LOW POWER QUAD OPERATIONAL AMPLIFIERS

General Description

The MB324 consists of four independent, high gains and internally frequency compensated operational amplifiers; it is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. Typical applications include transducer amplifiers, DC gain blocks and most conventional operational amplifier circuits.

The MB324 is compatible with industry standard 324.

The MB324 are available in two industry standard packages: DIP-14 and SOP-14

Features

Internally Frequency Compensated for Unity

- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.7mA (Typical)
- Wide Power Supply Voltage: Single Supply: 3V to 36V Dual Supplies: ±1.5V to ±18V
- Input Common Mode Voltage Range Includes Ground

1

Applications

Battery Charger

- Cordless Telephone
- Switching Power Supply

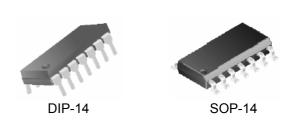


Figure 1: Package Types of MB324

Pin Configuration (DIP-14 / SOP-14)

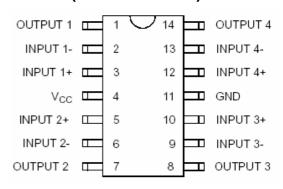
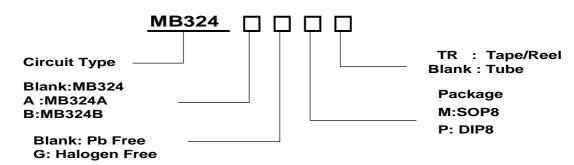



Figure 2: Pin Configuration of MB324 (Top View)

Ordering Information

		Part Number		Ма	Packing	
Package	Condition	Pb-free	Halogen-Free	Pb-free	Halogen-Free	Туре
SOP-14	1.5mV	MB324AM	MB324AGM	MB324AM	MB324AGM	Tube
301-14	1.5mV	MB324AMTR	MB324AGMTR	MB324AM	MB324AGM	Tape & Reel
DIP-14	1.5mV	MB324AP	MB324AGP	MB324AP	MB324AGP	Tube
SOP-14	3mV	MB324BM	MB324BGM	MB324BM	MB324BGM	Tube
301-14	3mV	MB324BMTR	MB324BGMTR	MB324BM	MB324BGM	Tape & Reel
DIP-14	3mV	MB324BP	MB324BGP	MB324BP	MB324BGP	Tube
SOP-14	5mV	MB324M	MB324GM	MB324M	MB324GM	Tube
301-14	5mV	MB324MTR	MB324GMTR	MB324M	MB324GM	Tape & Reel
DIP-14	5mV	MB324P	MB324GP	MB324P	MB324GP	Tube

Typical Application

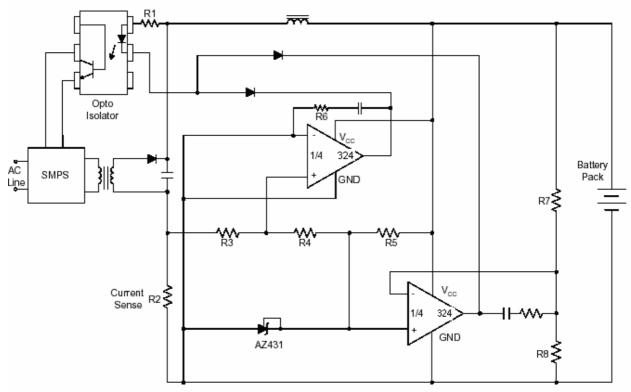


Figure 3: Battery Charger

Typical Application (Continued)

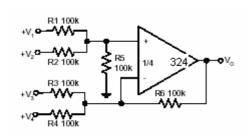


Figure 4: DC Summing Amplifier

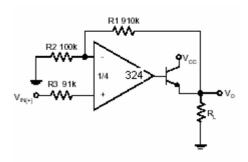
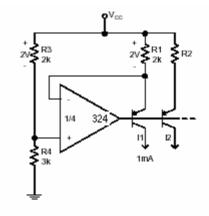



Figure 5: Power Amplifier

Figure 6: Fixed Current Sources

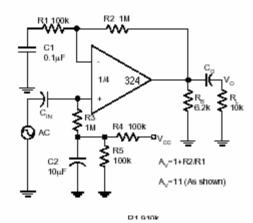


Figure 7: AC Coupled Non-Inverting Amplifier

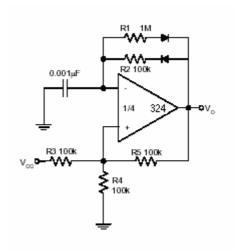


Figure 8: Pulse Generator

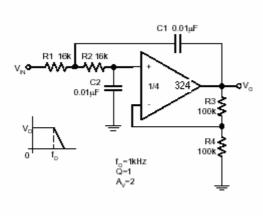


Figure 9: DC Coupled Low-Pass RC Active Filter

V_{CC} 6µA 4µA Ф 100µА Q5 Q6 INPUTS Q11 Q11 Q12 О0ИТРИТ

Functional Block Diagram

Figure 10: Functional Block Diagram of MB324 (Each Amplifier)

