General Description

The MAX9963/MAX9964 four-channel, low-power, highspeed pin electronics driver and comparator ICs include, for each channel, a three-level pin driver, a dual comparator, and variable clamps. The driver features a wide voltage range and high-speed operation, includes high-Z and active-termination (3rd-level drive) modes, and is highly linear even at low-voltage swings. The dual comparator provides low dispersion (timing variation) over a wide variety of input conditions. The clamps provide damping of high-speed DUT waveforms when the device is configured as a high-impedance receiver. High-speed, differential control inputs compatible with ECL, LVPECL, LVDS, and GTL levels are provided for each channel. ECL/LVPECL or flexible open-collector outputs are available for the comparators.

The A-grade version provides tight matching of gain and offset for the drivers and comparators, allowing reference levels to be shared across multiple channels in cost-sensitive systems. For system designs that incorporate independent reference levels for each channel, the B-grade version is available at reduced cost.

Optional internal resistors at the high-speed inputs provide differential termination of LVDS inputs, while optional internal resistors provide the pullup voltage and source termination for open-collector comparator outputs. These features significantly reduce the discrete component count on the circuit board.

Low-leakage, slew rate, and tri-state/terminate controls are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface.

The MAX9963/MAX9964 operating range is -1.5V to +6.5V, with power dissipation of only 825mW per channel.

These devices are available in a 100-pin, 14mm x 14mm body, 0.5mm pitch TQFP with an exposed 8mm x 8mm die pad on the top (MAX9963) or bottom (MAX9964) of the package for efficient heat removal. The MAX9963/MAX9964 are specified to operate with an internal die temperature of $+70^{\circ}$ C to $+100^{\circ}$ C, and feature a die temperature monitor output.

Applications

Flash Memory Testers

Commodity DRAM Testers

Low-Cost Mixed-Signal/System-on-Chip Testers

Active Burn-In Systems

Structural Testers

_Features

- Small Footprint—Four Channels in 0.4in²
- Low Power Dissipation: 825mW/Channel (typ)
- ♦ High Speed: 500Mbps at 3V_{P-P}
- Low Timing Dispersion
- Wide -1.5V to +6.5V Operating Range
- Active Termination (3rd-Level Drive)
- Low-Leakage Mode: 15nA (max)
- Integrated Clamps
- ♦ Interface Easily with Most Logic Families
- Digitally Programmable Slew Rate
- Internal Logic Termination Resistors
- Low Gain and Offset Error

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9963ADCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963AKCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963AGCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963AHCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963AJCCQ	0°C to +70°C	100 TQFP-EPR
MAX9963BDCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963BKCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963BGCCQ	0°C to +70°C	100 TQFP-EPR
MAX9963BHCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9963BJCCQ*	0°C to +70°C	100 TQFP-EPR
MAX9964ADCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964AKCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964AGCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964AHCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964AJCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964BDCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964BKCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964BGCCQ	0°C to +70°C	100 TQFP-EP**
MAX9964BHCCQ*	0°C to +70°C	100 TQFP-EP**
MAX9964BJCCQ*	0°C to +70°C	100 TQFP-EP**

*Future product—contact factory for availability. **EP = Exposed pad.

EP = Exposed pad.

Pin Configurations appear at end of data sheet. Selector Guide appears at end of data sheet.

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +11.5V	DLV_ to DTV±10V
V _{EE} to GND7.0V to +0.3V All Other Pins(V _{FF} - 0.3V) to (V _{CC} + 0.3V)	CHV_ or CLV_ to DUT±10V CH_, NCH_, CL_, NCL_ to GND2.5V to +5V
V _{CC} - V _{FF} 0.3V to +18V	Current into DHV_, DLV_, DTV_, CHV_,
DUT_ to GND2.5V to +7.5V	CLV_, CPHV_, CPLV±10mA
DATA_, NDATA_, RCV_, NRCV_ to GND2.5V to +5.0V	Current into TEMP0.5mA to +20mA
DATA_ to NDATA±1.5V	DUT_ Short Circuit to -1.5V to +6.5VContinuous
RCV_ to NRCV±1.5V	Power Dissipation ($T_A = +70^{\circ}C$)
V _{CCO} to GND0.3V to +5V	MAX9963CCQ (derate 167mW/°C above
SČĽK, DIN, CS, RST to GND1.0V to +5V	$T_A = +70^{\circ}C$)13.3W*
DHV_, DLV_, DTV_, CHV_, CLV_ to GND2.5V to +7.5V	MAX9964_ CCQ (derate 47.6mW/°C above
CPHV_ to GND2.5V to +8.5V	$T_A = +70^{\circ}C)3.8W^*$
CPLV_ to GND3.5V to +7.5V	Storage Temperature Range65°C to +150°C
DHV_ to DLV±10V	Junction Temperature+125°C
DHV_ to DTV±10V	Lead Temperature (soldering, 10s)+300°C

*Dissipation wattage values are based on still air with no heat sink for the MAX9963 and slug soldered to board copper for the MAX9964. Actual maximum power dissipation is a function of the user's heat-extraction technique and will vary.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO} = 2.5V, SC1 = SC0 = 0, V_{CPHV} = 7.2V, V_{CPLV} = -2.2V, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +70^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLIES		·				
Positive Supply	V _{CC}		9.5	9.75	10.5	V
Negative Supply	VEE		-6.5	-5.25	-4.5	V
Positive Supply	Icc	(Note 2)		165	200	mA
Negative Supply	IEE	(Note 2)		-320	-380	mA
Power Dissipation	PD	Calculated at typical V _{CC} and V _{EE} (Notes 2, 3)		3.3	4.0	W
DUT_ CHARACTERISTICS		•				
Operating Voltage Range Maximum	VDUT	(Note 4)	-1.5		+6.5	V
	IDUT	$LLEAK = 0, 0V \le V_{DUT_} \le 3V$			±1.5	
Leakage Current in High-Z Mode		LLEAK = 0, V _{DUT} = -1.5V, 6.5V			±3	μΑ
		$LLEAK = 1, 0 \le V_{DUT_{-}} \le 3V, T_{J} < +90^{\circ}C$			±10	
Leakage Current in Low-Leakage		$LLEAK = 1, V_{DUT} = -1.5V, T_J < +90^{\circ}C$			±15	
Mode		LLEAK = 1, V_{DUT} = 6.5V, V_{CHV} = V_{CLV} = -1.5V, T_J < +90°C			±15	nA
	0	Driver in term mode (DUT_ = DTV_)	e (DUT_ = DTV_) 3			
Combined Capacitance	CDUT	Driver in high-Z mode		5		pF

