### FUJITSU MICROELECTRONICS

### MB8168-55 MB8168-70

## NMOS 16,384-BIT STATIC RANDOM ACCESS MEMORY

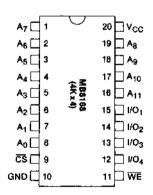
ADVANCE INFORMATION

#### DESCRIPTION

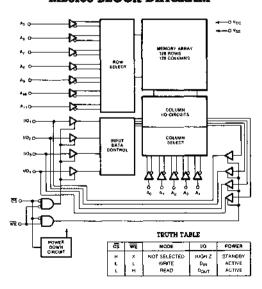
The Fujitsu MB8168 is a 4096 word by 4-bit static random access memory fabricated using N-channel silicon gate MOS technology. The memory is fully static and requires no clock or timing strobe. All pins are TTL compatible and a single 5V power supply is required.

A separate chip select (CS) pin simplifies multipackage system

design. It permits the selection of an individual package when outputs are OR-tied. Furthermore, when selecting a single package by CS, the other deselected packages automatically power down.


All Fujitsu devices offer the advantages of low power dissipation, low cost and high performance.

CERDIP PACKAGE DIP-20C-C03


#### **FEATURES**

- · Organized as 4096 x 4
- Fully Static Operation, no clocks or timing strobe required
- Fast Access Time: MB8168-55 55 ns Max. MB8168-70 70 ns Max.
- Low Power Consumption:
   I<sub>CC</sub> = 150mA Max. (Active)
   I<sub>SR</sub> = 40mA Max. (Standby)
- Single +5V DC Supply Voltage, ±10% tolerance
- . Common data input and output
- Three-state output with OR-tie capability
- Chip select for simplified memory expansion, automatic power-down
- Standard 20-pin DIP package
- Pin compatible with Intel 2168

#### PIN ASSIGNMENT



#### MB8168 BLOCK DIAGRAM



# INFORMATION ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                 | Symbol           | Value       | Unit |
|----------------------------------------|------------------|-------------|------|
| Voltage On Any Pin with Respect to VSS | VIN, VOUT, VCC   | -3.5 to +7  | V    |
| Short Circuit Output Current           |                  | 20          | mA   |
| Temperature Under Bias                 | TA               | -10 to +85  | °C   |
| Storage Temperature                    | T <sub>stq</sub> | -65 to +150 | ≎    |
| Power Dissipation                      | PD               | 1.2         | W    |

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may effect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. It is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### RECOMMENDED OPERATING CONDITIONS

(Referenced to Vss.)

| Parameter          | Symbol          | Min  | Тур | Max | Unit | Ambient 1)<br>Temperature |
|--------------------|-----------------|------|-----|-----|------|---------------------------|
| Supply Voltage     | Vcc             | 4.6  | 5.0 | 5.5 | V    |                           |
| Input Low Voltage  | V <sub>IL</sub> | -3.0 | -   | 0.8 | ٧    | 0°C to +70°C              |
| Input High Voltage | V <sub>IH</sub> | 2.0  | _   | 6.0 | ٧    |                           |

NOTE: (1) The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.

#### CAPACITANCE (TA = 25°C, f = 1 MHz, this parameter is sampled, not 100% tested.)

| Parameter                                           | Symbol           | Тур | Max | Unit |  |
|-----------------------------------------------------|------------------|-----|-----|------|--|
| Input Capacitance Address, WE: V <sub>IN</sub> = 0V | CIN              | _   | 7   | ρF   |  |
| Input Capacitance CS: V <sub>IN</sub> = 0V          | Cos              |     | . 8 | рF   |  |
| Output Capacitance Data I/O, VOUT = 0V              | C <sub>OUT</sub> |     | 8   | pF   |  |

#### DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

| Parameter                                                                                                                                 | Symbol          | Min  | Max | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|------|
| Input Leakage Current<br>(V <sub>IN</sub> = V <sub>SS</sub> to V <sub>CC</sub> , V <sub>CC</sub> = Max)                                   | lu l            | -10  | 10  | ДД   |
| Output Leakage Current<br>(CS = V <sub>IH</sub> , V <sub>OUT</sub> = V <sub>SS</sub> to 4.5V, V <sub>CC</sub> = Max)                      | lLO             | -50  | 50  | μΑ   |
| Power Supply Current<br>(V <sub>CC</sub> = Max, CS = V <sub>IL</sub> , I <sub>OUT</sub> = 0mA)                                            | lcc             | _    | 150 | mA   |
| Output Low Voltage (I <sub>OL</sub> = 8mA)                                                                                                | VOL             |      | 0.4 | ν    |
| Output High Voltage (IOH = -4mA)                                                                                                          | Voн             | 2.4  |     | V    |
| Standby Current<br>(V <sub>CC</sub> = Min to Max, $\overline{\text{CS}}$ = V <sub>IH</sub> , I <sub>OUT</sub> = 0mA)                      | ls <sub>B</sub> |      | 40  | mA   |
| Peak Power-On Current<br>(V <sub>CC</sub> = V <sub>SS</sub> to V <sub>CC</sub> Min, CS = Lower of V <sub>CC</sub> or V <sub>1H</sub> Min) | l <sub>PO</sub> |      | 50  | mA   |
| Output Short Circuit Current<br>(Vout = Vss to Voc)                                                                                       | los             | -200 | 200 | mA   |

#### MB8168-55/MB8168-70

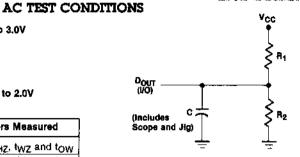
#### ADVANCE INFORMATION

Input Conditions:

Input Pulse Levels:

0V to 3.0V

Input Pulse Rise/Fall Times: Input Timing Reference Level: 5 ns 1.5V


**Output Conditions:** 

**Output Timing Reference Level:** 

0.8V to 2.0V

**Output Load:** 

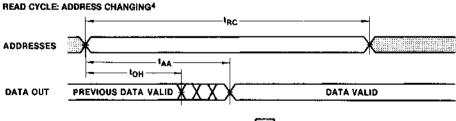
|         | R <sub>1</sub> | R <sub>2</sub> | С    | Parameters Measured                                                            |
|---------|----------------|----------------|------|--------------------------------------------------------------------------------|
| Load I  | 480Ω           | 255Ω           | 30pF | except t <sub>LZ</sub> , t <sub>HZ</sub> , t <sub>WZ</sub> and t <sub>OW</sub> |
| Load II | 480Ω           | 255Ω           | 5pF  | t <sub>LZ</sub> , t <sub>HZ</sub> , t <sub>WZ</sub> , and t <sub>OW</sub>      |



**OUTPUT LOAD** 

#### AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)


#### READ CYCLE

|                                     |                 | MB8168-55 |          |     | MB8168-70    |     |      |      |
|-------------------------------------|-----------------|-----------|----------|-----|--------------|-----|------|------|
| Parameter NOTES                     | Symbol          | Min       | Тур      | Max | Min          | Тур | Max  | Unit |
| Read Cycle Time                     | tac             | 55        | _        | _   | 70           | -   |      | nş   |
| Address Access Time                 | tAA             | _         | _        | 55  | _            | _   | 70   | กร   |
| Chip Select Access Time             | tACS            | l –       | -        | 55  | <del>-</del> | _   | 70   | ns   |
| Output Hold from Address Change     | t <sub>OH</sub> | 5         |          |     | 5            |     | — "" | ns   |
| Chip Select to Output Active 1 2    | tLZ             | 10        | <b>—</b> |     | 10           |     |      | ns   |
| Chip Select to Output In High Z 1 2 | tHZ             | 0         |          | 30  | 0            |     | 40   | กร   |
| Chip Select to Power Up Time        | tpu             | 0         | _        | _   | 0            |     |      | ns   |
| Chip Select to Power Down Time      | t <sub>PD</sub> | -         |          | 55  | _            |     | 70   | ns   |

Notes: 1. Transition is measured at the point of ±500mV from steady state voltage.

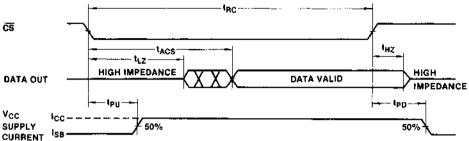
2. This parameter is measured with specified loading in Fig. 2. This parameter is sampled and not 100% tested.

