DATA SHEET

FUĴITSU

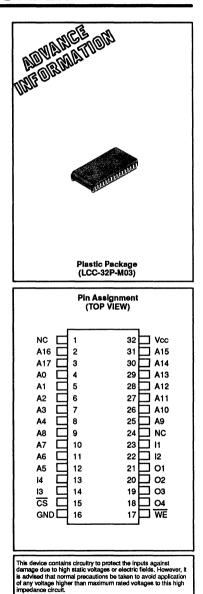
MB82B006-25/-35 1M BIT HIGH-SPEED BICMOS SRAM

256K Words x 4 Bits BiCMOS High-Speed Static Random Access Memory

The Fujitsu MB82B006 is a static random access memory organized as 262, 144 words by 4 bits and fabricated with BiCMOS process technology. BiCMOS technology is used in the peripheral circuits to provide lower power dissipation and higher speed. To obtain a smaller chip size, the cells use NMOS transistors and resistors.

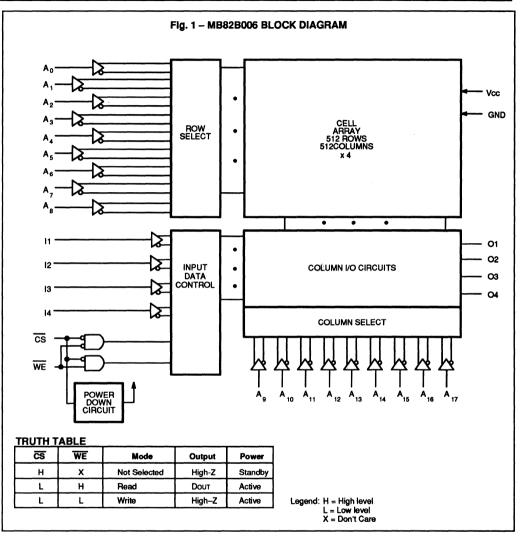
The memory uses asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single +5 V power supply is required. The MB82B006 is housed in a 400 mil plastic small outline J-lead (SOJ) package.

The MB82B006 has low power dissipation, low cost, and high performance, and it is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required.


- Organization: 262,144 words x 4 bits
- Static operation: no clocks or refresh required
- Access time: 25 ns max. (MB82B006-25) 35 ns max. (MB82B006-35)
- Single +5 V power supply ±10% tolerance with low current drain: 120 mA max. (Active Operation) 15 mA max. (CMOS Standby) 25 mA max. (TTL Standby)
- · Separate data inputs and outputs
- TTL compatible inputs and outputs
- Chip select for simplified memory expansion, automatic power drain
- · Electrostatic protection for all inputs and outputs
- Standard 32-pin Plastic Package: SOJ (400 mil) MB82B006-xxPJ

Absolute Maximum Ratings (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.5 to +7	v
Input Voltage on any pin with respect to GND	Vin	-0.5 to +7	v
Output Voltage on any pin with respect to GND	Vout	0.5 to +7	v
Output Current	Голт	±20	mA
Power Dissipation	PD	1.0	w
Temperature Under Bias	TBIAS	-10 to +85	°C
Storage Temperature Range	T _{STG}	-40 to +125	°C


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

2

MB82B006-25 MB82B006-35

CAPACITANCE (TA = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (VIN = 0 V)	Cin		6	pF
CS Capacitance (VCS = 0 V)	CCS		7	pF
Output Capacitance (Vour = 0 V)	Солт		7	pF

2

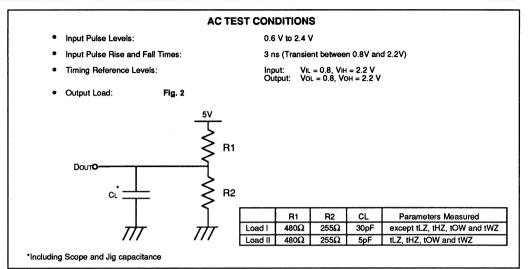
PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
A0 to A17	Address Input	WE	Write Enable
11 to 14	Data Input	Vcc	Power Supply(+10%)
O1 to O4	Data Output	GND	Ground
cs	Chip Select	NC	No Connect

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND) Parameter Symbol Min Тур Max Unit Supply Voltage Vcc 45 5.0 5.5 ۷ °C Ambient Temperature Та 0 70