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO_} = 2.5V, SC1 = SC0 = 0, V_{CPHV_} = 7.2V, V_{CPLV_} = -2.2V, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +70^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Low-Leakage Enable Time		(Notes 5, 7)		20		μs
Low-Leakage Disable Time		(Notes 6, 7)		20		μs
Low-Leakage Recovery		Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_ (Note 7)		10		μs
LEVEL PROGRAMMING INPUT	S (DHV_, DLV_	, DTV_, CHV_, CLV_, CPHV_, CPLV_)				
Input Bias Current	IBIAS				±25	μΑ
Settling Time		To 5mV		1		μs
DIFFERENTIAL CONTROL INP	UTS (DATA_, N	DATA_, RCV_, NRCV_)				
Input High Voltage	VIH		-1.6		+3.5	V
Input Low Voltage	VIL		-2.0		+3.1	V
Differential Input Voltage	VDIFF		±0.15		±1.00	V
Input Bias Current	IBIAS	MAX996DCCQ, MAX996HCCQ			±25	μΑ
Input Termination Resistor		MAX996KCCQ, MAX996GCCQ, and MAX996JCCQ, between signal and complement	96		104	Ω
SINGLE-ENDED CONTROL INF	PUTS (CS, RST,	SCLK, DIN)				
Input High	VIH		1.6		3.5	V
Input Low	VIL		-0.1		+0.9	V
SERIAL INTERFACE TIMING (F	igure 5)					
SCLK Frequency	f SCLK				50	MHz
SCLK Pulse Width High	tсн		8			ns
SCLK Pulse Width Low	t _{CL}		8			ns
CS Low to SCLK High Setup	tCSS0		3.5			ns
CS High to SCLK High Setup	tCSS1		3.5			ns
SCLK High to \overline{CS} High Hold	tCSH1		3.5			ns
DIN to SCLK High Setup	t _{DS}		3.5			ns
DIN to SCLK High Hold	tDH		3.5			ns
CS Pulse Width High	tcswh		20			ns
TEMPERATURE MONITOR (TE	MP)					
Nominal Voltage		$T_J = +70^{\circ}C, R_L \ge 10M\Omega$		3.43		V
Temperature Coefficient				+10		mV/°C
Output Resistance				15		kΩ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO_} = 2.5V, SC1 = SC0 = 0, V_{CPHV_} = 7.2V, V_{CPLV_} = -2.2V, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +70^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	COND	DITIONS	MIN	ТҮР	MAX	UNITS	
DRIVERS (Note 8)								
DC OUTPUT CHARACTERISTICS	$(R_L \ge 10M\Omega)$)						
DHV_, DLV_, DTV_, Output Offset	Vos	At DUT_ with V _{DHV_} , V _{DLV_} , V _{DTV_}	MAX996_A			±15	mV	
Voltage	105	independently tested at +1.5V	MAX996_B			±100	1110	
DHV_, DLV_, DTV_, Output Offset Temperature Coefficient					±65		µV/°C	
DHV_, DLV_, DTV_, Gain	Av	Measured with VDHV_, VDLV_, VDTV_	MAX996_A	0.999	1.00	1.001	V/V	
		at 0 and 4.5V	MAX996_B	0.960		1.001		
DHV_, DLV_, DTV_, Gain Temperature Coefficient					-35		ppm/°C	
Line evites France		$0 \le V_{DUT} \le 3V$ (Note	9)			±5		
Linearity Error		Full range (Notes 9, 10)				±15	mV	
DHV_ to DLV_ Crosstalk		$V_{DLV} = 0, V_{DHV} = 2$	200mV, 6.5V			±7	mV	
DLV_ to DHV_ Crosstalk		$V_{DHV} = 5V, V_{DLV} =$	-1.5V, 4.8V			±8	mV	
DTV_ to DLV_ and DHV_ Crosstalk		V _{DHV} = 3V, V _{DLV} = V _{DTV} = -1.5V, 6.5V	0,			±2	mV	
DHV_ to DTV_ Crosstalk		$V_{DTV} = 1.5V, V_{DLV}$	= 0, V _{DHV} _ = 1.6V, 3V			±3	mV	
DLV_ to DTV_ Crosstalk		V _{DTV} = 1.5V, V _{DHV} =	= 3V, V _{DLV} = 0, 1.4V			±3	mV	
DHV_, DLV_, DTV_ DC Power- Supply Rejection Ratio	PSRR	V _{CC} and V _{EE} indeper minimum and maximu		40			dB	
Maximum DC Drive Current	IDUT_			±60		±120	mA	
DC Output Resistance	R _{DUT}	$I_{DUT} = \pm 30 \text{mA}$ (Note	,	49	50	51	Ω	
DC Output Resistance Variation	ΔR_{DUT}	$I_{DUT} = \pm 1$ mA to ± 40 m	hΑ		1		Ω	
DYNAMIC OUTPUT CHARACTER	ISTICS (ZL =	,						
		$V_{DLV} = 0V, V_{DHV} =$			30		4	
Drive Mode Overshoot		$V_{DLV} = 0V, V_{DHV} = 1V$			40		mV	
		$V_{DLV} = 0V, V_{DHV} = 3V$			50			
Term Mode Overshoot		(Note 12)			0		mV	
Settling Time to Within 25mV		3V step (Note 13)			10		ns	
Settling Time to Within 5mV		3V step (Note 13)			20		ns	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO} = 2.5V, SC1 = SC0 = 0, V_{CPHV} = 7.2V, V_{CPLV} = -2.2V, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +70^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
TIMING CHARACTERISTICS (Not	e 14) (Z _{L_} = 8	50Ω)				•	
Prop Delay, Data to Output	t PDD			2		ns	
Prop Delay Match, t _{LH} vs. t _{HL}		3V _{P-P}		±50		ps	
Prop Delay Match, Drivers Within Package		(Note 15)		40		ps	
Prop Delay Temperature Coefficient				+3		ps/°C	
Prop Delay Change vs. Pulse Width		3VP.P, 40MHz, 2.5ns to 22.5ns pulse width, relative to 12.5ns pulse width		±60		ps	
Prop Delay Change vs. Common- Mode Voltage		$V_{DHV} - V_{DLV} = 1V$, $V_{DHV} = 0$ to $6V$		85		ps	
Prop Delay, Drive to High-Z	t _{PDDZ}	V _{DHV} = 1.0V, V _{DLV} = -1.0V, V _{DTV} = 0		2.9		ns	
Prop Delay, High-Z to Drive	tpdzd	$V_{DHV} = 1.0V, V_{DLV} = -1.0V, V_{DTV} = 0$		2.9		ns	
Prop Delay, Drive to Term	t PDDT	V _{DHV} = 3V, V _{DLV} = 0, V _{DTV} = 1.5V		2.2		ns	
Prop Delay, Term to Drive	t PDTD	V _{DHV} = 3V, V _{DLV} = 0, V _{DTV} = 1.5V		1.8		ns	
DYNAMIC PERFORMANCE (Z _L =	50Ω)						
		0.2V _{P-P} , 20% to 80%		330		50	
Disc and Fall Time		1V _{P-P} , 10% to 90%		670		ps	
Rise and Fall Time	t _R , t _F	3V _{P-P} , 10% to 90%	1.1	1.3	1.6	ns	
		5V _{P-P} , 10% to 90%		2.0			
SC1 = 0, SC0 = 1 Slew Rate		Percent of full speed (SC0 = SC1 = 0), $3V_{P-P}$, 20% to 80%		75		%	
SC1 = 1, SC0 = 0 Slew Rate		Percent of full speed (SC0 = SC1 = 0), $3V_{P-P}$, 20% to 80%		50		%	
SC1 = 1, SC0 = 1 Slew Rate		Percent of full speed (SC0 = SC1 = 0), $3V_{P-P}$, 20% to 80%		25		%	
		0.2V _{P-P}		650		ps	
		1V _{P-P}		1.0			
Minimum Pulse Width (Note 16)		3VP-P		2.0		ns	
		5Vp-p		2.9			
		0.2VP-P		1700			
		1Vp-p		1000]	
Data Rate (Note 17)		3VP-P		500		Mbps	
		5V _{P-P}		350			
Dynamic Crosstalk		(Note 18)		20		mV _{P-P}	
Rise and Fall Time, Drive to Term	t _{DTR} , t _{DTF}	V _{DHV} = 3V, V _{DLV} = 0, V _{DTV} = 1.5V, 10% to 90% (Note 19)	1.6		ns		
Rise and Fall Time, Term to Drive	ttdr, ttdf	V _{DHV} = 3V, V _{DLV} = 0, V _{DTV} = 1.5V, 10% to 90% (Note 19)		0.7		ns	

