8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89660 Series

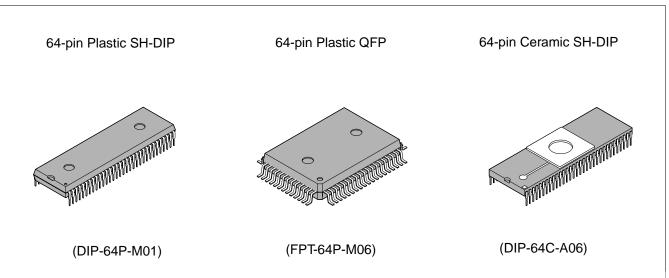
MB89663/665/P665/W665

■ DESCRIPTION

The MB89660 series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as timers, a UART, a serial interface, an 8-bit A/D converter, an input capture, an output compare, and an external interrupt. The MB89660 series is applicable to a wide range of applications from welfare products to industrial equipment.

DataShe


*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

 Package expansion QFP package
 SDIP package

(Continued)

■ PACKAGE

(Continued)

F²MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- Three types of timers
 8-bit PWM timer
 8/16-bit timer/counter
 20-bit time-base timer
- Functions that permit communications with a variety of devices UART which permits selection of synchronous/asynchronous communications A serial interface that permits selection of the transfer direction
- 8-bit A/D converter: 8 channels Sense mode function capable of performing compare operation in 5 μ s Activation by external input possible
- · Real-time control

Input capture: 2 channels
Output compare: 2 channels

- External interrupt: 4 channels

 The channels are independent and canable of walks

 The channels are independent and canable of walks.
 - Two channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low power consumption modes

DataSheet4U.com

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

Hardware standby mode (Wake-up from this mode and activation by pin input only.)

et4U.com

www.DataSheet4U.com

DataShe

■ PRODUCT LINEUP

Part number Parameter	MB89663	MB89665	MB89W665	MB89P665		
Classification		tion products M products)	EPROM product	One-time PROM product, also used for evaluation		
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM, programming with general-purpose EPROM programmer)	16 K × 8 bits (internal PROM, programming with general-purpose EPROM programmer)		
RAM size	256 × 8 bits		512 × 8 bits			
CPU functions	Instruction Instruction Data bit ler Minimum e	length:	136 8 bits 1 to 3 bytes 1,8, 16 bits 0.4 μs/10 MHz 3.6 μs/10 MHz			
Ports		ts (CMOS): ts (N-ch open-drain): CMOS):	8 8 (All also serve as p 36 (19 ports also ser 52			
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 μs, 6.4 μs, 25.6 μs) 8-bit resolution PWM operation (conversion cycle: 102 μs, 1.6 ms, 6.6 ms)					
8/16-bit timer/ counter	Independent 8-bit reload timer/counter operation: 2 channels Single 16-bit event counter (cascade connection): 1 channel One clock selectable from four transfer clocks (one external shift clock, three internal clocks: 0.8 μs, 3.2 μs, 12.8 μs)					
UART	8 bits Full-duplex double buffer Synchronous and asynchronous data transfer					
8-bit serial I/O	8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)					
8-bit A/D converter	8-bit resolution × 8 channels A/D conversion mode (conversion time: 18 μs at 10 MHz) Sense mode (conversion time: 5 μs at 10 MHz) Continuous activation by an external activation or an internal timer capable Reference voltage input					
Real-time I/O	16-bit timer: operating clock cycle (0.4 μs, 0.8 μs, 1.6 μs, 3.2 μs) overflow interrupt Input capture: 16 bits × 2 channels (External trigger edge selectability) Output compare: 16 bits × 2 channels					

(Continued)

DataShee

DataSheet4U.com www.DataSheet4U.com

et4U.com

3

(Continued)

Part number Parameter	MB89663	MB89665	MB89W665	MB89P665		
External interrupt	F (4 channels (edge selection, interrupt vector, source flag) Rising edge/falling edge/both edges selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.) (Wake-up from hardware standby mode is not possible)				
Standby mode	Sleep mode, stop mode, and hardware standby mode					
Process	CMOS					
Operating voltage*	2.2 V t	o 6.0 V	2.7 V t	o 6.0 V		

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89663 MB89665 MB89P665	MB89W665
DIP-64P-M01	0	×
DIP-64C-A06	×	0
FPT-64P-M06	O Data	Sheet4U.com

○ : Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."

et4U.com

DataShe

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTPROM (one-time PROM) product (also used for evaluation), verify its differences from the product that will actually be used: Take particular care on the following points:

- On the MB89663, register bank from 16 to 32 cannot be used.
- On the MB89P665, address BFF0_H to BFF6_H comprise the option setting area, option settings can be read by reading these addresses.
- The stack area, etc., is used.

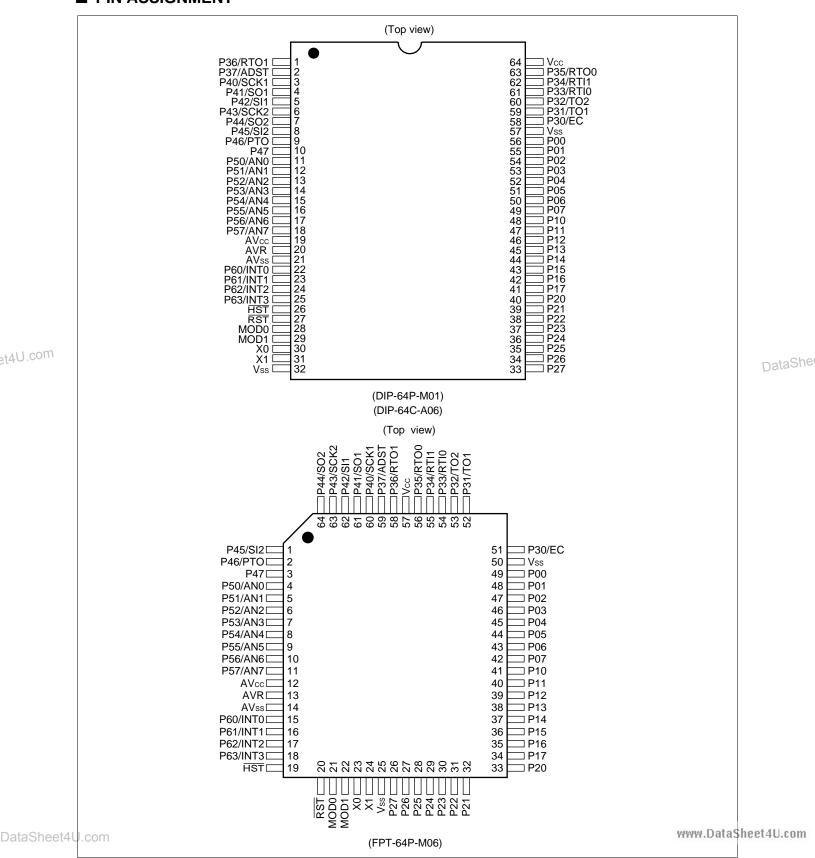
2. Current Consumption

- When operated at low speed, the product with an OTPROM or an EPROM will consume more current than the product with a mask ROM.
- However, the current comsumption in sleep/stop modes is the same. (For more information, see sections
 "■ Electrical Characteristics" and "■ Example Characteristics."

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."


Take particular care on the following points:

DataSheet4U.com

- On the MB89P665, a pull-up resistor must be selected in a group of four pins for P54 to P57.
- For all products, P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.

