
ADD	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) + (A)	Ζ	_	_	_	_	*	*	*	*	*
ADDC	A	1	2	0	0	byte (A) \leftarrow (AH) + (AL) + (C)	Ζ	_	_	-	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	_	_	_	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) + (eam) + (C)	Z	_	_	_	_	*	*	*	*	_
ADDDC		1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	0	0	byte (A) \leftarrow (A) $-\text{imm8}$	Z Z	_	_	_	_	*	*	*	*	_
SUB	A, dir	2	5 3	0	(b)	byte (A) \leftarrow (A) $-$ (dir)	Z	_	_	_	_	*	*	*	*	_
SUB SUB	A, ear A, eam	2+	_	1	(b)	byte (A) \leftarrow (A) $-$ (ear)	Z	_				*	*	*	*	_
SUB	,	2+	4+ (a) 3	0 2	(b) 0	byte (A) \leftarrow (A) $-$ (eam) byte (ear) \leftarrow (ear) $-$ (A)	_		_		_	*	*	*	*	_
SUB	ear, A eam, A	2+	5+ (a)	0	2× (b)	byte (ear) \leftarrow (ear) – (A)	_	_	_	_	_	*	*	*	*	*
SUBC	A	1	2 (a)	0	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C)	Z	_	_	_		*	*	*	*	
SUBC	A, ear	2	3	1	0	byte $(A) \leftarrow (A) - (ac) - (C)$	Z	_				*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	Ö	(b)	byte (A) \leftarrow (A) $-$ (ear) $-$ (C)	Z	_	_	_	_	*	*	*	*	_
SUBDC		1	3	0	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
ADDW	A	1	2	0	0	word (A) \leftarrow (AH) + (AL)	_	_	_	_	_	*	*	*	*	_
ADDW	A, ear	2	3	1	0	word $(A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	_
ADDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDW	A, #imm16	3	2 ′	0)O	word $(A) \leftarrow (A) + imm16$	_	_	_	_	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADDW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	_	_	_	_	_	*	*	*	*	*
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	-	_	*	*	*	*	_
ADDCW	,	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	-	_	_	_	_	*	*	*	*	_
SUBW	A	1	2	0	0	word $(A) \leftarrow (AH) - (AL)$	_	_	_	_	_	*	*	*	*	_
SUBW	A, ear	2	3	1	0	word (A) \leftarrow (A) $-$ (ear)	_	_	_	_	_	*	*	*	*	_
SUBW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam)	-	_	_	_	_	*	*	*	*	_
SUBW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) $-imm16$	_	_	_	-	_	*	*	*	*	_
SUBW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) $-$ (A)	_	_	_	-	_	*	*	*	*	- *
SUBW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	
SUBCW		2	3	1	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_	_	*	*	*	*	_
SUBCW		2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam) $-$ (C)	-	_	_	_	_					_
ADDL	A, ear	2	6	2	0	$long(A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	-
ADDL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) +imm32	_	_	_		_	*	*	*	*	_
SUBL	A, ear	2	6	2	0	$long (A) \leftarrow (A) - (ear)$	_	_	_	_	_	*	*	*	*	_
SUBL SUBL	A, eam	2+ 5	7+ (a) 4	0	(d) 0	long (A) \leftarrow (A) $-$ (eam)	_	_	_	_	_	*	*	*	*	_
SUBL	A, #imm32	Э	4	U	U	$long(A) \leftarrow (A) - lmm32$	_	_	_	_	_					_

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

www.DataSheet4b.zom

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mr	nemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_	1 1	_	_	_	*	*	*	_	- *
DEC DEC	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	<u>-</u>	_ _	<u>-</u>	_ _	_ _	*	*	*	<u>-</u>	- *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) ← (ear) +1 word (eam) ← (eam) +1	_	-	_	_	_	*	*	*	_	_ *
DECW DECW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	_ _	_ _	_		- I	*	*	*	_	- *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	_	_ _	_ _	_ _	*	*	*	_ _	_ *
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	_ _	_ _	<u>-</u>	_ _	_	*	*	*	_	<u> </u>