MAX9963/MAX9964

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO_} = 2.5V, SC1 = SC0 = 0, V_{CPHV_} = 7.2V, V_{CPLV_} = -2.2V, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +70^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COMPARATORS (Note 20)							
DC CHARACTERISTICS							
Input Voltage Range	VIN	(Note 4)		-1.5		+6.5	V
Differential Input Voltage	VDIFF			±8			V
Hysteresis	VHYST				0		mV
Input Offset Voltage	Vos	V _{DUT} = 1.5V	MAX996_A			±15	mV
	VUS	VD01_ = 1.5V	MAX996_B			±100	1110
Input Offset Voltage Temperature Coefficient					±50		µV/°C
Common Mode Dejection Datio		V _{DUT} = 0, 3V		47	78		
Common-Mode Rejection Ratio (Note 21)	CMRR	V _{DUT} = 0, 6.5V		54	78		dB
		V _{DUT} = -1.5V, 6.5V		44	61		
		$V_{DUT} = 0$ to $3V$			±3		
Linearity Error (Note 9)		$V_{DUT} = 6.5V$				±15	mV
		V _{DUT} = -1.5V				±25	
V _{CC} Power-Supply Rejection Ratio	PSRR	V _{DUT} = -1.5V, 6.5V (No	te 22)	57	82		dB
VEE Power-Supply Rejection	ction VDUT_ = 0, 6.5V 44		44	70		15	
Ratio (Note 22)	PSRR	V _{DUT} = -1.5V		33	45		dB
AC CHARACTERISTICS (Note 23))						1
			MAX996GCCQ		0.75		
Minimum Pulse Width	t _{PW} (min)	(Note 24)	MAX996HCCQ, MAX996JCCQ		1.3		ns
Prop Delay	t PDL		1		2.2		ns
Prop Delay Temperature Coefficient					+6		ps/°C
Prop Delay Match, High/Low vs. Low/High					±25		ps
Prop Delay Match, Comparators Within Package		(Note 15)			35		ps
Prop Delay Dispersion vs.		V _{CHV} = V _{CLV} = 0, 6.4V			±75		
Common-Mode Input (Note 25)		$V_{CHV} = V_{CLV} = -1.4V$			±175		ps
Prop Delay Dispersion vs. Overdrive		100mV to 2V			200		ps
		2.5ns to 22.5ns pulse	MAX996GCCQ		±35		
Prop Delay Dispersion vs. Pulse Width		width, relative to 12.5ns pulse width	MAX996HCCQ, MAX996JCCQ		±70		ps
Prop Delay Dispersion vs. Slew Rate		0.5V/ns to 2V/ns slew rat	e		100		ps

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO_} = 2.5V, SC1 = SC0 = 0, V_{CPHV_} = 7.2V, V_{CPLV_} = -2.2V, T_J = +85^{\circ}C, unless otherwise noted. All temperature coefficients are measured at T_J = +70^{\circ}C to +100^{\circ}C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITI	ONS	MIN	ТҮР	MAX	UNITS
Waveform Tracking 10% to 90%		$V_{DUT_} = 1.0V_{P-P}$, $t_R = t_F = 1.0$ ns 10% to 90%, relative to timing at	Term mode		250		ps
		50% point	High-Z mode		500		
OPEN-COLLECTOR LOGIC OUT	1	NCH_, CL_, NCL_: MAX99	6DCCQ, MAX996	1	, and MAX		
V _{CCO} Voltage Range	Vvcco			0		3.5	V
Output Low-Voltage Compliance		Set by IOUT, RTERM, and			-0.5		V
Output High Voltage	V _{OH}	ICH_ = INCH_ = ICL_ = IN MAX996GCCQ	_{CL_} = 0mA,	Vcco_ - 0.10	Vcco_ - 0.04		V
Output Low Voltage	Vol	I _{CH} = I _{NCH} = I _{CL} = I _N MAX996GCCQ	CL_ = 0mA,			V _{CCO} _ - 0.38	V
Output Voltage Swing				0.30	0.33	0.40	V
Termination Resistor	RTERM	Single-ended measurement from V _{CCO_} to CH_, NCH_, CL_, NCL_, MAX996GCCQ		47.5		52.5	Ω
Differential Rise Time	t _R	20% to 80%			350		ps
Differential Fall Time	tF	20% to 80%			350		ps
OPEN-EMITTER LOGIC OUTPUT	S (CH_, NCH	_, CL_, NCL_: MAX996	HCCQ and MAX996	JCCQ)			
V _{CCO_} Voltage Range	Vvcco			-0.1		+3.5	V
V _{CCO_} Supply Current	Ivcco	All outputs 50 Ω to (V _{VCCO_} - 2V)			330		mA
Output High Voltage	V _{OH}	50 Ω to (V _{VCCO_} - 2V)			V _{CCO} - 0.9	-	V
Output Low Voltage	Vol	50Ω to (V _{VCCO_} - 2V)			Vcco - 1.7	-	V
Output Voltage Swing		50 Ω to (V _{VCCO_} - 2V)		750	850	950	mV
Differential Rise Time	t _R	20% to 80%			600		ps
Differential Fall Time	tF	20% to 80%			600		ps
CLAMPS				•			
High Clamp Input Voltage Range	VCPH_			-0.3		+7.5	V
Low Clamp Input Voltage Range	V _{CPL}			-2.5		+5.3	V
Clamp Offset Voltage		At DUT_ with $I_{DUT} = 1m$	A, $V_{CPHV} = 0$			±100	mV
Giamp Onset voltage	V _{OS}	At DUT_ with I_{DUT} = -1mA, V_{CPLV} = 0				±100	111V
Offset Voltage Temperature Coefficient					±0.5		mV/°C
Clamp Dower Supply Dejection		V_{CC} and V_{EE} independently varied full range, $I_{DUT_}$ = 1mA, $V_{CPHV_}$ = 0		40			dD
Clamp Power-Supply Rejection	PSRR	V_{CC} and V_{EE} independer range, $I_{DUT_}$ = -1mA, V_{C}		40			dB

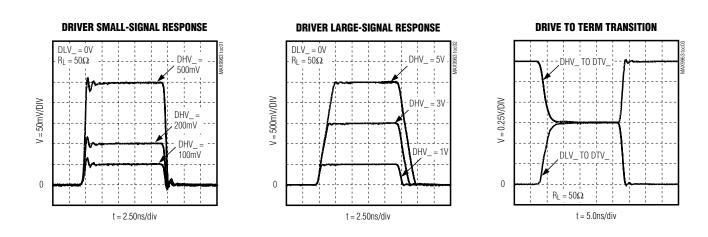
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO} = 2.5V, SC1 = SC0 = 0, V_{CPHV} = 7.2V, V_{CPLV} = -2.2V, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +70^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