DataShe

■ PIN ASSIGNMENT

6

■ PIN DESCRIPTION

Pin	no.		Circuit			
DIP*1	QFP*2	Pin name	type	Function		
30	23	X0	Α	Crystal oscillator pins		
31	24	X1				
28	21	MOD0	В	Operating mode selection pins		
29	22	MOD1		Connect directly to Vcc or Vss. A pull-down resistor is selectable as an option for mask ROM products.		
27	20	RST	С	Reset I/O pin This port is an N-ch open-drain output type with pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".		
26	19	HST	G	Hardware standby input pin Connect directly to Vcc when hardware standby is not used.		
56 to 49	49 to 42	P00 to P07	D	General-purpose I/O ports		
48 to 41	41 to 34	P10 to P17				
40 to 33	33 to 26	P20 to P27	F	General-purpose output ports		
58	51	P30/EC	E _{Data}	General-purpose I/O port Also serves as an external clock input for an 8/16-bit timer/counter. This pin is a hysteresis input type and with a noise canceller.		
59	52	P31/TO1	E	General-purpose high-current I/O port Also serves as an 8/16-bit timer/counter output. This pin is a hysteresis input type and with a noise canceller.		
60	53	P32/TO2	E	General-purpose I/O port Also serves as an 8/16-bit timer/counter output. This pin is a hysteresis input type and with a noise canceller.		
61	54	P33/RTI0	E	General-purpose I/O ports		
62	55	P34/RTI1		Also serve as the data input for the input capture. This pin is a hysteresis input type and with a noise canceller.		
63	56	P35/RTO0	E	General-purpose I/O ports		
1	58	P36/RTO1		Also serve as the data output for the output compare. This pin is a hysteresis input type and with a noise canceller.		
2	59	P37/ADST	E	General-purpose heavy-current I/O port Also serves as the external activation input for the A/D converter. This pin is a hysteresis input type and with a noise canceller.		

*1: DIP-64P-M01, DIP-64C-A06

(Continued)

*2: FPT-64P-M06

DataShee

DataSheet4U.com www.DataSheet4U.com

(Continued)

Pin	no.	Bin name Circuit		Function	
DIP*1	QFP*2	Pin name	type	Function	
3	60	P40/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the UART. This pin is a hysteresis input type and with a noise canceller.	
4	61	P41/SO1	E	General-purpose I/O port Also serves as the data output for the UART. This pin is a hysteresis input type and with a noise canceller.	
5	62	P42/SI1	E	General-purpose I/O port Also serves as the data input for the UART. This pin is a hysteresis input type and with a noise canceller.	
6	63	P43/SCK2	E	General-purpose I/O port Also serves as the clock I/O for the 8-bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.	
7	64	P44/SO2	Е	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.	
8	1	P45/SI2	E Data	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.	
9	2	P46/PTO	E	General-purpose I/O port Also serves as a toggle output for an 8-bit PWM timer. This pin is a hysteresis input type and with a noise canceller.	
10	3	P47	E	General-purpose I/O port This pin is a hysteresis input type and with a noise canceller.	
11 to 18	4 to 11	P50/AN0 to P57/AN7	Н	N-ch open-drain output-only ports Also serve as the analog input for the A/D converter.	
22 to 25	15 to 18	P60/INT0 to P63/INT3	Е	General-purpose I/O ports These pins also serve as an external interrupt input. These pins are a hysteresis input type and with a noise canceller.	
64	57	Vcc	_	Power supply pin	
32 57	25 50	Vss	_	Power supply (GND) pins	
19	12	AVcc	_	A/D converter power supply pin	
20	13	AVR	_	A/D converter reference voltage input pin	
21	14	AVss	_	A/D converter power supply pin Use this pin at the same voltage as Vss.	

*1: DIP-64P-M01, DIP-64C-A06

*2: FPT-64P-M06

DataSheet4U.com www.DataSheet4U.com

DataShee

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X0 X0 X1 X0 X0 X1 X0 X1 X1 X0 X1	 External clock input selection versions of crystal or ceramic oscillation type At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
В		CMOS input Built-in pull-down resistor (mask ROM products only)
С	R P-ch	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V Hysteresis input
D	P-ch P-ch N-ch	CMOS output CMOS input Pull-up resistor optional
Е	P-ch P-ch N-ch	CMOS output Hysteresis input Pull-up resistor optional
F	P-ch N-ch	CMOS output

et4U.com

DataShee

(Continued)

(Continued)

Туре	Circuit	Remarks
G		Hysteresis input
Н	P-ch N-ch Analog input	 N-ch open-drain output Analog input Pull-up resistor optional

et4U.com

DataShee

DataSheet4U.com

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- or high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{cc} and V_{ss}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D Converters

Connect to be AVcc = Vcc and AVss = AVR = Vss if the A/D converters are not in use.

4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency(50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

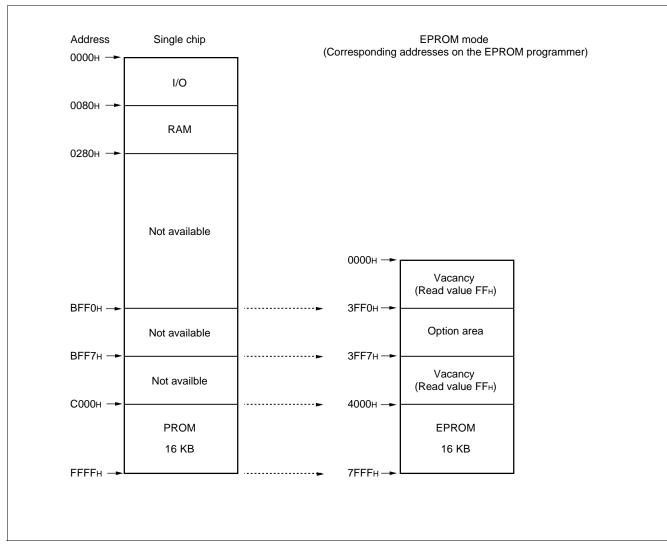
DataShe

DataSheet4U.com www.DataSheet4U.com

et4U.com

11

■ PROGRAMMING TO THE EPROM ON THE MB89P665


The MB89P665 is an OTPROM version of the MB89660 series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

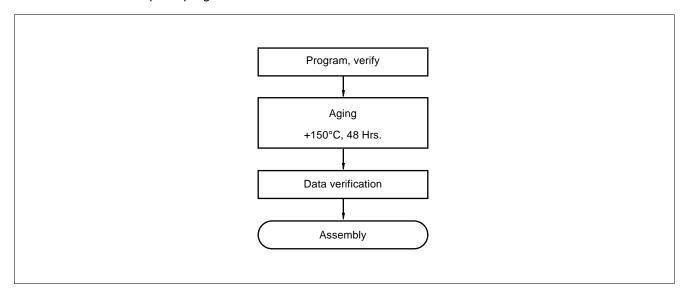
Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.

et4U.com

DataShe

3. Programming to the PROM

In EPROM mode, the MB89P665A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.


· Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH while operating as a single chip assign to 4000H to 7FFFH in EPROM mode).

 Load option data into addresses 3FF0H to 3FF6H of the EPROM programmer. (For information about each corresponding option, see "8. Setting OTPROM Options.")
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

et4U.com

DataShe

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Erasure Procedure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm² is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 μ W/cm² for 15 to 21 minuites. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

7. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-64P-M06	ROM-64QF-28DP-8L
DIP-64P-M01	ROM-64SD-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: Connect the adapter jumper pin to Vss when using.