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
CMP	A	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ′	0	O´	byte (A) ← imm8	-	_	-	_	_	*	*	*	*	-
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	-	_	_	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word (A) \leftarrow imm16	-	_	-	_	_	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	-	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) \leftarrow (eam)	_	_	_	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	-	_	_	_	_	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Ī	Mnem	nonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
	DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	-	1	1	-	-	-	-	*	*	1
	DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient → byte (A) Remainder → byte (ear)	_	_	-	-	-	_	-	*	*	-
	DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	_	_	_	-	-	_	-	*	*	_
	DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	_	_	-	-	-	_	-	*	*	_
et4	DIVUW	A, eam	2+	*5	0	*7	$\begin{array}{l} \text{long (A)/word (eam)} \\ \text{Quotient} \rightarrow \text{word (A) Remainder} \rightarrow \text{word (ear)} \end{array}$	_	_	-	ı	-	_	_	*	*	_
	MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
	MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
	MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) → word (A)	_	_	_	-	-	_	_	_	-	-
	MULUW	Α	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
	MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
	MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	_	_	-	-	-	-	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times (c)$ normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	_ _ _ _	- - - -	- - - -	_ _ _ _	* * * * *	* * * * *	R R R R	- - - -	_ _ _ _ *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _	_ _ _ _			_ _ _ _	* * * * *	* * * *	R R R R		_ _ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	_ _ _ _	_ _ _ _			_ _ _ _	* * * * * *	* * * *	R R R R R	1 1 1 1	_ _ _ _ *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	_ _ _	_ _ _			_ _ _	* *	* *	R R R		_ _ *
ANDW ANDW ANDW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -	- - - -	1 1 1 1 1	11111		* * * * * *	* * * * * *	R R R R R	1 1 1 1 1	_ _ _ _ _ *
ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -		11111	11111		* * * * * *	* * * * * *	R R R R R R		_ _ _ _ *
XORW XORW XORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -		11111	11111		* * * * * *	* * * * * * *	R R R R R	1 1 1 1 1	_ _ _ _ _ *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* *	* *	R R R	- - -	_ _ *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	_	_	_	_	*	*	R R	_	1 1
	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_	_	_ _		_ _	*	*	R R		_ _
	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A) xor (ear)} \\ \text{long (A)} \leftarrow \text{(A) xor (eam)} \end{array}$			_ _	1 1	_ _	*	*	R R	1 1	_ _

131166140.0

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Χ	-	-	-	-	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5+ (a)	2		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_	_	_ _	_ _	*	*	*	*	_ *
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	-	-	-	-	-	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	_ _	_ _	_ _	_ _	*	*	*	*	_ *

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
NRML A, R0	2	*1	1		long (A) \leftarrow Shift until first digit is "1" byte (R0) \leftarrow Current shift count	-	-	-	-	ı	-	*	ı	-	_

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	T	N	Z	٧	С	RMW
RORC A	2	2	0	0	byte (A) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC A	2	2	0	0	byte (A) ← Left rotation with carry	-	-	-	_	-	*	*	-	*	_
RORC ear	2	3	2	0	byte (ear) ← Right rotation with carry	_	-	_	_	_	*	*	_	*	_
RORC eam	2+	5+ (a)	0	2× (b)	, ,	_	_	_	_	_	*	*	_	*	*
ROLC ear	2	3	2	0	byte (ear) ← Left rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Left rotation with carry	-	_	-	-	-	*	*	-	*	*
ASR A, R0	2	*1	1	0	byte (A) ← Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSR A, R0	2	*1	1	0	byte (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSL A, R0	2	*1	1	0	byte (A) ← Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	_
ASRW A	1	2	0	0	word (A) ← Arithmetic right shift (A, 1 bit)	-	١	-	_	*	*	*	-	*	_
LSRW A/SHRW A	1	2	0	0	word (A) ← Logical right shift (A, 1 bit)	_	_	_	_	*	R	*	_	*	_
LSLW A/SHLW A	1	2	0	0	word (A) ← Logical left shift (A, 1 bit)	-	-	-	_	-	*	*	-	*	_
ASRW A, R0	2	*1	1	0	word (A) ← Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRW A, R0	2	*1	1	0	word (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSLW A, R0	2	*1	1	0	word (A) ← Logical left barrel shift (A, R0)	_	_	_	_	_	*	*	_	*	_
ASRL A, R0	2	*2	1	0	long (A) ← Arithmetic right shift (A, R0)	_	-	-	_	*	*	*	_	*	_
LSRL A, R0	2	*2	1	0	long (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSLL A, R0	2	*2	1	0	long (A) ← Logical left barrel shift (A, R0)	-	-	ı	_	ı	*	*	ı	*	_