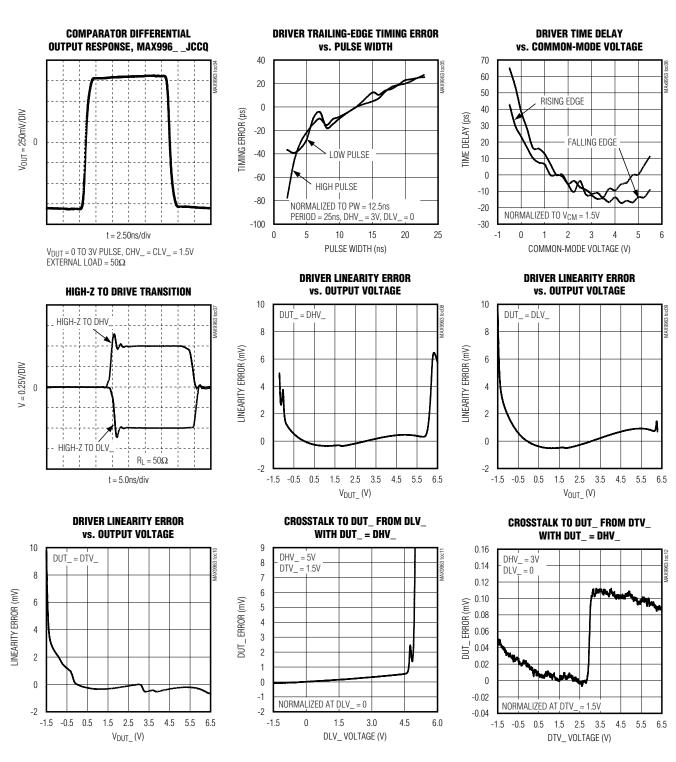
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Voltage Gain	Av		0.96		1.00	V/V
Voltage-Gain Temperature Coefficient				-100		ppm/°C
Clamp Linearity		$I_{DUT} = 1$ mA, $V_{CPLV} = -1.5$ V, $V_{CPHV} = -0.3$ to 6.5V		±10		
		$I_{DUT} = -1mA, V_{CPHV} = 6.5V, V_{CPLV} = -1.5$ to 5.3V		±10		mV
Short-Circuit Output Current		$V_{CPHV} = 0, V_{CPLV} = -1.5V, V_{DUT} = 6.0V$	50		95	
		$V_{CPLV} = 5V, V_{CPHV} = 6.5V, V_{DUT} = -1.0V$	-95		-50	mA
Clamp DC Impedance		$V_{CPHV} = 3V, V_{CPLV} = 0,$ $I_{DUT} = -5mA$ and -15mA	50		55	
		$V_{CPHV} = 3V, V_{CPLV} = 0,$ $I_{DUT} = 5mA \text{ and } 15mA$	50		55	Ω

Note 1: All MIN and MAX limits are 100% tested in production.

- **Note 2:** Total for quad device at worst-case setting. $R_{L_2} \ge 10M\Omega$. The applicable supply currents are measured with typical supply voltages.
- Note 3: Does not include internal dissipation of the comparator outputs. With output loads of 50Ω to (V_{VCCO_} 2V), this adds 240mW (typ) to the total chip power (MAX996__HCCQ, MAX996__JCCQ).
- Note 4: Externally forced voltages may exceed this range provided that the absolute maximum ratings are not exceeded.
- Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.
- Note 6: Transition time from LLEAK being deasserted to output returning to normal operating mode.
- Note 7: Based on simulation results only.
- Note 8: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 9: Relative to straight line between 0 and 3V.
- **Note 10:** Full ranges are $-1.3V \le V_{DHV} \le 6.5V$, $-1.5V \le V_{DTV} \le 6.5V$, $-1.5V \le V_{DLV} \le 6.3V$.
- **Note 11:** Nominal target value is 50Ω . Contact factory for alternate trim selections within the 45Ω to 51Ω range.
- **Note 12:** $V_{DTV} = 1.5V$, $R_S = 50\Omega$. External signal driven into T-line is a 0 to 3V edge with 1.2ns rise time (10% to 90%). Measurement is made using the comparator.
- **Note 13:** Measured from the crossing point of DATA_ inputs to the settling of the driver output.
- **Note 14:** Prop delays are measured from the crossing point of the differential input signals to the 50% point of expected output swing. Rise time of the differential inputs DATA_ and RCV_ is 250ps (10% to 90%).

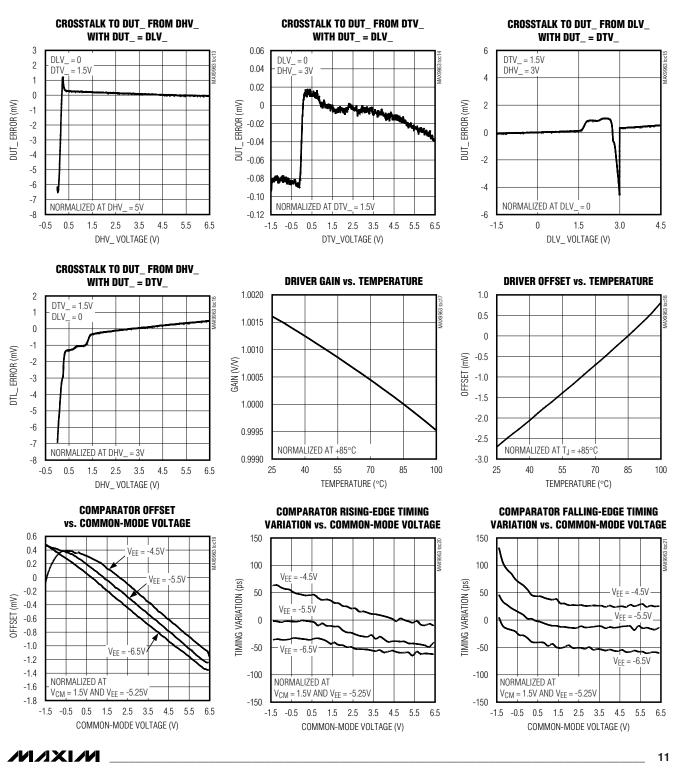

M/IXI/M

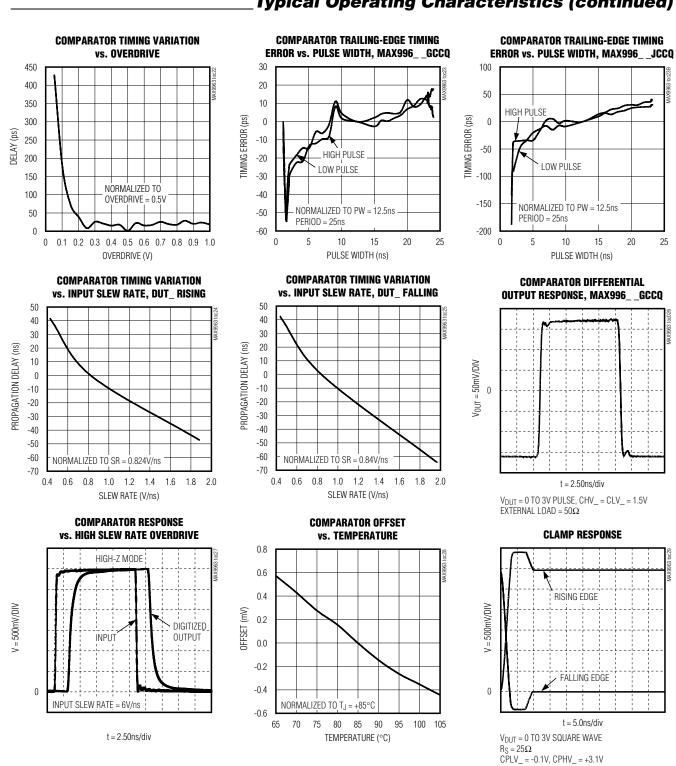
ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC} = +9.75V, V_{EE} = -5.25V, V_{CCO}_ = 2.5V, SC1 = SC0 = 0, V_{CPHV} = 7.2V, V_{CPLV} = -2.2V, T_J = +85^{\circ}C$, unless otherwise noted. All temperature coefficients are measured at $T_J = +70^{\circ}C$ to $+100^{\circ}C$, unless otherwise noted.) (Note 1)