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	V
Differential Input Voltage	VID	40	V
Input Voltage	Vic	-0.3 to 40	V
Power Discination	PD	DIP-14: 1130	mW
Power Dissipation	Pυ	SOP-14: 800	mW
Storage Temperature Range	Tstg	-50 to 150	
Lead Temperature (Soldering,10 Seconds)		260	

Note1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3	36	V
Ambient Operating Temperature	TA	-20	+85	

Electrical Characteristics

Vcc = 5V, GND = 0V, TA = 25 unless otherwise specified.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Offeet Voltage	Vio	Vo=1.4V,Rs=0	MB324A			1.5	mV
Input Offset Voltage		Vcc=5V to 30V	MB324B		-	3.0	mv
Input Bias Current	IBIAS	In+ or In-, Vcm=0V			20	150	nA
Input Offset Current	lio	IIN+ - IIN-, VCM=0V			5	35	nA
Input Common Mode Voltage Range	VIR	Vcc=30V	0			Vcc- 1.5	V
Supply Current	Icc	TA=-20 to 85 ,Vcc=30V			1.0	3.0	mA
очрыу очнош		TA=-20 to 85 ,Vcc=5V			0.7	1.2	mA
Large Signal Voltage Gain	G۷	Vcc=15V,Vo=1V to 11V R∟≥2KΩ	85		100		dB
Common Mode Rejection Ratio	CMRR	DC,Vcm=0 to (Vcc-1.5)V	60		70		dB
Power Supply Rejection Ratio	PSRR	Vcc=5V to 30V	70		100		dB
Channel Separation	CS	f=1kHz to 20kHz			-120		dB
Output Source Current	ISOURCE	V+=1V,V-=0V,Vcc= 15V Vo=2V	20		40		mA
Output Sink Current	ut Sink Current ISINK	V+=0V,V-=1V,Vcc= 15V Vo=2V	10		15		mA
·		V+=0V,V-=1V,Vcc= 15V Vo=0.2V	12		50		μА
Output Short circuit current to Ground	Isc	Vcc=15V			40	60	mA
Output Valtage	Vон	Vcc=30V, RL=2KΩ	26				V
Output Voltage Swing		Vcc=30V, RL=10KΩ	27		28		V
- 3	Vol	Vcc=5V, RL=10KΩ			5	20	mV

Typical Performance Characteristics

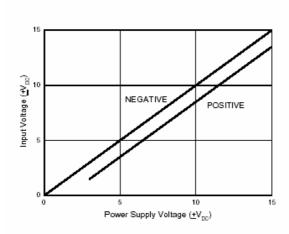


Figure 11: Input Voltage Range

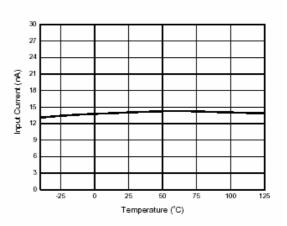


Figure 12: Input Current

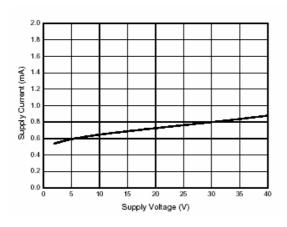


Figure 13: Supply Current

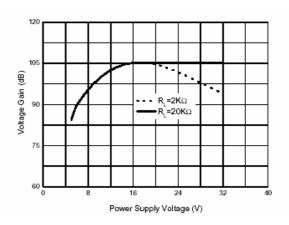


Figure 14: Voltage Gain

Typical Performance Characteristics (Continued)

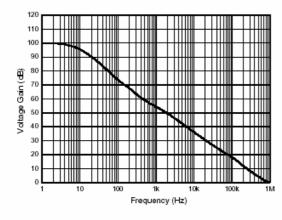
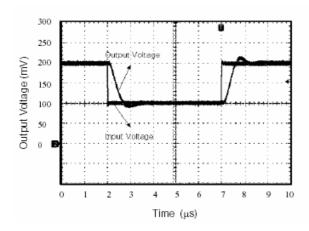