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

 Table 18
 Branch 1 Instructions [31 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
BZ/BE	Q rel	2	*1	0	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BI	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BL0		2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/B	HS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	0	Branch when (N) = 1	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA	rel	2	*1	0	0	Branch unconditionally	_	_	-	_	_	-	_	_	_	_
JMP	@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	3	0	0	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
JMPP	@ear *3	2	5 ′	2	Ò	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	4	4 ′	0	`O´	word (PC) \leftarrow ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
						(PCB) ← ad24 16 to 23										
CALL	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
CALL	@eam *4	2+	7+ (a)	0	2× (c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
CALL	addr16 *5	3	6	0	(c)	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
CALLV		1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_	_	_	_	_
	@ear *6	2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	_	_	_	_	_	_	_	_	_	_
	J 25.					(PCB) ← (ear) 16 to 23										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) \leftarrow (eam) 0 to 15,	_	_	_	_	_	_	_	_	_	-
						(PCB) ← (eam) 16 to 23										
CALLP	addr24 *7	4	10	0	2× (c)		_	_	_	_	_	_	_	_	_	_
						(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

N	/Inemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
CBNE CWBNE	A, #imm8, rel A, #imm16, rel	3	*1 *1	0	0	Branch when byte (A) ≠ imm8 Branch when word (A) ≠ imm16	_	_		_	_	*	*	*	*	_
CBNE CBNE CWBNE	ear, #imm8, rel eam, #imm8, rel*9 ear, #imm16, rel eam, #imm16, rel*9	4 4+ 5 5+	*2 *3 *4 *3	1 0 1 0	0 (b) 0	Branch when byte (ear) ≠ imm8 Branch when byte (eam) ≠ imm8 Branch when word (ear) ≠ imm16 Branch when word (eam) ≠ imm16	_ _ _	_ _ _		_ _ _	_ _ _	* * * *	* * *	* * *	* * *	
DBNZ	ear, rel	3	*5	2	(c)	Branch when byte (ear) = $(ear) - 1$, and $(ear) \neq 0$	_	_	-	_	_	*	*	*	_	_
DBNZ	eam, rel	3+	*6	2	2× (b)	Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	-	_	_	*	*	*	-	*
DWBNZ	ear, rel	3	*5	2	0	Branch when word (ear) = $(ear) - 1$, and $(ear) \neq 0$	_	_	-	_	_	*	*	*	-	_
DWBNZ	eam, rel	3+	*6	2	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	-	_	_	*	*	*	-	*
INT INT INTP INT9 RETI	#vct8 addr16 addr24	2 3 4 1	20 16 17 20 15	0 0 0 0	8× (c) 6× (c) 6× (c) 8× (c) 6× (c)	Software interrupt Software interrupt Software interrupt Software interrupt Return from interrupt	_ _ _ _	_ _ _ _	R R R R *	S S S S *	_ _ _ *	_ _ _ *	*	_ _ _ *	_ _ _ *	
LINK	#local8	2	6 5	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack.	_	_	1	_	_	1	1	_	1	_
RET *7 RETP *8	3	1	4 6	0	(c) (d)	Return from subroutine Return from subroutine	_ _	_ _	_ _	_ _	_ _	_ _	_	<u>-</u>	_ _	_ _

^{*1: 5} when branching, 4 when not branching

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$	- - -	1 1 1 1	- - -	_ _ _ _	1 1 1 1	- - -		_ _ _ _	- - -	- - -
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 4 *2	0 0 0 *5	(c) (c) (c) *4	$\begin{aligned} & \text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2n \end{aligned}$		*	- * -	- * -	- - * -	- * -	- * -	- * -	- * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	-	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2	3	0	0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8		1 1	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2	2 2	0	0	byte (RP) ←imm8 byte (ILM) ←imm8		1 1	<u>-</u>	_	1 1	-	_	_	_	_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	1	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam		- * *	_ _ _ _	_ _ _	1 1 1 1		1 1 1	- - -	_ _ _ _	- - - -
ADDSP #imm8 ADDSP #imm16	2	3	0	0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16		1 1	_	_	1 1		_	_	_	_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	- -	_		*	*	_	_	_ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank		111111			111111			- - - - -		- - - - -

^{*1:} PCB, ADB, SSB, USB, and SPB: 1 state DTB, DPR: 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 21 Bit Manipulation Instructions [21 Instructions]