DataShe

pataSheet4U.com www.DataSheet4U.com

14

8. Setting OTPROM Options

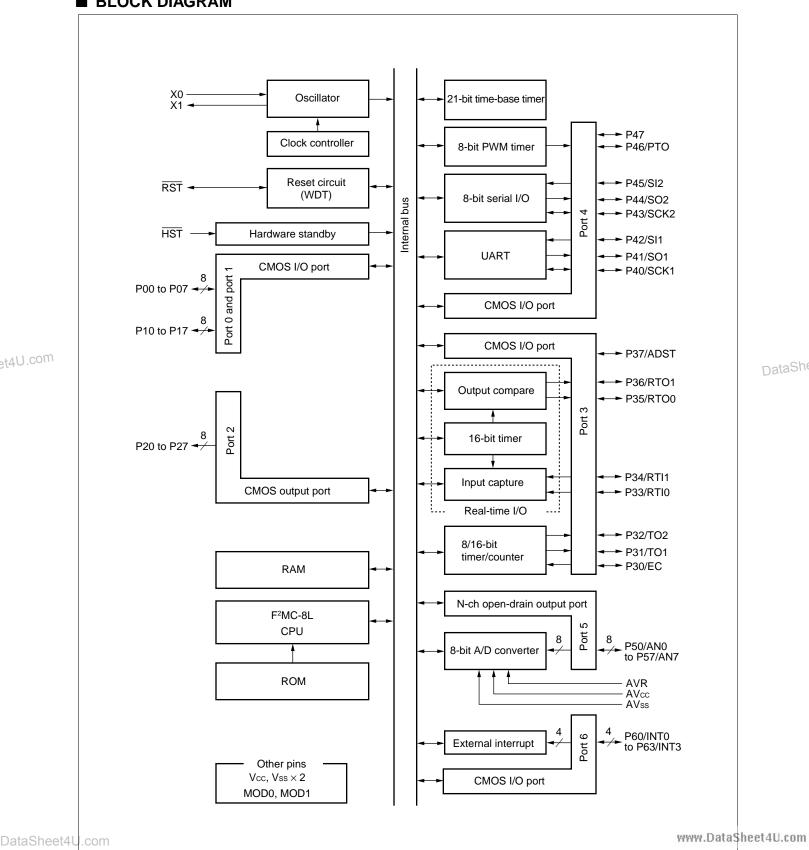
The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FF0н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Oscillation stabilization time 1: Crystal 0: Ceramic	Reset pin output 1: Yes 0: No	Power-on reset 1: Yes 0: No	Vacancy Readable and writable	Vacancy Readable and writable
3FF1н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	1: Yes	1: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF2н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF3н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0::Yesheet4U	0::Yes	0: Yes	0: Yes	0: Yes
3FF4н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF5н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P57 to P54 Pull-up 1: No 0: Yes	P53 Pull-up 1: No 0: Yes	P52 Pull-up 1: No 0: Yes	P51 Pull-up 1: No 0: Yes	P50 Pull-up 1: No 0: Yes
3FF6н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes

.

et4U.com

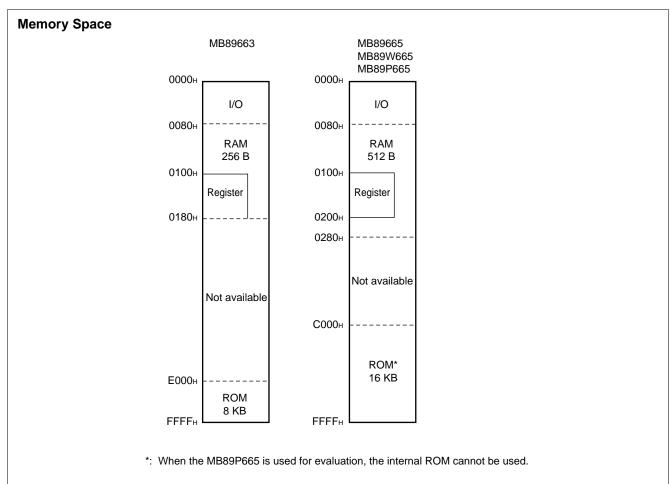

Note: • Set each bit to erase.

• Do not write 0 to the vacant bit.

The read value of the vacant bit is 1, unless 0 is written to it.

DataShe

■ BLOCK DIAGRAM


DataShe

16

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89660 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89660 series is structured as illustrated below.

et4U.com

DataShe

2. Registers

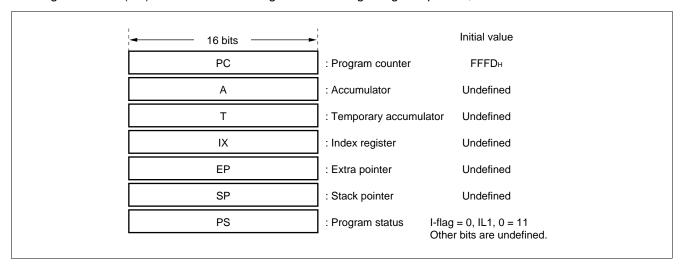
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

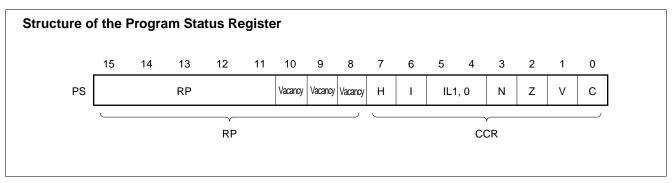
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

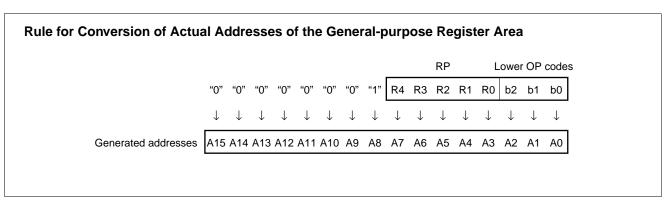

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code


The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

et4U.com

DataShe

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

DataSheet4U.com

	Batachiotire.som					
IL1	IL0	Interrupt level	High-low			
0	0	1	High			
0	1		†			
1	0	2	-			
1	1	3	Low = no interrupt			

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

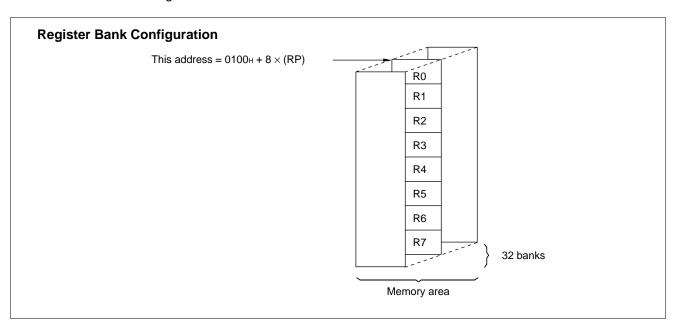
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

et4U.com

www.DataSheet4U.com


DataShe

The following general-purpose registers are provided:

General-purpose registers: an 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89663 and a total of 32 banks can be used on the MB89665/P665/W665. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

et4U.com

DataShe

■ I/O MAP

Address	Read/write	Register name	Register description	
00н	(R/W)	PDR0	Port 0 data register	
01н	(W)	DDR0	Port 0 data direction register	
02н	(R/W)	PDR1	Port 1 data register	
03н	(W)	DDR1	Port 1 data direction register	
04н	(R/W)	PDR2	Port 2 data register	
05н			Vacancy	
06н			Vacancy	
07н			Vacancy	
08н	(R/W)	STBC	Standby control register	
09н	(R/W)	WDTC	Watchdog timer control register	
ОАн	(R/W)	TBTC	Watch interrupt control register	
0Вн			Vacancy	
0Сн	(R/W)	PDR3	Port 3 data register	
0Дн	(W)	DDR3	Port 3 data direction register	
0Ен	(R/W)	PDR4	Port 4 data register	
0Fн	(W)	D DDR4 eet4U.c	Port 4 data direction register	
10н	(R/W)	PDR5	Port 5 data register	
11н			Vacancy	
12н	(R/W)	PDR6	Port 6 data register	
13н	(W)	DDR6	Port 6 data direction register	
14н			Vacancy	
15н	(R/W)	ADC1	A/D converter control register 1	
16н	(R/W)	ADC2	A/D converter control register 2	
17н	(R/W)	ADCD	A/D converter data register	
18н	(R/W)	T2CR	8/16-bit timer 2 control register	
19н	(R/W)	T1CR	8/16-bit timer 1 control register	
1Ан	(R/W)	T2DR	8/16-bit timer 2 data register	
1Вн	(R/W)	T1DR	8/16-bit timer 1 data register	
1Сн	(R/W)	CNTR	PWM control register	
1Dн	(W)	COMR	PWM compare register	
1Ен	Vacancy			
1F _H			Vacancy	

(Continued)