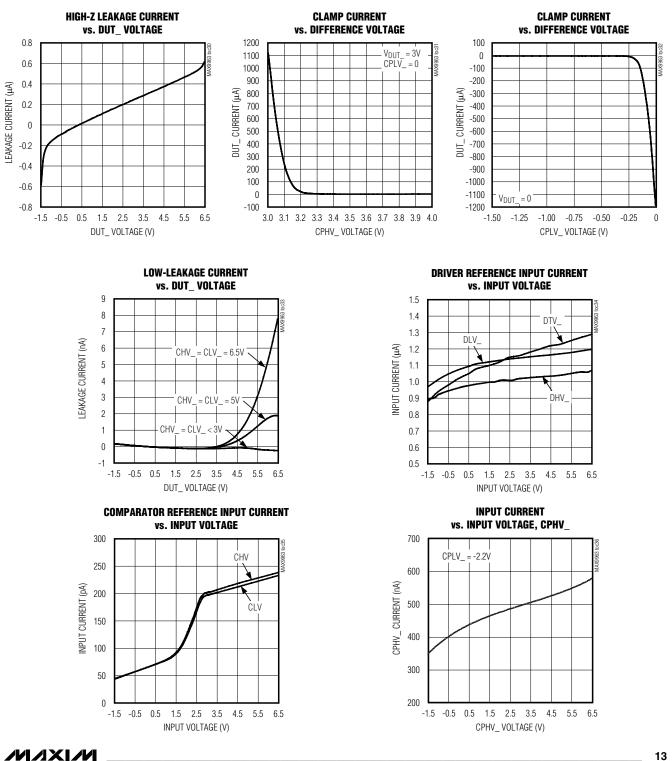
- Note 15: Rising edge to rising edge or falling edge to falling edge.
- Note 16: Specified amplitude is programmed. At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude. The pulse width is measured at DATA_.
- **Note 17:** Specified amplitude is programmed. Maximum data rate specified in transitions per second. A square wave that reaches at least 95% of its programmed amplitude may be generated at one-half this frequency.
- **Note 18:** Crosstalk from any driver to the other three channels. Aggressor channel is driving $3V_{P-P}$ into a 50 Ω load. Victim channels are in term mode with $V_{DTV_{-}} = 1.5V$.
- **Note 19:** Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when $V_{DLV} < V_{DTV} < V_{DHV}$. If $V_{DTV} < V_{DLV}$ or $V_{DTV} > V_{DHV}$, switching speed is degraded by approximately a factor of 3.
- Note 20: Both high and low comparators are tested.
- Note 21: Change in offset voltage over input range.
- Note 22: Change in offset voltage with power supplies independently set to their minimum and maximum values.
- **Note 23:** Unless otherwise noted, all prop delays are measured at 40MHz, $V_{DUT} = 0$ to 2V, $V_{CHV} = V_{CLV} = 1V$, slew rate = 2V/ns, $Z_S = 50\Omega$, driver in term mode with $V_{DTV} = 0V$. Comparator outputs are terminated with 50Ω to GND at scope input with $V_{CCO} = 2V$. Open-collector outputs are also terminated (internally or externally) with $R_{TERM} = 50\Omega$ to V_{CCO} . Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to the crossing point of differential outputs.
- **Note 24:** V_{DUT} = 0 to 1V, V_{CHV} = V_{CLV} = 0.5V. At this pulse width, the output reaches at least 90% of its DC voltage swing. The pulse width is measured at the crossing points of the differential outputs.
- Note 25: Relative to propagation delay at VCHV_ = VCLV_ = 1.5V. VDUT_ = 200mVP-P. Overdrive = 100mV.

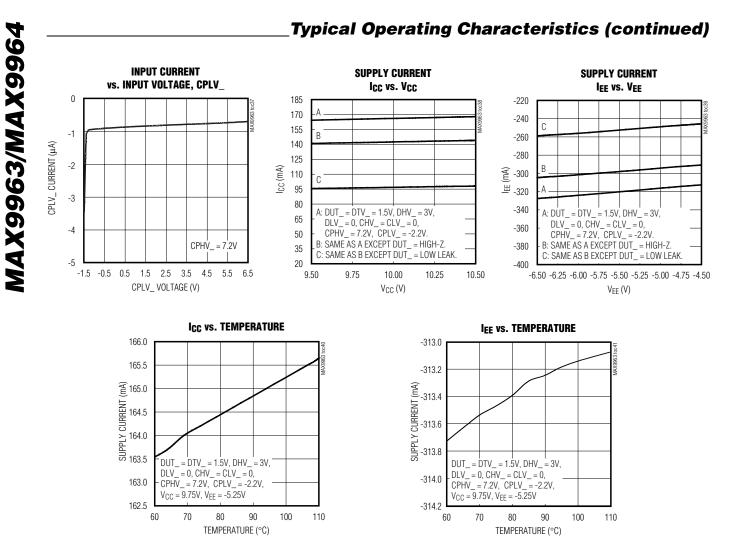
Typical Operating Characteristics





/N/IXI/N


Typical Operating Characteristics (continued)



Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Pin Description

Р	PIN		EUNOTION				
MAX9963	MAX9964	NAME	FUNCTION				
1	25	V _{CCO} 34	Collector Voltage Input, Channels 3 and 4. For open-collector outputs, this is the pullup voltage for the internal termination resistors. For open-emitter outputs, this is the collector voltage of the output transistors. Not internally connected on open-collector versions without internal termination resistors. V _{CCO} 34 services both channel 3 and channel 4.				
2	24	DATA4	Channel 4 Multiplexer Control Inputs. Differential controls DATA4 and NDATA4 select driver 4's input from DHV4 or DLV4. Drive DATA4 above NDATA4 to select				
3	23	NDATA4	DHV4. Drive NDATA4 above DATA4 to select DLV4.				
4	22	RCV4	Channel 4 Multiplexer Control Inputs. Differential controls RCV4 and NRCV4 place channel 4 into receive mode. Drive RCV4 above NRCV4 to place channel 4 into				
5	21	NRCV4	receive mode. Drive NRCV4 above RCV4 to place channel 4 into drive mode.				
6	20	DATA3	Channel 3 Multiplexer Control Inputs. Differential controls DATA3 and NDATA3 select driver 3's input from DHV3 or DLV3. Drive DATA3 above NDATA3 to select				
7	19	NDATA3	DHV3. Drive NDATA3 above DATA3 to select DLV3.				
8	18	RCV3	Channel 3 Multiplexer Control Inputs. Differential controls RCV3 and NRCV3 place channel 3 into receive mode. Drive RCV3 above NRCV3 to place channel 3 into				
9	17	NRCV3	receive mode. Drive NRCV3 above RCV3 to place channel 3 into drive mode.				
10, 27, 54, 55, 60, 61, 65, 66, 71, 72, 99	16, 27, 54, 55, 60, 61, 65, 66, 71, 72, 99	V _{EE}	Negative Power-Supply Input				
11, 28, 51, 56, 62, 64, 70, 75, 98	15, 28, 51, 56, 62, 64, 70, 75, 98	GND	Ground Connection				
12	14	RST	Reset Input. Asynchronous reset input for the serial register. $\overline{\text{RST}}$ is active low and asserts low-leakage mode. At power-up, hold $\overline{\text{RST}}$ low until V _{CC} and V _{EE} have stabilized.				
13	13	CS	Chip-Select Input. Serial-port activation input. \overline{CS} is active low.				
14	12	SCLK	Serial Clock Input. Clock for serial port.				
15	11	DIN	Data Input. Serial port data input.				
16, 26, 52, 58, 68, 74, 100	10, 26, 52, 58, 68, 74, 100	Vcc	Positive Power-Supply Input				
17	9	NRCV2	Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place channel 2 into receive mode. Drive RCV2 above NRCV2 to place channel 2 into				
18	8	RCV2	receive mode. Drive NRCV2 above RCV2 to place channel 2 into receive mode. Drive NRCV2 above RCV2 to place channel 2 into drive mode.				
19	7	NDATA2	Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select driver 2's input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select				
20	6	DATA2	DHV2. Drive NDATA2 above DATA2 to select DLV2.				