Figure 15: Open Loop Frequency Response

Figure 16: Voltage Follower Pulse Response

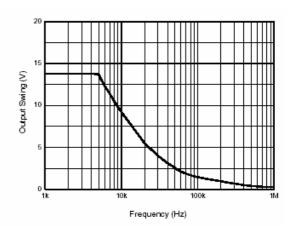


Figure 17: Voltage Follower Pulse Response (Small Signal)

Figure 18: Large Signal Frequency Response

Typical Performance Characteristics (Continued)

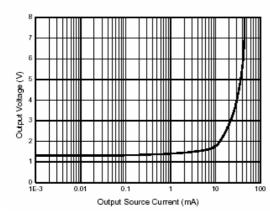


Figure 19: Output Characteristics: Current Sourcing

Figure 20: Output Characteristics: Current Sinking

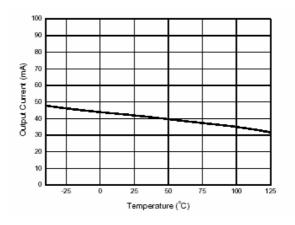
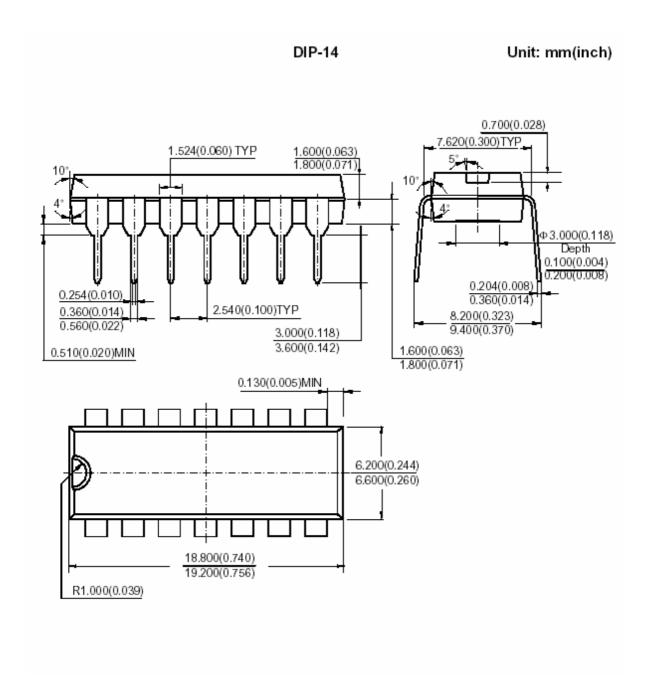
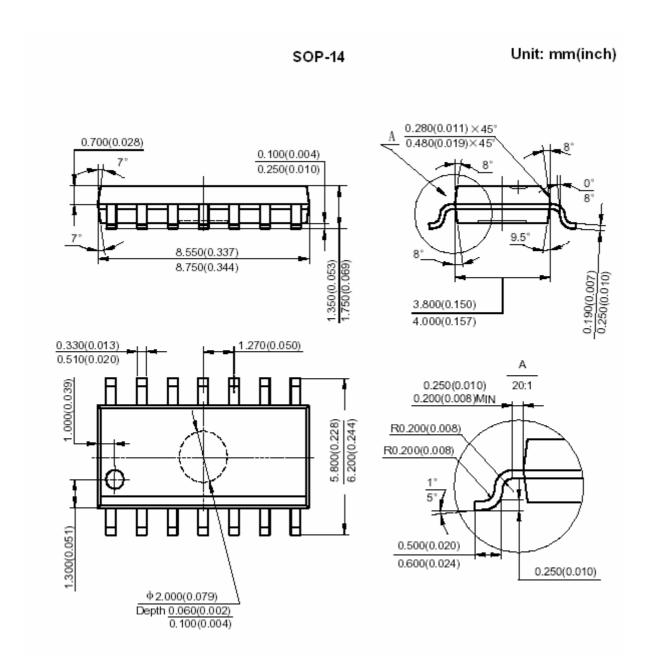




Figure 21: Current Limiting

Mechanical Dimensions

Mechanical Dimensions (Continued)

IMPORTANT NOTICE

CBC Microelectronics Co., LTD reserves the right to make changes without further notice to any products or specifications herein. CBC Microelectronics Co., LTD does not assume any responsibility for use of any its products for any particular purpose, nor does CBC Microelectronics Co., LTD assume any liability arising out of the application or use of any its products or circuits. CBC Microelectronics Co., LTD does not convey any license under its patent rights or other rights nor the rights of others.