DataSheet4U.com www.DataSheet4U.com

DataShee

(Continued)

Address	Read/write	Register name	Register description	
20н	(R/W)	SMC	UART serial mode control register	
21н	(R/W)	SRC	UART serial rate control register	
22н	(R/W)	SSD	UART serial status/data register	
23н	(R/W)	SIDR/SODR	UART serial data register	
24н	(R/W)	SMR	Serial mode register	
25н	(R/W)	SDR	Serial data register	
26н	(R/W)	EIC1	External interrupt control register 1	
27н	(R/W)	EIC2	External interrupt control register 2	
28н	(R/W)	TMCR	Timer control register	
29н	(R)	TCHR	Timer count register (H)	
2Ан	(R)	TCLR	Timer count register (L)	
2Вн	(R/W)	OPCR	Output control register	
2Сн	(R/W)	CPR0H	Output compare register 0 (H)	
2Dн	(R/W)	CPR0L	Output compare register 0 (L)	
2Ен	(R/W)	CPR1H	Output compare register 1 (H)	
2Fн	(R/W)	DataSheet4U.c	Output compare register 1 (L)	
30н	(R/W)	ICCR	Input capture control register	
31н	(R/W)	ICIC	Input capture interrupt control register	
32н	(R)	ICR0H	Input capture register 0 (H)	
33н	(R)	ICR0L	Input capture register 0 (L)	
34н	(R)	ICR1H	Input capture register 1 (H)	
35н	(R)	ICR1L	Input capture register 1 (L)	
36н			Vacancy	
37н		Vacancy		
38н			Vacancy	
7Сн	(W)	ILR1	Interrupt level setting register 1	
7Dн	(W)	ILR2	Interrupt level setting register 2	
7Ен	(W)	ILR3 Interrupt level setting register 3		
7F H			Vacancy	

Note: Do not use vacancies.

DataShee

DataSheet4U.com www.DataSheet4U.com

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Offic	Remarks
Power supply voltage	Vcc AVcc	Vss - 0.3	Vss + 7.0	V	*
	AVR	Vss - 0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level maximum output current	Іоь	_	20	mA	
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	ΣΙοιαν	_	40	mA	Average value (operating current × operating rate)
"H" level maximum output current	Іон	DataSheet ⁴	-20 ‡U.com	mA	
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	ΣІон	_	-50	mA	
"H" level total average output current	ΣΙομαν	_	-20	mA	Average value (operating current × operating rate)
Power consumption	P _D	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*:} Use AVcc and Vcc set at the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

et4U.com

www.DataSheet4U.com

DataShe

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
i arameter	Symbol	Min.	Max.	Oilit	Remarks
Power supply voltage		2.2*	6.0*	V	Normal operation assurance range* MB89663/665
	Vcc AVcc	2.7*	6.0*	V	Normal operation assurance range* MB89P665
		1.5	6.0	V	Retains the RAM state in stop mode
	AVR	0.0	AVcc	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency and analog assurance range. See Figure. 1 and "5. A/D Converter Electrical Characteristics."

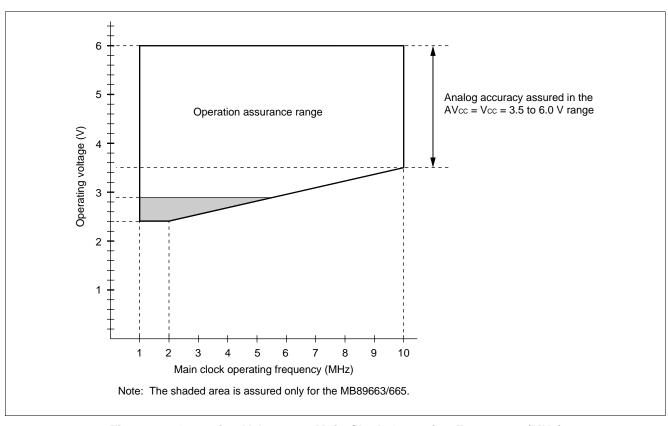


Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MHz)

et4U.com

DataShe

3. DC characteristics

 $(AVcc = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromatar	Comments of	D:	,		Value			-40°C to +85°C
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	VIH	P00 to P07, P10 to P17	_	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	ViHs	RST, HST P30 to P37, P40 to P47, P60 to P63	_	0.8 Vcc	_	Vcc + 0.3	V	
	VIL	P00 to P07, P10 to P17	_	Vss - 0.3	_	0.3 Vcc	V	
"L" level input voltage ^{•1}	VILS	RST, HST P30 to P37, P40 to P47, P60 to P63	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin application voltage	VD	P50 to P57	_	Vss - 0.3	_	Vcc + 0.3	V	
"H" level output voltage	Vон1	P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P60 to P63	DataSher Іон = −2.0 mA	et4U.com 2.4	_	_	V	
	V _{OH2}	P31, P37	Iон = −15 mA	2.4	_	_	V	
"L" level output voltage	Vol.1	P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P50 to P57, P60 to P63	IoL = +1.8 mA	_	_	0.4	V	
	V _{OL2}	P31, P37	IoL = +12 mA	_	_	0.4	V	
	V _{OL3}	RST	loL = +4.0 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	Iu1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P63	0.45 V < Vı < Vcc	_	_	±5	μΑ	Without pull-up resistor
Pull-up resistance	Rpulu	RST, option selection pin	Vı = 0.0 V	25	50	100	kΩ	

DataShee

(Continued)

www.DataSheet4U.com

(Continued)

 $(AVcc = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		1	(AVcc :	= Vcc = +5.0	v, Avss =	= VSS = 0.0 V	, IA = -	40°C to +85°C)
Parameter	Symbol	Pin	Condition		Value		Unit	Remarks
i arameter	Symbol		Condition	Min.	Тур.	Max.	Oiiit	Remarks
Pull-down resistance	RPULD	MOD0, MOD1	Vı = +5.0 mA	5	20	60	kΩ	Mask ROM products only
			Fc = 10 MHz	_	15	18	mA	MB89663/665
	Icc	t _i	t _{inst*3} = 0.4 μs Normal mode	_	17	20	mA	MB89P665/ W665
	Iccs Vcc	Vcc	Fc = 10 MHz t _{inst} *3 = 0.4 μs Sleep mode	_	6	8	mA	
Power supply current	Іссн	A A	$T_A = +25^{\circ}C$ $t_{inst}^{*3} = 0.4 \mu s$ Stop mode	_	_	10	μА	Also applicable to the hardware standby mode.
	la		Fc = 10 MHz, when A/D conversion is activated	_	2.5	4.5	mA	
Іан	Іан	AVcc	Fc = 10 MHz, TA = +25°C, when A/D conversion is stopped	_ t4U.com	_	5	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

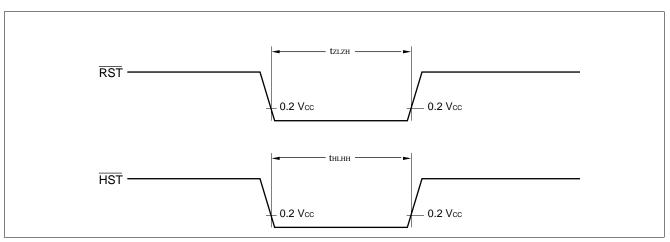
et4U.com

DataShe

^{*1:} Fix MOD0 and MOD1 to Vss.

^{*2:} The power supply current is measured at the external clock.

^{*3:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."