Pin Description (continued)

Р	PIN		EUNCTION			
MAX9963	MAX9964	NAME	FUNCTION			
21	5	NRCV1	Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place channel 1 into receive mode. Drive RCV1 above NRCV1 to place channel 1 into			
22	4	RCV1	receive mode. Drive NRCV1 above RCV1 to place channel 1 into drive mode.			
23	3	NDATA1	Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1 select driver 1's input from DHV1 or DLV1. Drive DATA1 above NDATA1 to select			
24	2	DATA1	DHV1. Drive NDATA1 above DATA1 to select DLV1.			
25	1	V _{CCO} 12	Collector Voltage Input, Channels 1 and 2. For open-collector outputs, this is the pullup voltage for the internal termination resistors. For open-emitter outputs, this is the collector voltage of the output transistors. Not internally connected on open-collector versions without internal termination resistors. V _{CCO} 12 services both channel 1 and channel 2.			
29	97	NCL2				
30	96	CL2	Channel 2 Low-Comparator Output. Differential output of channel 2 low comparator.			
31	95	NCH2	Channel 2 High-Comparator Output. Differential output of channel 2 high			
32	94	CH2	comparator.			
33	93	NCL1				
34	92	CL1	Channel 1 Low-Comparator Output. Differential output of channel 1 low comparator.			
35	91	NCH1	Channel 1 High-Comparator Output. Differential output of channel 1 high			
36	90	CH1	comparator.			
37	89	CPHV2	Channel 2 High-Clamp Reference Input			
38	88	CPLV2	Channel 2 Low-Clamp Reference Input			
39	87	DHV2	Channel 2 Driver-High Reference Input			
40	86	DLV2	Channel 2 Driver-Low Reference Input			
41	85	DTV2	Channel 2 Driver-Termination Reference Input			
42	84	CHV2	Channel 2 High-Comparator Reference Input			
43	83	CLV2	Channel 2 Low-Comparator Reference Input			
44	82	CPHV1	Channel 1 High-Clamp Reference Input			
45	81	CPLV1	Channel 1 Low-Clamp Reference Input			
46	80	DHV1	Channel 1 Driver-High Reference Input			
47	79	DLV1	Channel 1 Driver-Low Reference Input			
48	78	DTV1	Channel 1 Driver-Termination Reference Input			
49	77	CHV1	Channel 1 High-Comparator Reference Input			
50	76	CLV1	Channel 1 Low-Comparator Reference Input			
53	73	DUT1	Channel 1 Device Under Test Input/Output. Combined I/O for driver, comparator, and clamp.			
57, 69	57, 69	N.C.	No Connection. Leave open.			
59	67	DUT2	Channel 2 Device Under Test Input/Output. Combined I/O for driver, comparator, and clamp.			
63	63	TEMP	Temperature Monitor Output			

Pin Description (continued)

PIN					
MAX9963	MAX9964	NAME	FUNCTION		
67	59	DUT3	Channel 3 Device Under Test Input/Output. Combined I/O for driver, comparator, and clamp.		
73	53	DUT4	Channel 4 Device Under Test Input/Output. Combined I/O for driver, comparator and clamp.		
76	50	CLV4	Channel 4 Low-Comparator Reference Input		
77	49	CHV4	Channel 4 High-Comparator Reference Input		
78	48	DTV4	Channel 4 Driver-Termination Reference Input		
79	47	DLV4	Channel 4 Driver-Low Reference Input		
80	46	DHV4	Channel 4 Driver-High Reference Input		
81	45	CPLV4	Channel 4 Low-Clamp Reference Input		
82	44	CPHV4	Channel 4 High-Clamp Reference Input		
83	43	CLV3	Channel 3 Low-Comparator Reference Input		
84	42	CHV3	Channel 3 High-Comparator Reference Input		
85	41	DTV3	Channel 3 Driver-Termination Reference Input		
86	40	DLV3	Channel 3 Driver-Low Reference Input		
87	39	DHV3	Channel 3 Driver-High Reference Input		
88	38	CPLV3	Channel 3 Low-Clamp Reference Input		
89	37	CPHV3	Channel 3 High-Clamp Reference Input		
90	36	CH4	Channel 4 High-Comparator Output. Differential output of channel 4 high		
91	35	NCH4	comparator.		
92	34	CL4	Channel 4 Low-Comparator Output. Differential output of channel 4 low		
93	33	NCL4	comparator.		
94	32	CH3	Channel 3 High-Comparator Output. Differential output of channel 3 high		
95	31	NCH3	comparator.		
96	30	CL3	Channel 3 Low-Comparator Output. Differential output of channel 3 low		
97	29	NCL3	comparator.		

Detailed Description

The MAX9963/MAX9964 four-channel, high-speed pin electronics driver and comparator ICs for automatic test equipment include, for each channel, a three-level pin driver, a dual comparator, and variable clamps (Figure 1). The driver features a -1.5V to +6.5V operating range and high-speed operation, including high-Z and active termination (3rd-level drive) modes, which is highly linear even at low-voltage swings. The comparator provides low timing dispersion regardless of changes in input slew rate and pulse width. The clamps provide damping of high-speed DUT_ waveforms when the device is configured as a high-impedance receiver.

Each of the four channels has high-speed, differential inputs compatible with ECL, LVPECL, LVDS, and GTL

signal levels, with optional 100 Ω differential input terminations. Optional internal resistors at DATA_ and RCV_ provide differential termination of LVDS inputs. Optional internal resistors at CH_ and CL_ provide the pullup voltage and source termination for open-collector comparator outputs. These options significantly reduce the discrete component count on the circuit board.

The MAX9963/MAX9964 are available in two grade options. An A-grade version provides tighter matching of gain and offset of the drivers, and tighter offset matching of the comparators. This allows reference levels to be shared across multiple channels in cost-sensitive systems. A B-grade version provides lower cost for system designs that incorporate independent reference levels for each channel.

