

General Description

The MAX9311/MAX9313 are low-skew, 1-to-10 differential drivers designed for clock and data distribution. These devices allow selection between two inputs. The selected input is reproduced at 10 differential outputs. The differential inputs can be adapted to accept singleended inputs by connecting the on-chip VBB supply to one input as a reference voltage.

The MAX9311/MAX9313 feature low part-to-part skew (30ps) and output-to-output skew (12ps), making them ideal for clock and data distribution across a backplane or a board. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

The MAX9311 features an on-chip VBB reference output of 1.425V below the positive supply voltage. The MAX9313 offers an on-chip VBB reference output of 1.32V below the positive supply voltage.

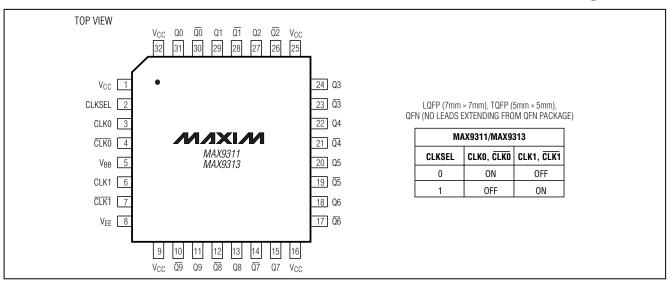
Both devices are offered in space-saving, 32-pin 5mm x 5mm TQFP, 5mm x 5mm QFN, and industry-standard 32-pin 7mm x 7mm LQFP packages.

Applications

Precision Clock Distribution Low-Jitter Data Repeater

www.DataSheet4U.com

Features


- ♦ +2.25V to +3.8V Differential HSTL/LVPECL Operation
- ♦ -2.25V to -3.8V LVECL Operation
- ♦ 30ps (typ) Part-to-Part Skew
- ♦ 12ps (typ) Output-to-Output Skew
- ♦ 312ps (typ) Propagation Delay
- ♦ ≥ 300mV Differential Output at 3GHz
- ♦ On-Chip Reference for Single-Ended Inputs
- ♦ Output Low with Open Input
- ♦ Pin Compatible with MC100LVEP111 (MAX9311) and MC100EP111 (MAX9313)
- ♦ Offered in Tiny QFN* Package (70% Smaller Footprint than LQFP)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX9311ECJ	-40°C to +85°C	32 LQFP (7mm × 7mm)
MAX9311EGJ*	-40°C to +85°C	32 QFN (5mm × 5mm)
MAX9311EHJ*	-40°C to +85°C	32 TQFP (5mm × 5mm)
MAX9313ECJ	-40°C to +85°C	32 LQFP (7mm × 7mm)
MAX9313EGJ*	-40°C to +85°C	32 QFN (5mm × 5mm)
MAX9313EHJ*	-40°C to +85°C	32 TQFP (5mm × 5mm)

^{*}Future product—contact factory for availability.

Pin Configuration

NIXIN

Maxim Integrated Products 1

www.

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

ABSOLUTE MAXIMUM RATINGS

VCC - VEE	
Inputs (CLK_, CLK_, CLKSEL)VEE - 0.3V to V	$/_{CC} + 0.3V$
CLK_to CLK_	±3.0V
Continuous Output Current	50mA
Surge Output Current	100mA
VBB Sink/Source Current	±0.65mA
Junction-to-Ambient Thermal Resistance in Still Air	
7mm x 7mm LQFP	+90°C/W
Junction-to-Ambient Thermal Resistance with	
500 LFPM Airflow	
7mm x 7mm LQFP	+60°C/W

Junction-to-Case Therm	ıal Resistance	
7mm x 7mm LQFP		+12°C/W
Operating Temperature	Range	40°C to +85°C
Junction Temperature		+150°C
Storage Temperature Ra	ange	65°C to +150°C
ESD Protection		
Human Body Model (CLKSEL, CLK_, CLK_,	
Q_, \overline{Q}_, V_BB)		2kV
Soldering Temperature	(10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = +2.25V \text{ to } +3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ CLKSEL} = \text{high or low, unless otherwise noted.})$ (Notes 1–4)