4. AC Characteristics

(1) Reset Timing, Hardware Standby Timing

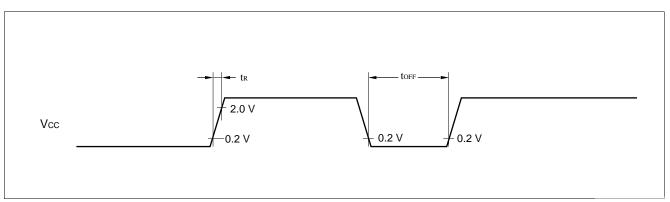
 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Condition		Val	lue	Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Offic	Neillai KS	
RST "L" pulse width	t zlzh		16 txcyL	_	ns		
HST "L" pulse width	tньнн		16 txcyL	_	ns		

^{*:} txcyL is the oscillation cycle (1/Fc) to input to the X0 pin.

et4U.com

DataShe

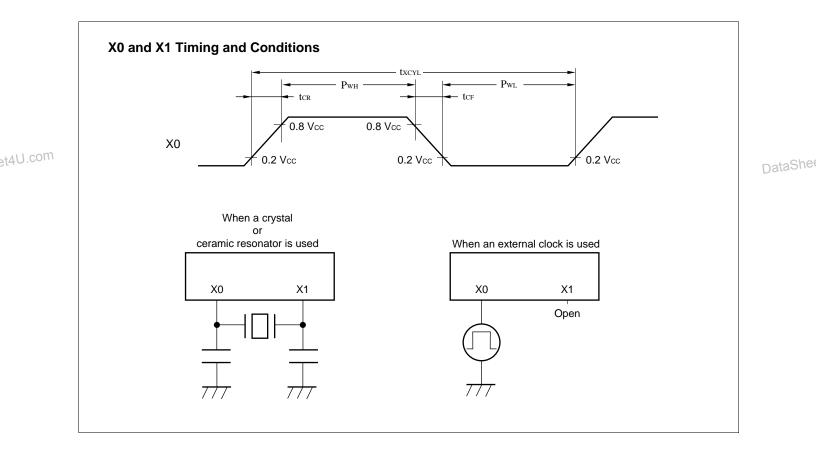

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Condition		Val	ues	Unit	Remarks	
i arameter	Gyiliboi	Condition	Min.	Max.	Oilit	Remarks	
Power supply rising time	t R		_	50	ms		
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.

If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

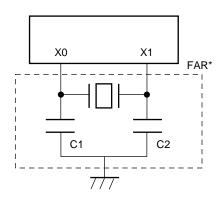


DataSheet4U.com

(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition		Value		Unit	Remarks
Farameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Oilit	
Clock frequency	Fc	X0, X1	_	1	_	10	MHz	
Clock cycle time	txcyL	X0, X1	_	100		1000	ns	
Input clock pulse width	Pwh PwL	X0	_	20	_	_	ns	External clock
Input clock rising/ falling time	tcr tcr	X0	_	_	_	10	ns	External clock


(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	t inst	4/Fc	μs	When operating at Fc = 10 MHz

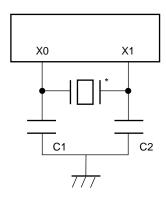
DataSheet4U.com

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR series)

*: Fujitsu Acoustic Resonator C1 = C2 = 20 pF±8 pF (built-in FAR)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristic of FAR frequency (T _A = −20°C to +60°C)
FAR-C4CB-08000-M02	8.00 MHz	±0.5%	±0.5%
FAR-C4CB-10000-M02	10.00 MHz	±0.5%	±0.5%


Inquiry: FUJITSU LIMITED

DataSheet4U.com

et4U.com

DataShe

Sample Application of Ceramic Resonator

Resonator manufacturer*	Resonator	Frequency	C1 (pF)	C2 (pF)	R (k Ω)
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	_
Nyoceia Corporation	KBR-8.0MWS	8.0 MHz	33	33	_
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	_

Inquiry: Kyocera Corporation

DataSheet4U.com

• AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

AVX Limited

European Sales Headquarters: TEL 44-1252-770000

• AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

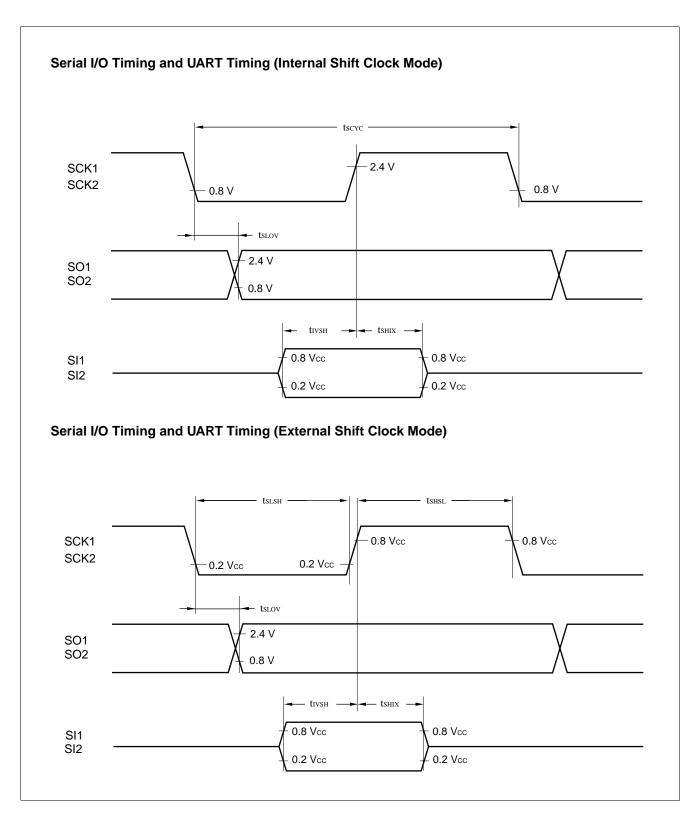
Murata Electronics North America, Inc.: TEL 1-404-436-1300
Murata Europe Management GmbH: TEL 49-911-66870

• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

DataShe

DataSheet4U.com

(6) Serial I/O Timing and UART Timing


 $(Vcc = +5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Darameter	Cumbal	,		Val		·	= -40 C t0 +00 C
Parameter	Symbol	Pin	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK1, SCK2		2 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \text{ time} \\ SCK2 \downarrow \to SO2 \text{ time} \end{array}$	tslov	SCK1, SO1 SCK2, SO2	Internal shift clock mode	-200	200	ns	
Valid SI1 → SCK1 ↑ Valid SI1 → SCK1 ↑	tıvsh	SI1, SCK1 SI2, SCK2		1/2 t inst*	_	μs	
$\begin{array}{c} SCK1 \uparrow \to valid \; SI1 \; hold \; time \\ SCK2 \uparrow \to valid \; SI2 \; hold \; time \end{array}$	tsнıx	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK1, SCK2		1 tinst*	_	μs	
Serial clock "L" pulse width	t slsh	SCK1, SCK2		1 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \text{ time} \\ SCK2 \downarrow \to SO2 \text{ time} \end{array}$	tslov	SCK1, SO1 SCK2, SO2	External shift clock mode	0	200	ns	
Valid SI1 → SCK1 ↑ Valid SI2 → SCK2 ↑	tıvsh	SI1, SCK1 SI2, SCK2		1/2 tinst*	_	μs	
$\begin{array}{c} SCK1 \uparrow \to valid \; SI1 \; hold \; time \\ SCK2 \uparrow \to valid \; SI2 \; hold \; time \end{array}$	t shix	SCK1, SI1 SCK2, SI2	neet4U.com	1/2 tinst*		μs	

et4U.com

DataShe

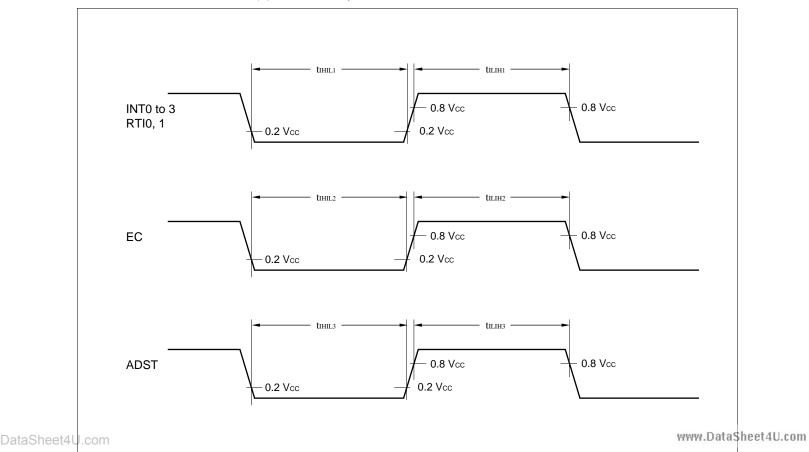
^{*:} For information on tinst, see "(4) Instruction Cycle."