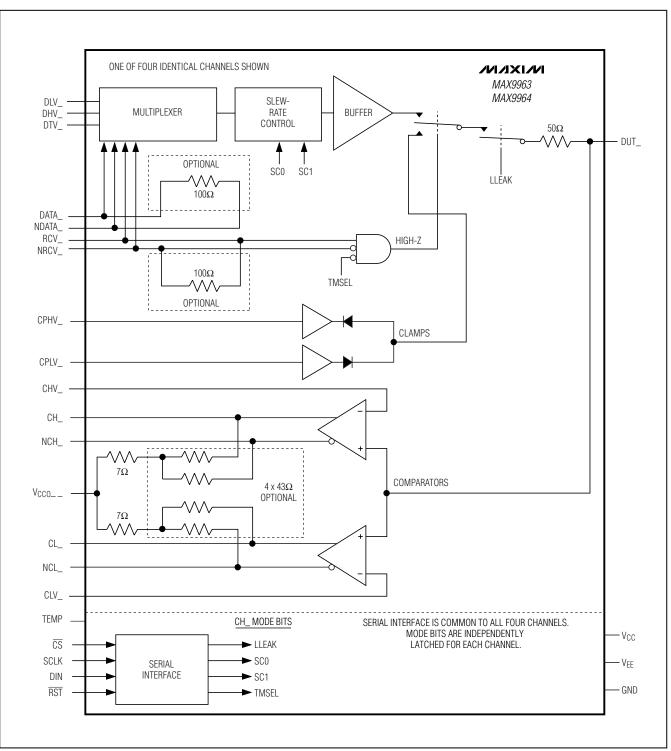


Figure 1. MAX9963/MAX9964 Block Diagram

18

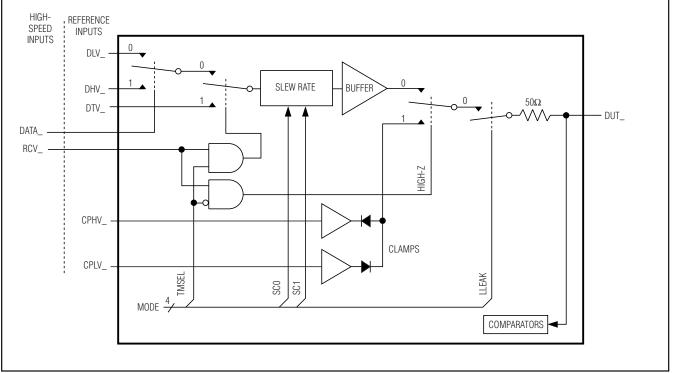


Figure 2. Simplified Driver Channel

Table 1. Slew Rate Logic

SC1	SC0	DRIVER SLEW RATE (%)		
0	0	100		
0	1	75		
1	0	50		
1	1	25		

Table 2. Driver Logic

EXTERNAL CONNECTIONS		INTERNAL CONTROL REGISTER		DRIVER OUTPUT	
DATA_	RCV_	TMSEL	LLEAK		
1	0	Х	0	Drive to DHV_	
0	0	Х	0	Drive to DLV_	
х	1	1	0	Drive to DTV_ (term mode)	
Х	1	0	0	High-impedance (high-z) mode	
Х	Х	Х	1	Low-leakage mode	

The MAX9963/MAX9964 modal operation is programmed through a 3-wire, low-voltage CMOS-compatible serial interface.

Output Driver

MAX9963/MAX9964

The driver input is a high-speed multiplexer that selects one of three voltage inputs, DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_, and mode control bit TMSEL. A slew rate circuit controls the slew rate of the buffer input. One of four possible slew rates can be selected (Table 1). The slew rate of the internal multiplexer sets the 100% driver slew rate (see the Driver Large-Signal Response graph in the *Typical Operating Characteristics*).

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed in low-leakage mode (Figure 2, Table 2). In high-impedance mode, the clamps are connected. This switching is controlled by high-speed input RCV_ and mode control bits TMSEL and LLEAK. In high-impedance mode, the bias current at DUT_ is less than 3µA, while the node maintains its ability to track high-speed signals. In

low-leakage mode, the bias current at DUT_ is further reduced to less than 15nA, and signal tracking slows.

The nominal driver output resistance is 50 Ω . Contact the factory for different resistance values within the 45 Ω to 51 Ω range.

Clamps

A pair of voltage clamps (high and low) can be configured to limit the voltage at DUT_, and to suppress reflections when the channel is configured as a highimpedance receiver. The clamps behave as diodes connected to the outputs of high-current buffers. Internal circuitry compensates for the diode drop at 1mA clamp current. Set the clamp voltages using external connections CPHV_ and CPLV_. The clamps are enabled only when the driver is in the high-impedance mode (Figure 2). For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application specific and must be empirically determined. If clamping is not desired, set the clamp voltages at least 0.7V outside the expected

Table 3. Comparator Logic

DUT_ > CHV_	DUT_ > CLV_	CH_	CL_	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

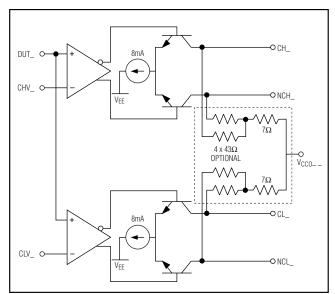


Figure 3. Open-Collector Comparator Outputs

DUT_ voltage range; overvoltage protection remains active without loading DUT_.

Comparators

The MAX9963/MAX9964 have two independent highspeed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (Figure 1). Comparator outputs are a logical result of the input conditions, as indicated in Table 3.

Three configurations are available for the comparator differential outputs to ease interfacing with a wide variety of logic families. An open-collector configuration switches an 8mA current source between the two outputs. This configuration is available with and without internal termination resistors connected to VCCO__ (Figure 3). For versions without internal termination resistors, leave V_{CCO_} unconnected and add the required external resistors. These resistors are typically 50Ω to the pullup voltage at the receiving end of the output trace. Alternate configurations can be used, provided that the Absolute Maximum Ratings are not exceeded. For versions with internal terminations, connect V_{CCO} to the desired V_{OH} voltage. Each output provides a nominal 400mV_{P-P} swing and 50 Ω source termination.

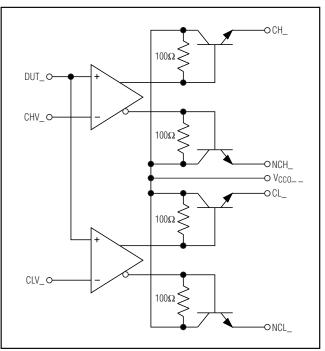


Figure 4. Open-Emitter Comparator Outputs

BIT	NAME	DESCRIPTION			
D7	1E	Channel 1 Write Enable. Set to 1 to update the control byte for channel 1. Set to zero to make no changes to channel 1.			
D6	2E	Channel 2 Write Enable. Set to 1 to update the control byte for channel 2. Set to zero to make no changes to channel 2.			
D5	3E	Channel 3 Write Enable. Set to 1 to update the control byte for channel 3. Se to zero to make no changes to channel 3			
D4	4E	Channel 4 Write Enable. Set to 1 to update the control byte for channel 4. Set to zero to make no changes to channel 4.			
D3	LLEAK	Low-Leakage Select. Set to 1 to put driver and clamps into a low-leakage mode. Comparators remain active in low- leakage mode. Set to zero for normal operation.			
D2	SC1	Driver Slew-Rate Select. SC1 and SC0 se			
D1	SC0	the driver slew rate. See Table 1.			
DO	TMSEL	Driver Termination Select. Set to 1 to force the driver output to the DTV_ voltage (term mode) when RCV_ = 1. Set to zero to place the driver into a high- impedance state (high-Z mode) when RCV_ = 1. See Table 2.			

An open-emitter configuration is also available (Figure 4). Connect an external collector voltage to V_{CCO}_ and add external pulldown resistors. These resistors are typically 50Ω to V_{CCO}_ - 2V at the receiving end of the output trace. Alternate configurations can be used, provided that the Absolute Maximum Ratings are not exceeded.

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port or with RST places the MAX9963/MAX9964 into a very-low-leakage state in which the DUT_ input current is less than 10nA over the 0 to 3V range. In this mode, the comparators still function at full speed but the driver and clamps are disabled. This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK is programmed independently for each channel.

If DUT_ is driven with a high-speed signal while LLEAK is asserted, leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Temperature Monitor

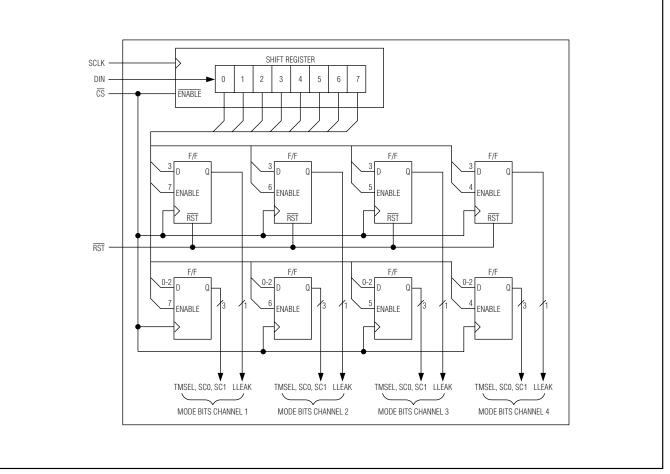
Each device supplies a single temperature output signal, TEMP, that asserts a nominal output voltage of 3.43V at a die temperature of +70°C (343K). The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is $15k\Omega$ (typ).