#### READ CYCLE 3



Notes: 3. WE is high for Read Cycle.


4. Device is continuously selected.  $\overline{CS} = V_{|L|}$ .


Don't Care

**Undefined Data** 

#### MB8168-55/MB8168-70

#### READ CYCLE 3 (Contd)

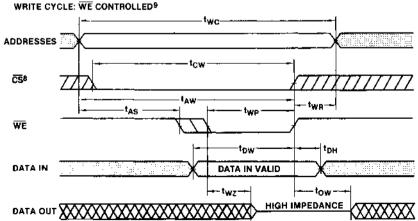




Notes: 3. WE is high for Read Cycle.

4. Device is continuously selected. CS = V<sub>IL</sub>.
5. Addresses valid prior to or coincident with CS transition low.

XX Undelined Data

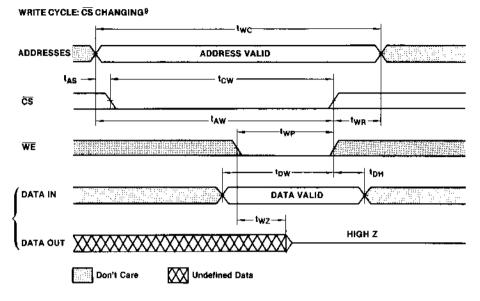

#### WRITE CYCLE

|                                      | Symbol          | MB8168-55 |          |     | MB8168-70 |     |     |      |
|--------------------------------------|-----------------|-----------|----------|-----|-----------|-----|-----|------|
| Parameter NOTES                      |                 | Min       | Тур      | Max | Min       | Тур | Max | Unit |
| Write Cycle Time                     | twc             | 55        | _        | _   | 70        |     | _   | ns   |
| Address Valid to End of Write        | taw             | 55        |          |     | 70        |     | _   | пŝ   |
| Chip Select to End of Write          | †cw             | 55        |          | _   | 70        | l – | _   | ns   |
| Data Valid to End of Write           | † <sub>DW</sub> | 25        | 1 –      | _   | 30        | _   |     | ns   |
| Data Hold Time                       | tpH             | 0         | _        |     | ō         |     |     | ns   |
| Write Pulse Width                    | twp             | 55        |          |     | 70        | _   |     | ns   |
| Write Recovery Time                  | twn             | 0         | <u> </u> |     | 0         |     | _   | ns   |
| Address Setup Time                   | †AS             | 0         |          | _   | 0         |     |     | ns   |
| Output Active From End of Write 6 7  | tow             | 0         | <u> </u> |     | 0         | _   | _   | ns   |
| Write Enable to Output in High Z 6 7 | t <sub>WZ</sub> | 0         |          | 30  | 0         | _   | 40  | ns   |

Notes: 6. Transition is measured at the point of +500mV from steady state voltage.

7. This parameter is measured with specified loading in Fig. 2.

#### WRITE CYCLE




Note: "If CS goes high simultaneously with WE high transition, DATA OUT remains in a high impedance state.

Don't Care

Undefined Data

#### WRITE CYCLE (Cont'd)



Notes: 6. Transition is measureed at the point of ±500 mV from steady state voltage.

- 7. This parameter is measured with specified loading in Fig. 2.
- 8. If CS goes high simultaneously with WE high, the output remains in a high impedance state.
- 9. CS or WE must be high during address transitions.

#### DESCRIPTION

The MB8168 from Fujitsu is a high performance part. It is designed for high speed and low power system requirements.

The high speed is obtained by advanced NMOS processing. The power requirements are achieved by the use of MB8168 chip select (active low). The MB8168 automatically enters standby drawing only lsp whenever the chip select

is high. Upon activation of chip select (CS = LOW) the MB8168 automatically powers up and draws ICC.

This automatic power up/down is an extremely useful feature. PC board layout with proper V<sub>CC</sub> decoupling will minimize power line glitches.

Input and data bus lines are an

additional area of concern. Unless bus lines are properly designed and terminated, cross coupling, cross talk and reflections can occur. Of particular importance is the undershoot on address lines. Once again, careful attention to good PC board layout and proper termination techniques will yield a well designed and reliable memory system.