et4U.com

DataShee

DataSheet4U.com

(7) Peripheral Input Timing

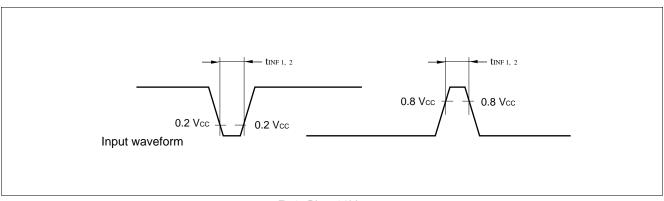

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Daramatar	Cumbal	Pin	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Pili	Condition	Min.	Max.	Unit	Remarks
Peripheral input "H" pulse width 1	t _{ILIH1}	RTI0, 1	_	2 tinst*	_	μs	
Peripheral input "L" pulse width 1	t _{IHIL1}	INT0 to INT3	_	∠ l inst	_	μs	
Peripheral input "H" pulse width 2	t ILIH2	- EC	_	1 t _{inst} *	_	μs	
Peripheral input "L" pulse width 2	t ıHıL2	LO	_	I Linst		μs	
Peripheral input "H" pulse width 3	t ılıH3		A/D mode	32 tinst*	1	μs	
Peripheral input "L" pulse width 3	t ініL3	ADST			l	μs	
Peripheral input "H" pulse width 3	t ılıH3	ADST	0	8 t _{inst} *		μs	
Peripheral input "L" pulse width 3	t ıнıL3		Sense mode	O unst	_	μs	

et4U.com

DataShee

^{*:} For information on tinst, see "(4) Instruction cyclet "Sheet 4U.com



33

(8) Noise Filter

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
			Condition	Min.	Max.	Offic	Remarks
Noise filter width 1	tinf1	P30 to P37, P40 to P47, P60 to P63	During port operation	15	_	ns	
Noise filter width 2	tinf2	P60 to P63	During external interrupt	60		ns	

et4U.com

DataShee

DataSheet4U.com

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +3.5 \text{ V to } 6.0 \text{ V. } AVss = Vss = 0.0 \text{ V. } T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Domonoston	Symbol	Pin	Condition	Value				0°C to +85°C
Parameter				Min.	Тур.	Max.	Unit	Remarks
Resolution	Vot Vfst		_		_	8	bit	
Total error			AVR = AVcc	1	_	±2.0	LSB	
Linearity error					_	±1.0	LSB	
Differential linearity error				-	_	±0.9	LSB	
Zero transition voltage				AVss – 1.5 LSB	AVss+ 0.5 LSB	AVss+ 2.5 LSB	mV	
Full-scale transition voltage		_		AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity					_	1	LSB	
A/D mode conversion time				-	44 tisnt*	_	μs	
Sense mode conversion time				_	12 tinst*	_	μs	
Analog port input circuit	lain —	AN0 to AN7	_	-	_	10	μΑ	
Analog input voltage				0	_	AVR	V	
Reference voltage				0	_	AVcc	V	
Reference voltage supply current	lR	AVR	AVR = 5.0 V when A/D conversion is activated	<u> </u>	150	_	μА	
	Ігн		AVR = 5.0 V when A/D conversion is stopped	_	_	5	μА	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Glossary

Resolution

Analog changes that are identifiable with the A/D converter.

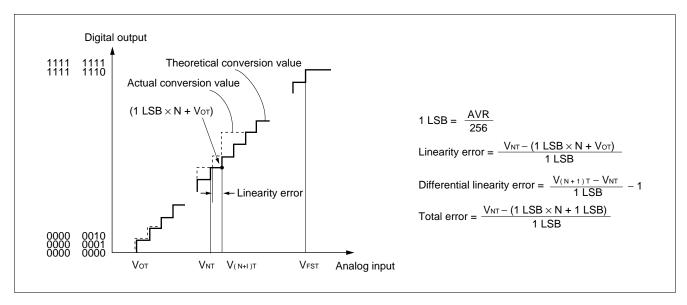
When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.

Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" ↔ "1111 1110") from actual conversion characteristics

• Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

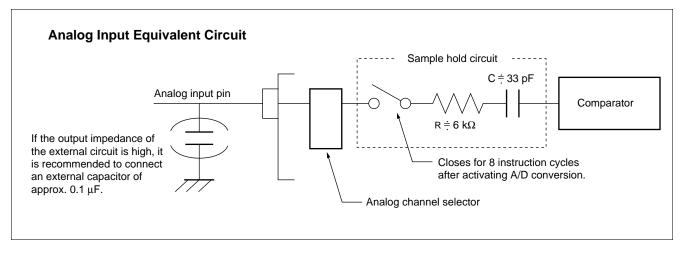

• Total error (unit: LSB)

The difference between theoretical and actual conversion values

DataShe

DataSheet4U.com

et4U.com


(2) Precautions

· Input impedance of analog input pins

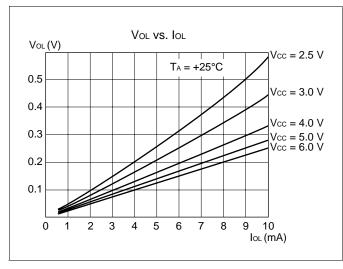
The A/D converter used for the MB89660 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

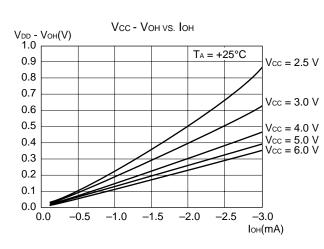
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series to $2 \text{ k}\Omega$ or less.

When the impedance cannot be kept low, the following two methods are recommended. One is to activate the A/D converter continuously for obtaining the pseudo long sampling time by using software. The other is to connect the external capacitor of approx. $0.1~\mu s$ to the analog input pin.

• Error

The smaller the | AVR – AVss |, the greater the error would become relatively.

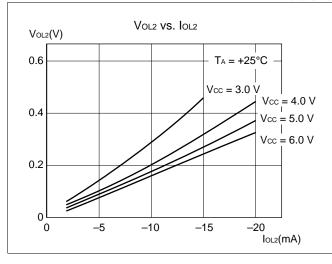

et4U.com

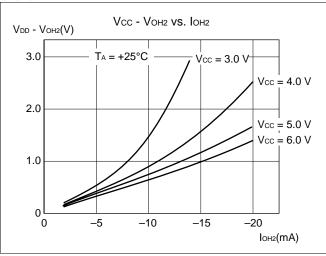

www.DataSheet4U.com

DataShe

■ EXAMPLES CHARACTERISTICS

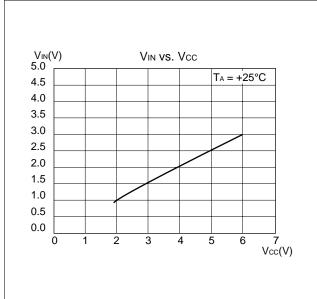
- (1) "L" Level Output Voltage P00 to P07, P10 to P17,P20 to P27, P30, P32 to P36, P40 to P47, P50 to P57, P60 to P63
- (2) "H" Level Output Voltage P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P60 to P63

