FUJITSU MICROELECTRONICS

MB8167-55 MB8167-70

NMOS 16.384 BIT STATIC RANDOM ACCESS MEMORY

NOT RECOMMENDED FOR NEW DESIGNS, SEE PART NUMBER MB8167A-55/MB8167A-45.

DESCRIPTION

FEATURES

x 1 Bit

output

output

The Fuiltsu MB8167 is a 16384 words by 1 bit static random access memory fabricated using N-channel silicon gate MOS technology. Separate input/output pins are provided. All devices are fully compatible with TTL logic families in all respects: inputs, output and the use of a single +5V DC supply.

· Organized as 16384 words

· Static operation: no clocks

MB8167-55 55 ns Max. MB8167-70 70 ns Max.

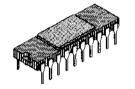
Single +5V DC supply voltage

· Separate data Input and

TTL compatible inputs and

or refresh required

Fast Access Time:

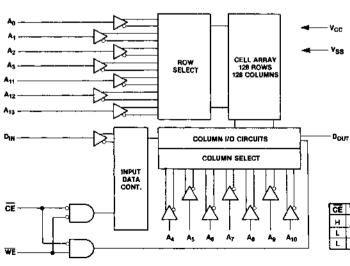

For ease of use, chip enable (CE) permits the selection of an individual package when outputs are OR-tied, and automatically powers down the MB8167. This device offers the advantages of low power dissipation, low cost, and high performance.

 Chip enable for simplified memory expansion and automatic power down

capability

Three-state output with OR-tie

- All inputs and output have protection against static charge
- Standard 20-pin DIP package
- Pin compatible with Intel 2167


CERAMIC PACKAGE (METAL SEAL) DIP-20C-A01

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high Impedance circuit.

MB8167 BLOCK DIAGRAM

TRUTH TABLE

ĊĔ	WE	MODE	OUTPUT	POWER
н	х	NOT SELECTED	HIGH Z	STANDBY
L	L	WRITE	HIGH Z	ACTIVE
L	н	READ	DOUT	ACTIVE

A ₀ □ 1	$\overline{}$	20 □ ∨∞
A₁ 🗖 2		19 🗀 A ₁₃
A2 ☐ 3		18 🗀 A ₁₂
A3 🗀 4	() E	17 🗖 A11
A4 🗆 5	2007 2007 2007 2007 2007 2007 2007 200	18 🗖 A ₁₀
As [6	× 1)	15 🗖 A ₉
A6 🗆 7		14 🗀 A8
Роит∐8		13 🗔 A7
WE ☐ 9		12 🗖 D _{IN}
V _{SS} ☐ 10		11 □Œ

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MB\$167A-55/MB\$167A-45.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage On Any Pin with Respect to VSS	VIN, VOUT, VCC	+3.5 to +7	V
Temperature Under Bias	TA	-10 to +85	•c
Storage Temperature	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.2	W

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SSI})

Parameter	Symbol	Min	Тур	Max	Unit	Ambient1) Temperature
Supply Voltage	Vcc	4.5	5.0	5.5	٧	
Input Low Voltage VIL		-3.0	_	0.8	٧	0°C to +70°C
Input High Voltage	V _{IH}	2.0	. —	6.0	v -	

NOTE: (1) The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.

CAPACITANCE (TA = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (V _{IN} = 0V)	CIN	_	5	ρF
Output Capacitance (V _{OUT} = 0V)	Cout	1	6	ρF

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit	
input Leakage Current	•			Ī		
(VIN = VSS to VCC, VCC = Max)		ILI	-10	10	μА	
Output Leakage Current		, , , , , , , , , , , , , , , , , , , ,				
(ĈĒ = V _{IH} , V _{OUT} = V _{SS} to V _{CC} Min, V _{CC} = Max) Power Supply Current T _A = 25 °C		ILO	- 50	50	μА	
Power Supply Current	T _A = 25°C	lcc		170	mA	
$(V_{CC} = Max, \overline{CE} = V_{1L}, I_{OUT} = 0mA)$	T _A = 0°C	1 ~~		180	mA	
Output Low Voltage (I _{OL} = 8mA)		VOL		0.4	٧	
Output High Voltage (I _{OH} = -4mA)		Voн	2.4	_	٧	
Standby Current						
(V _{CC} = Min to Max, CE = V _{IH}		IsB	-	30	mA	
Peak Power-On Current		1				
(VCC = VSS to VCC Min, CE = Lower of	of V _{CC} or V _{IH} Min)	I _{PO}	-	30	mA	

MB8167-55/MB8167-70

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MB8167A-55/MB8167A-45.