Figure 5. Serial Interface Timing

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9963/MAX9964 modes (Figure 6). Control data flow into an 8-bit shift register (MSB first) and are latched when $\overline{\text{CS}}$ is taken high, as shown in Figure 5. Data from the shift register are then loaded into any or all of a group of four quad latches, determined by bits D4 through D7, as indicated in Figure 6 and Table 4. The quad latches contain the 4 mode bits for each channel of the quad pin driver. The mode bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel, as shown in Tables 1 and 2. RST sets LLEAK=1 for all channels, forcing them into low-leakage mode. All other bits are unaffected. At power-up, hold RST low until V_{CC} and V_{EE} have stabilized.

Heat Removal

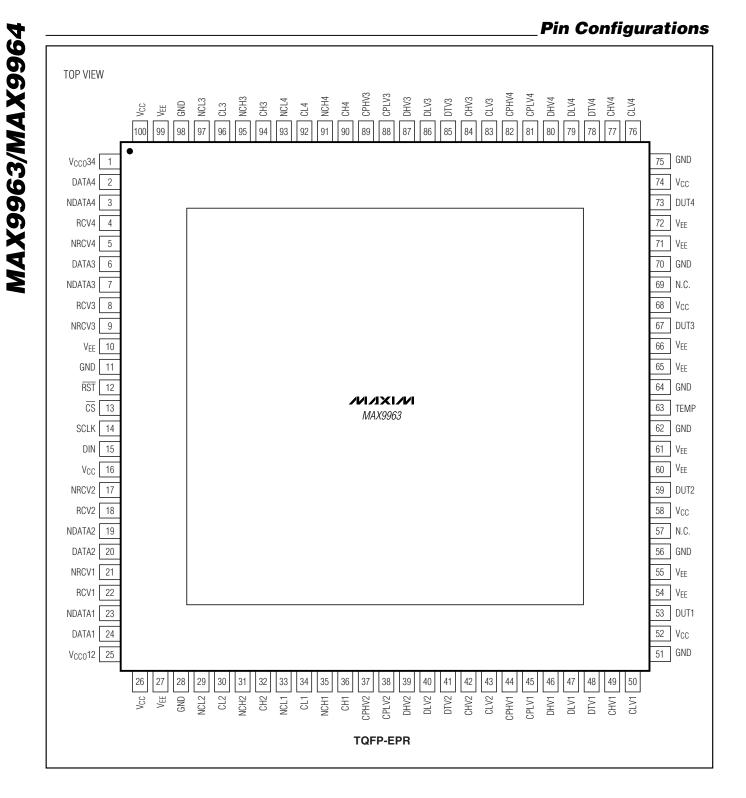

These devices require heat removal under normal circumstances through the exposed pad, either by soldering to circuit board copper (MAX9964) or by use of an external heat sink (MAX9963). The exposed pad is electrically at V_{EE} potential for both package types, and must be either connected to V_{FE} or isolated.

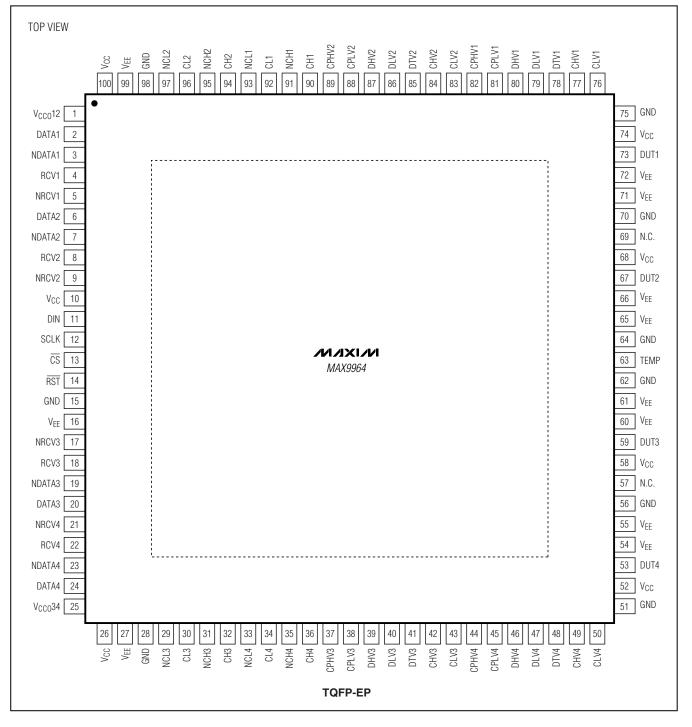
Chip Information

TRANSISTOR COUNT: 6499 PROCESS: Bipolar

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.


Figure 6. Serial Interface


_Selector Guide

PART	ACCURACY GRADE	COMPARATOR OUTPUT TYPE	COMPARATOR OUTPUT TERMINATION	HIGH-SPEED DIGITAL INPUT TERMINATION	HEAT EXTRACTION	PIN-PACKAGE
MAX9963ADCCQ*	А	Open collector	None	None	Тор	100 TQFP-EPR
MAX9963AKCCQ*	А	Open collector	None	100Ω LVDS	Тор	100 TQFP-EPR
MAX9963AGCCQ*	А	Open collector	50 Ω to V _{CCO}	100Ω LVDS	Тор	100 TQFP-EPR
MAX9963AHCCQ*	А	Open emitter	None	None	Тор	100 TQFP-EPR
MAX9963AJCCQ	А	Open emitter	None	100Ω LVDS	Тор	100 TQFP-EPR
MAX9963BDCCQ*	В	Open collector	None	None	Тор	100 TQFP-EPR
MAX9963BKCCQ*	В	Open collector	None	100Ω LVDS	Тор	100 TQFP-EPR
MAX9963BGCCQ	В	Open collector	50 Ω to V _{CCO}	100Ω LVDS	Тор	100 TQFP-EPR
MAX9963BHCCQ*	В	Open emitter	None	None	Тор	100 TQFP-EPR
MAX9963BJCCQ*	В	Open emitter	None	100Ω LVDS	Тор	100 TQFP-EPR
MAX9964ADCCQ*	А	Open collector	None	None	Bottom	100 TQFP-EP
MAX9964AKCCQ*	А	Open collector	None	100Ω LVDS	Bottom	100 TQFP-EP
MAX9964AGCCQ*	А	Open collector	50 Ω to Vcco	100Ω LVDS	Bottom	100 TQFP-EP
MAX9964AHCCQ*	A	Open emitter	None	None	Bottom	100 TQFP-EP
MAX9964AJCCQ*	А	Open emitter	None	100Ω LVDS	Bottom	100 TQFP-EP
MAX9964BDCCQ*	В	Open collector	None	None	Bottom	100 TQFP-EP
MAX9964BKCCQ*	В	Open collector	None	100Ω LVDS	Bottom	100 TQFP-EP
MAX9964BGCCQ	В	Open collector	50 Ω to V _{CCO}	100Ω LVDS	Bottom	100 TQFP-EP
MAX9964BHCCQ*	В	Open emitter	None	None	Bottom	100 TQFP-EP
MAX9964BJCCQ*	В	Open emitter	None	100Ω LVDS	Bottom	100 TQFP-EP

*Future product—contact factory for availability.

Pin Configurations (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

MAX9963/MAX9964