M	nemonic	#	~	RG	В	Operation	LH	АН	ı	S	T	N	Z	٧	С	RMW
MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *				* *	* *	- -	_ _ _	- - -
MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	7 7 6	0 0 0	2× (b)	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	- - -	_ _ _	1 1 1		I I I	* *	* *		- - -	* * *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	- - -	- - -	1 1 1		_ 	_ 	- - -		- - -	* *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ _ _	- - -	1 1 1	I I			- - -		_ _ _	* *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _	_ _ _			1 1 1	1 1 1	* *		_ _ _	- - -
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	- - -	- - -		I I	1 1 1	1 1 1	* *		_ _ _	_ _ _
SBBS	addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	_	_	-	-	*	_	_	*
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	-	-	_	_	_	_	_
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	_	_	_	_	_	_	-	_	_	_

^{*1: 8} when branching, 7 when not branching

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_	_	_	_	_	_	_	_	_	_
SWAPW	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Χ	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	_	Ζ	_	_	_	R	*	_	-	_

www DataSheet4LL com

Table 23 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_	1	_	_	-	_	-	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer @AH– ← @AL–, counter = RW0	-	-	_	-	_	-	_	_	_	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	-	-	_	-	_	*	*	*	*	-
FISL/FILSI	2	6m +6	*5	*3	Byte filling $@AH+ \leftarrow AL$, counter = RW0	_	_	ı	-	_	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSWD	2	*2	*8	*6	Word transfer $@AH-\leftarrow @AL-$, counter = RW0	-	-	-	-	-	-	_	-	-	_
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH–) – AL, counter = RW0	-	-	_	-	_	*	*	*	*	-
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ ← AL, counter = RW0	_	_	_	_	_	*	*	_	_	_

m: RW0 value (counter value)

n: Loop count

^{*1: 5} when RW0 is 0, 4 + 7 \times (RW0) for count out, and 7 \times n + 5 when match occurs

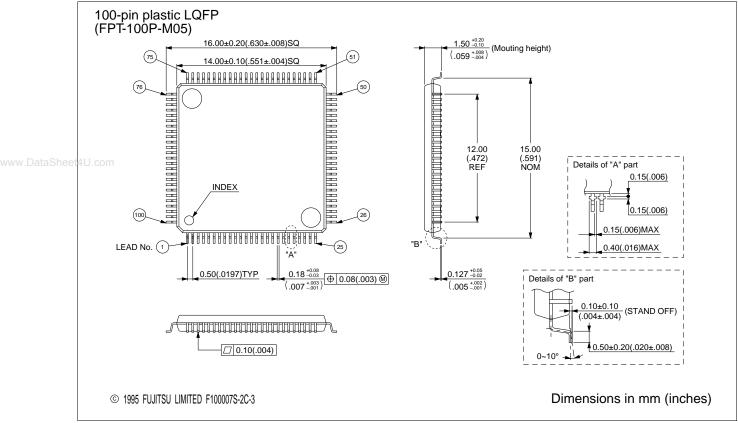
^{*2: 5} when RW0 is 0, $4 + 8 \times (RW0)$ in any other case

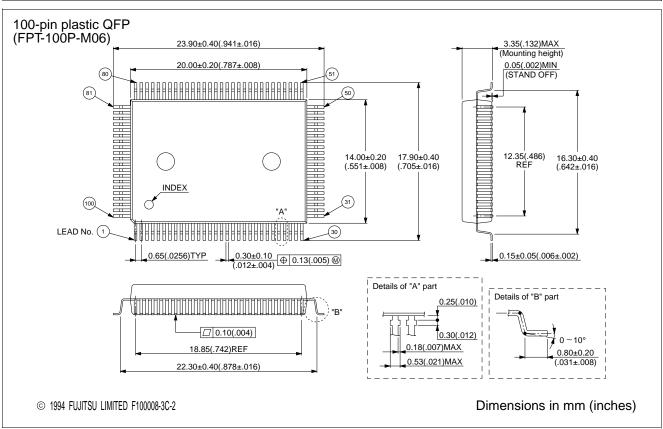
^{*3: (}b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.

^{*4: (}b) \times n

^{*5: 2 × (}RW0)

^{*6: (}c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.


^{*7: (}c) \times n


^{*8: 2 × (}RW0)

■ ORDERING INFORMATION

	Model	Package	Remarks
	MB90652APFV MB90653APFV MB90P653APFV MB90654APFV MB90F654APFV	100-pin plastic LQFP (FPT-100P-M05)	
/w.DataShee	MB90652APF MB90653APF MB90P653APF MB90654APF MB90F654APF	100-pin plastic QFP (FPT-100P-M06)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9910

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.