AC TEST CONDITIONS

Input Pulse Levels:

0.8V to 2.2V

Input Pulse Rise and Fall Times:

10 ns

Timing Measurement Reference Levels: Inputs: 1.5V

Output: 1.5V

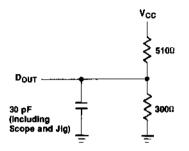
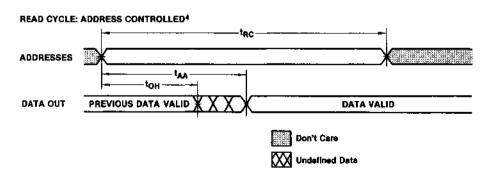


Fig. 1: OUTPUT LOAD

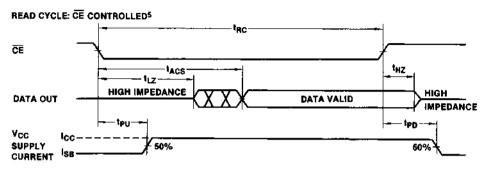
Fig. 2: OUTPUT LOAD for tHZ, tLZ, tWZ, tOW


AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

READ CYCLE

		MB8167-55			MB8167-70			
Parameter NOTES	Symbol	Min	Тур	Max	Min	Тур	Max	Ųnit
Read Cycle Time	tRC	55		_	70	_		ns
Address Access Time	tAA		_	55		_	70	nŝ
Chip Enable Access Time	tACS		_	55	_		70	ns
Output Hold from Address Change	tон	5	_		5	_	_	ns
Chip Enable to Output Active 1 2	t _{LZ}	10	i –	 	10	_		ns
Chip Enable to Output in High Z 1 2	tHZ	0	_	30	0		40	ns
Chip Enable to Power Up Time	tpU	0	_	-	0	_		ns
Chip Enable to Power Down Time	tPD			30		_	35	nş


READ CYCLE 3

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MB8167A-55/MB8167A-45.

MB8167-55/MB8167-70

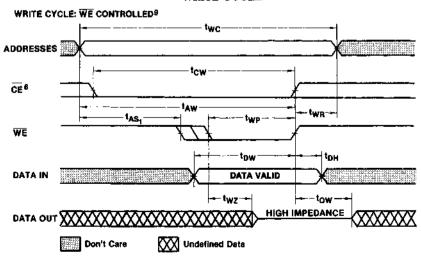
READ CYCLE³ (Contd)

Notes: 1. Transition is measured at the point of ±500mV from steady state voltage.

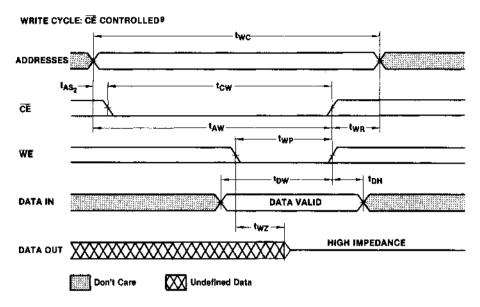
2. This parameter is measured with specified loading in Fig.2.

Undefined Data

3. WE is high for Read Cycle.


4. Device is continuously selected, $\overline{CE} = V_{IL}$.

5. Addresses valid prior to or coincident with CE transition low.


WRITE CYCLE

	NOTES	Symbol	MB8167-55			MB8167-70			
Parameter			Min	Тур	Max	Min	Тур	Max	Unit
Write Cycle		twc	55			70	_		ns
Address Valid to End of Write		taw	45			50			ns
Chip Enable to End of Write		tcw	50	_	<u> </u>	60	_	_	ns
Data Valid to End of Write		tow	35	_	_	45			ns
Data Hold Time		t _{DH}	0	_	,	0	_	_	nş
Write Pulse Width		t _{WP}	35			45	<u> </u>		ns
Write Recovery Time		twe	5	_	-	10	_	_	ns
Address Setup Time		t _{AS1}	5	_		10			ns
		tAS2	0	_	_	0			
Output Active From End of Write	7 8	tow	0			0			ns
Write Enable to Output in High Z	7 8	twz	0	_	30	0	_	35	ns

WRITE CYCLE

WRITE CYCLE (Cont'd)

Notes: 6. If $\overline{\text{CE}}$ goes high simultaneously with $\overline{\text{WE}}$ high, the output remains in a high impedance state.

- 7. Transition is measured at the point of ±500mV from steady state voltage.
- 8. This parameter is measured with specified loading in Fig. 2.
- 9. CE or WE must be high during address transitions.

DESCRIPTION

The MB8167 from Fujitsu is a high performance part. It is designed for high speed and low power system requirements.

The high speed is obtained by advanced NMOS processing. The power requirements are achieved by the use of MB8167 chip enable (active low). The MB8167 automatically enters standby drawing only ISB whenever the chip enable is high. Upon activation of chip

enable ($\overline{\text{CE}}$ = LOW) the MB8167 automatically powers up and draws I_{CC}.

This automatic power up/down is an extremely useful feature, PC board layout with proper V_{CC} decoupling will minimize power line glitches.

Input and data bus lines are an additional area of concern. Unless bus lines are properly designed and terminated, cross

coupling, cross talk and reflections can occur. Of particular importance is the undershoot on address lines. Once again, careful attention to good PC board layout and proper termination techniques will yield a well designed and reliable memory system.