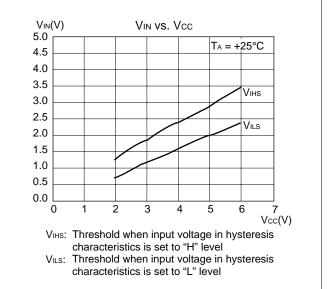



et4U.com

(3) "L" Level Output Voltage P31, P37

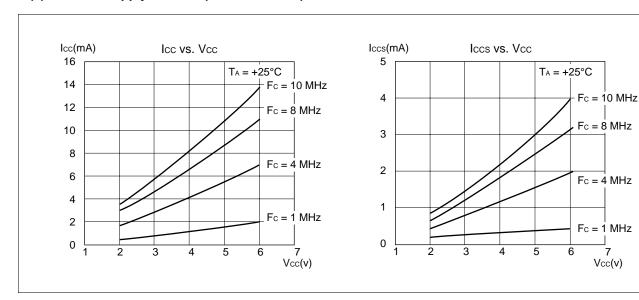
(4) "H" Level Output Voltage P31, P37



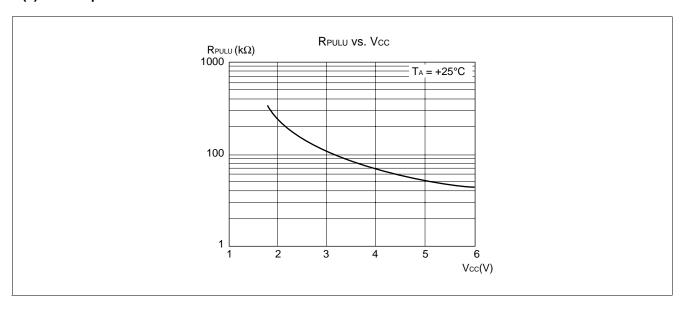

DataSheet4U.com www.DataSheet4U.com

DataShe

(5) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(6) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

et4U.com


(7) Power Supply Current (External Clock) : et4U.com

DataShe

DataSheet4U.com www.DataSheet4U.com

(8) Pull-up Resistance

et4U.com

DataShee

DataSheet4U.com

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

The number of instructions The number of bytes Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

Code of an instruction. If an instruction is more than one code, it is written according to OP code:

www.DataSheet4U.com the following rule:

Example: 48 to 4F ← This indicates 48, 49, ... 4F.

et4U.com

DataShe

DataSheet4U.com

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	$(A) \leftarrow dB'$	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow (A)$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
			$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	АН	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir_4 + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
1000000		_	$(AL) \leftarrow ((IX) + off + 1)$	/ _	/	J 41.1	' '	00
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (A), (AL) \leftarrow (A) + 1$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	$(A) \leftarrow (EP)$	_		dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_	_		E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	$(SP) \leftarrow (A)$	_	_	_		E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (B)$	_	_	_		82
MOVW @A,T	4	1	$(A) \leftarrow (I)$ $(A) \leftarrow (TH),(A) + 1 \leftarrow (TL)$	_	_	_		83
MOVW WA,1	3	3	$(IX) \leftarrow d16$	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)			dH		70
MOVW PS,A	2	1	(PS) ← (A)				++++	71
MOVW SP,#d16	3	3	$(SP) \leftarrow (A)$					E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$			AL		10
SETB dir: b	4	2	$(\operatorname{dir}): b \leftarrow 1$			\		A8 to AF
CLRB dir: b	4	2	$(dir): b \leftarrow 1$ $(dir): b \leftarrow 0$		_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
	3			AL	AH	dH		42
XCHW A,T	3		$(A) \leftrightarrow (T)$	AL		_		
XCHW A,EP XCHW A,IX		1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP MOVW A,PC	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
IVIOV VV A,PC	2	1	(A) ← (PC)	_	_	dH		F0

et4U.com

DataShee

Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

DataSheet4U.com

www.DataSheet4U.com

Table 3 Arithmetic Operation Instructions (62 instructions)

ADDC A,Rid 3	Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A, @IX +off ADDC A, \(IX) +off) ADDC A, \(I					_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	dΗ	++++	
SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A, @IX +off SUBC A, (IX) +off SUBC A, ($(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_	++++	38 to 3F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SUBC A,#d8		2		_	_	_	++++	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SUBC A,dir	3			_	_	_	++++	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SUBC A,@EP	3	1		_	_	_	++++	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SUBCW A	3	1		_	_	dΗ	++++	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INCW EP	3	1		_	_	_		C3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1		_	_	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	_	dH	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_	+++-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	dН	++	
DIVU A ANDW A 3 1 (A) \leftarrow (T) $/$ (AL) MOD \rightarrow (T) $-$ 0 00 00 00 00 00 00 00 00 00 00 00 00					_	_	-		
ANDW A 3 1 (A) \leftarrow (A) \wedge (T)				$(A) \leftarrow (T) / (AL) MOD \rightarrow (T)$	dI	00			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$(A) \leftarrow (A) \land (T)$				++R-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_			
RORC A 2 1 \bigcirc C \rightarrow A \bigcirc C \rightarrow C \rightarrow C \rightarrow A \bigcirc C \rightarrow C					_	_	_		
ROLC A 2 1				1 ' ' ' '	_	_	_		
CMP A,#d8			-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROLC A	2	1	\Box \Box \Box \Box \Box	_	_	_	++-+	02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				` '	_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			_	_	_	++++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMP A,@IX +off	4			_	_	_	++++	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		_	_	_	++++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAA		1		_	_	_	++++	84
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++R-	52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOR A,#d8	2	2	$(A) \leftarrow (AL) \forall d8$	_	_	_	++R-	54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOR A,@EP	3	1	$(A) \leftarrow (AL) \forall ((EP))$	_	_	_	++R-	57
XOR A,Ri 3 1 $(A) \leftarrow (AL) \forall (Ri)$ - - - + + R - 58 to 5F AND A 2 1 $(A) \leftarrow (AL) \land (TL)$ - - - + + R - 62 AND A,#d8 2 2 $(A) \leftarrow (AL) \land d8$ - - - + + R - 64			2		_	_	_		
AND A 2 1 $(A) \leftarrow (AL) \land (TL)$ ++R- 62 AND A,#d8 2 2 $(A) \leftarrow (AL) \land d8$ ++R- 64		3			_	_	_		
AND A,#d8 $2 2 (A) \leftarrow (AL) \land d8$ $ + R - 64$			1		_	_	_		
					_	_	_		
	AND A,dir	3	2	$(A) \leftarrow (AL) \wedge (dir)$	_	_	_	+ + R -	65

(Continued)

DataShee

www.DataSheet4U.com DataSheet4U.com

et4U.com

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	-	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	-	1	ı		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation		TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If Z = 1 then PC ← PC + rel	1	-	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC ← PC + rel	_	_	_		F9
BNC/BHS rel	3	2	If C = 0 then PC ← PC + rel	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC ← PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A),(A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	-		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