DC CHARACTERISTICS

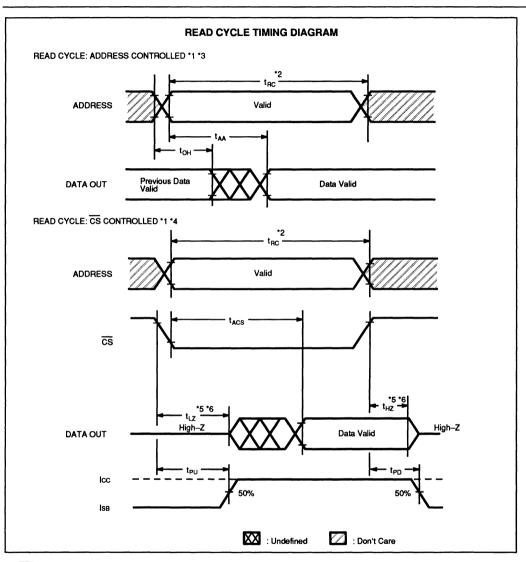

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit	
Input Leakage Current	Vin = 0V to Vcc Vcc = Max.	lu	-1		1	μА	
Output Leakage Current	CS = VIH Vout = 0V to Vcc Vcc = Max.	ILO	-1		1	μА	
Active Supply Current	CS = VIL, IOUT - 0mA Vcc = Max., VIN = VIL or VIH	ICC1		50	80	mA	
	Vcc = Max., CS = VIL Cycle = Min., Iout = 0mA	ICC2		80	120	1173	
Standby Current	$\label{eq:constraint} \begin{array}{l} Vcc = Min. \ to \ Max. \\ \hline CS \geq Vcc - 0.2V \\ ViN \geq Vcc - 0.2V \ or \ ViN \leq 0.2V \end{array}$	ISB1		2	15	mA	
	Vcc = Min. to Max. CS = V⊪	ISB2		10	25		
Output Low Voltage	lo∟ ≈ 8 mA	Vol			0.4	v	
Output High Voltage	Юн =4 mA	Voн	2.4			v	
*1 Peak Power on Current	Vcc = 0V to Vcc Min. CS = Lower of Vcc or V⊮ Min.	IPO			50	mA	
Input Low Voltage		Vi∟	-0.5 ^{*2}		0.8	v	
Input High Voltage		Vін	2.2		6.0	v	

*1 A pull-up resistor to Voc on the CS input is required to keep the device deselected; otherwise, power-on current approaches loc active.

*2 -3.0 V Min. for pulse width less than 20 ns.

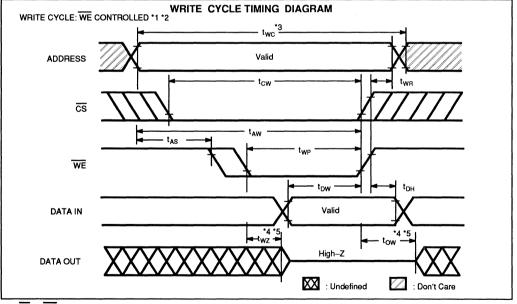
MB82B006-25 MB82B006-35



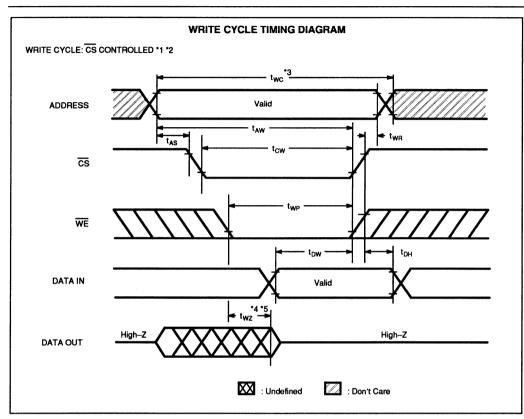
AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

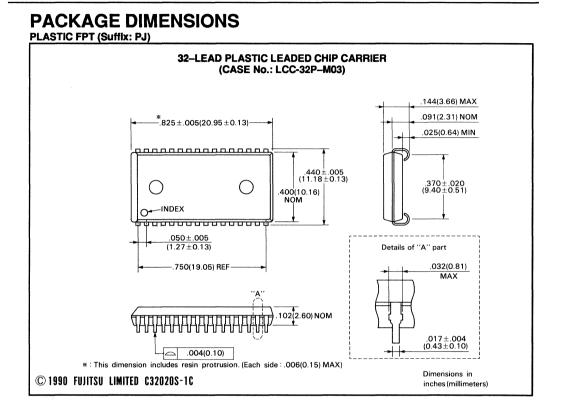
Parameter	Symbol	MB82B00625		MB82B006-35		Unit
Fatalleto	Symbol	Min.	Max.	Min.	Max.	Unit
READ CYCLE *1						
Read Cycle Time *2	tRC	25		35		ns
Address Access Time *3	taa		25		35	ns
Chip Select Access Time *4	tacs		25		35	ns
Output Hold from Address Change	toн	5		5		ns
Chip Selection to Output in Low-Z *5 *6	tLZ	5		5		ns
Chip Selection to Output in High-Z *5 *6	tHZ	2	15	2	15	ns
Chip Selection to Power Up time	tPU	0		0		ns
Chip Deselection to Power Down	tPD		20		30	ns


*1 WE is high for Read cycle.

AC CHARACTERISTICS (Continued)


(Recommended operating conditions unless otherwise noted.)

Parameter	MB82B006-25		MB82B006-35		1114	
	Symbol	Min.	Max.	Min.	Max.	Unit
WRITE CYCLE *1 *2						
Write Cycle Time *3	twc	25		35		ns
Chip Selection to End of Write	tcw	16		26		ns
Address Valid to End of Write	taw	18		28		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	twp	15		20		ns
Data Valid to End of Write	tow	10		15		ns
Write Recovery Time	twn	0		0		ns
Data Hold Time	tDH	0		0		ns
Write Enable to Output in High-Z *4 *5	twz	0	10	0	15	ns
Output Active from End of Write *4 *5	tow	0		0		ns



*1 CS or WE must be high during address transitions.
 *2 If CS goes high simultaneously with WE high, the output remains in high impedance state.
 *3 All Write cycles are determined from the last address transition to the first address transition of next cycle.

^{*4} Transition is measured at the point of ±500mV from steady state voltage.
*5 This parameter is measured with specified Load II in Fig. 2.

*1 CS or WE must be high during address transitions.
*2 If CS goes high simultaneously with WE high, the output remains in high impedance state.
*3 All Write cycles are determined from the last address transition to the first address transition of next cycle.
*4 Transition is measured at the point of ±500mV from steady state voltage.
*5 This parameter is measured with specified Load II in Fig. 2.