et4U.com

DataShee

DataSheet4U.com www.DataSheet4U.com

■ INSTRUCTION MAP

NOP SWAP RET RET1 PUSHW POPW MOV MOVW CLRC																			_
1		ш	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	KCHW A,PC	KCHW A,SP	CHW A,IX	KCHW A,EP									
NOP SYMAP RET PLUSHW POPW MOV MOW MOW CLIR SET CLIR BEC MOW DECW MOW M		ш	@ A	⋖	⋖	<	9	9	9	9	0#	#1	42	#3	44	9#	9#	2#	
NOV CMP SWAP RET RETI PUSHW POPW MOV MOW CLRC SETC CLRB BBC INCW A MOV MOV MOW CLRC SETC CLRB BBC INCW A MOV MOV MOW CLRC SETC CLRB BBC INCW A MOV MOV MOW CLRC SETC CLRB BBC INCW A MOV MOW CLRC SETC CLRB BBC INCW A MOV CLRD MOW CLRD M		۵	⋖	Δ.	×	Д	⋖	⋖		⋖	8	R	R2	R3	R4	R5	R6	R7	
NOV CMP ADDC SUBC MOV ACK AC		ပ	⋖	S	×	П	ŧ	.⊨	MOVW A,@IX +d	Λ	RO	R3							
NOP SWAP RET RETI DUSHW POPW, MOV, MOV, MOV, CLRI SETI CLRB		В	0,rel	1,rel	2,rel	3,rel	4,rel	5,rel	6,rel	7,rel	0,rel	1,rel	2,rel	3,rel	4,rel	5,rel	6,rel	7,rel	
NOP SWAP RET RETI PUSHW POPW MOV MOVW CLR SET MULU DNV MAPP CLR SET CLR MOV MOVW CLR MOV MOV MOVW CLR MOV MOV MOV MOV MOV MOV MOV MOV CLR MOV MOV		∢	0 :-	-	2	<u>ო</u>	4	ıO	r: 6	7 :	0 :-	r: 1	2 ::	ب. س	4 :	7: 5	9.	2 : 2	
NOP SWAP RET RET1 PUSHW POPW MOV MOVW CLR!	stall.com	6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	%p#	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8	Ohoo
O	5140.0	8	CLRI	CLRC	MOV @A,T	-	DAA	MOV dir,#d8		MOV @EP;#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8	DataShe
NOP SWAP RET RETI PUSHW MC		7	MOVW A,PS	MOVW PS,A			OR A,#d8			@EP	A,R0		A,R2					A,R7	
NOP SWAP RET RETT PUSHW POPW A addrt6 addrt6 BLSHW POPW KPLC CMP A addrt6 addrt6 BLSHW POPW KPLC CMP A addrt6 A ad		9	MOV A,ext	MOV ext,A			AND A,#d8	AND A,dir		AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7	
NOP SWAP RET RETI PUSHW Addr16 Add		2		POPW IX			XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7	
0 1 2 3 NOP SWAP RET RETI MULU DIVU JMP CALL A A A A ROLC CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 MOV CMP ADDC SUBC A,@IX +d A,@IX +d A,@IX +d A,@IX +d MOV CMP ADDC SUBC A,@IX +d A,@IX +d A,@IX +d A,@IX +d MOV CMP ADDC SUBC A,@IX +d A,@IX +d A,@IX +d A,RR MOV CMP ADDC SUBC A,@IX +d A,RR A,R2 A,R3 MOV CMP ADDC SUBC A,R2 A,R2 A,R3 A,R3 MOV CMP ADDC SUBC MOV CMP A,R4 A,R4 A,R4 A,R4 A,R4 A,R6		4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MO		MOV @EP,A	MOV R0,A	MOV R1,A	0	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	0	
NOP SWAP NOP SWAP NOP SWAP NOP SWAP A,#d8 A,#d8 A,#d8 A,#d8 A,#d8 A,#d8 A,@EP A,@EP A,@EP A,@EP A,R1 A,R1 A,R1 A,R2 A,R2 A,R2 A,R2 A,R3 MOV CMP A,R4 A,R4 A,R4 A,R4 A,R4 A,R4 A,R4 A,R4 A,R4 A,R5 A,R5 A,R5 A,R6 MOV CMP A,R5 A,R5 A,R6 MOV CMP A,R5 A,R5 A,R6 MOV CMP A,R7 A,R7		3	RETI	CALL addr16				SUBC A,dir	SUBC A,@IX +d	0)	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7	
0		2	RET	JMP addr16		ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADI	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7	
NOP NOP		-	SWAP			⋖	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CM	CMP A,R1	СМ	CM	CMP A,R4	CM	CMI	CMP A,R7	
		0	NOP				MOV A,#d8	MOV A,dir	MOV A,@IX+d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7	
DataSheet4U.com J O T N M 4 15 9 N 8 6 4 M O D WWW.DataSheet4U	DataSheet4U.c		0	-	7	က	4	2	9	7	80	6	4	B	ပ	D	ш	v₩.Dat	aSheet4U.com

44

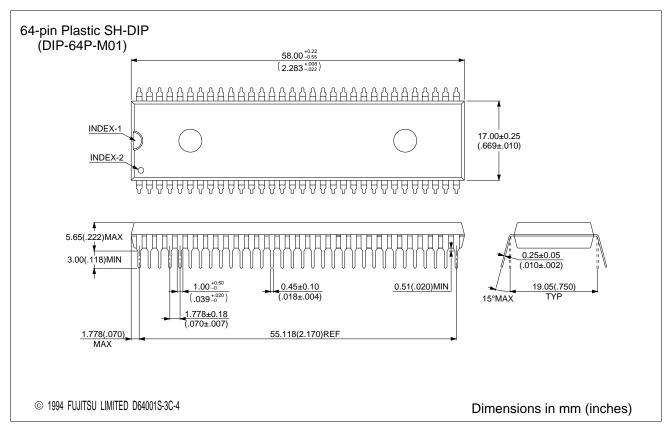
■ MASK OPTIONS

No.	Part number	MB89663 MB89665	MB89P665 MB89W665			
NO.	Specifying procedure	Specify when ordering masking	Set with EPROM programmer			
1	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible			
2	Selection of the oscillation stabilization time Crystal oscillator (26.2 ms/10 MHz) Ceramic oscillator (1.64 ms/10 MHz)	Selectable	Setting possible			
3	Reset pin output With reset output Without reset output	Selectable	Setting possible			
4	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P63	Can be selected per pin. (P50 to P57 are available for without pull-up resistors when an A/D converter is used.)	Can be set per pin. (P54 to P57 must have the same setting)			

et4U.com

,

DataSheet4U.com

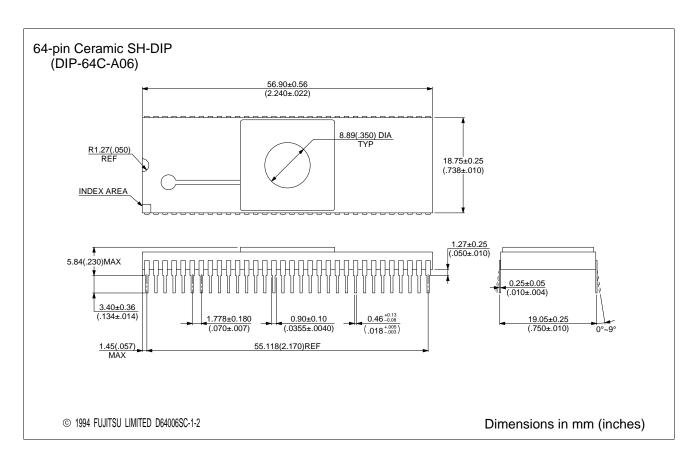

■ ORDERING INFORMATION

Part number **Package** Remarks MB89663P-SH 64-pin Plastic SH-DIP MB89665P-SH (DIP-64P-M01) MB89P665P-SH MB89663PF 64-pin Plastic SH-DIP MB89665PF (FPT-64P-M06) MB89P665PF 64-pin Ceramic SH-DIP MB89W665C-SH (DIP-64C-A06)

DataSheet4U.com www.DataSheet4U.com

DataShee

■ PACKAGE DIMENSIONS



DataShee

64-pin Plastic QFP (FPT-64P-M06) 24.70±0.40(.972±.016) 3.35(.132)MAX 20.00±0.20(.787±.008) (33) (52) (32) ш $\overline{}$ 18.70±0.40 (.736±.016) 16.30±0.40 (.642±.016) 14.00±0.20 12.00(.472) REF (.551±.008) INDEX (20) LEAD No. (1) 0.15±0.05(.006±.002) 1.00(.0394) TYP 0.40±0.10 (.016±.004) ⊕ 0.20(.008) ₪ Details of "A" part Details of "B" part 0.25(.010) 0.30(.012) □ 0.10(.004) ₹ 0 ~10° 0.18(.007)MAX 18.00(.709)REF 1.20±0.20 0.63(.025)MAX 22.30±0.40(.878±.016) Dimensions in mm (inches) Data Sheet 4U.com © 1994 FUJITSU LIMITED F64013S-3C-2 DataSheet4U.com

46

et4U.com

et4U.com

DataShee

DataSheet4U.com www.DataSheet4U.com

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air trafficeet4U.com control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9602

© FUJITSU LIMITED Printed in Japan

et4U.com

www.DataSheet4U.com