DADAMETED	CVMDOL	CONDI	TIONS	-40)°C	+25	5°C	+8!	5°C	LINITO
PARAMETER	SYMBOL	CONDI	HONS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
SINGLE-ENDED	INPUT (CL	KSEL)								
Input High	V	Internal	MAX9311	V _{CC} - 1.23	Vcc	V _{CC} - 1.23	Vcc	V _{CC} - 1.23	Vcc	V
Voltage	VIH	V _{BB} threshold	MAX9313	V _{CC} - 1.165	Vcc	V _{CC} - 1.165	Vcc	V _{CC} - 1.165	Vcc	V
Input Low	V	Internal	MAX9311	VEE	V _{CC} - 1.62	VEE	V _{CC} - 1.62	VEE	V _{CC} - 1.62	V
Voltage DataSheet4U.com	V _{IL}	V _{BB} threshold	MAX9313	VEE	V _{CC} - 1.475	VEE	V _{CC} - 1.475	VEE	V _{CC} - 1.475	
Input High Current	liн				150		150		150	μΑ
Input Low Current	I₁∟			-10	+10	-10	+10	-10	+10	μΑ
DIFFERENTIAL I	NPUTS (CI	K_, CLK_)								
Single-Ended Input High	V	V _{BB} connected to CLK_	MAX9311	V _{CC} - 1.23	Vcc	V _C C - 1.23	Vcc	Vcc - 1.23	Vcc	V
Voltage	ViH	(V _{IL} for V _{BB} connected to CLK_), Figure 1	MAX9313	V _{CC} - 1.165	Vcc	V _{CC} - 1.165	Vcc	V _C C - 1.165	Vcc	V

__ /N/XI/N

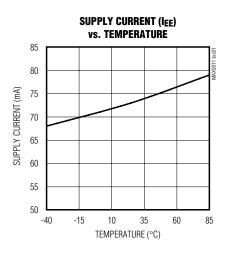
DC ELECTRICAL CHARACTERISTICS (continued)

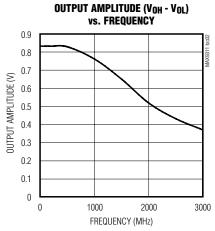
 $(V_{CC} - V_{EE} = +2.25V \text{ to } +3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ CLKSEL} = \text{high or low, unless otherwise noted.})$ (Notes 1–4)

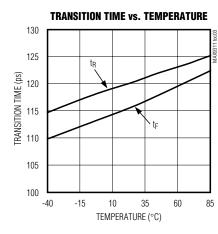
DADAMETER	OVMDC:	MBOL CONDITIONS -40°C +25°C +85°C MIN MAX MIN MAX MIN MAX								
PARAMETER	SYMBOL	CONDI	TIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Single-Ended Input Low	.,	V _{BB} connected to CLK_	MAX9311	VEE	V _{CC} - 1.62	VEE	V _{CC} - 1.62	VEE	V _{CC} -1.62	
Voltage	V _{IL}	(V _{IH} for V _{BB} connected to CLK_), Figure 1	MAX9313	VEE	V _{CC} - 1.475	VEE	V _{CC} - 1.475	VEE	V _{CC} -1.475	V
High Voltage of Differential Input	VIHD			V _{EE} +1.2	Vcc	V _{EE} + 1.2	Vcc	V _{EE} +1.2	V _C C	V
Low Voltage of Differential Input	V _{ILD}			VEE	V _{CC} - 0.095	VEE	V _C C - 0.095	VEE	V _{CC} - 0.095	٧
Differential	VIHD -	For V _{CC} - V	EE < 3.0V	0.095	V _{CC} - V _{EE}	0.095	V _{CC} - V _{EE}	0.095	V _{CC} - V _{EE}	V
Input Voltage	V _{ILD}	For V _{CC} - V	EE ≥ 3.0V	0.095	3.0	0.095	3.0	0.095	3.0	
Input High Current	Іін				150		150		150	μΑ
CLK_ Input Low Current	IILCLK			-10	+10	-10	+10	-10	+10	μΑ
CLK_ Input Low Current	IILCLK			-150		-150		-150		μΑ
OUTPUTS (Q_, C	<u>(</u>)	ı						1		
Single-Ended Output High Voltage	Vон	Figure 1		V _{CC} - 1.025	V _C C - 0.900	V _C C - 1.025	V _C C - 0.900	V _C C - 1.025	V _C C - 0.900	V
Single-Ended Output Low Voltage	VoL	Figure 1		V _{CC} - 1.93	V _{CC} - 1.695	V _C C - 1.93	V _{CC} - 1.695	V _{CC} - 1.93	V _{CC} - 1.695	٧
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1		670	950	670	950	670	950	mV
REFERENCE (V	зв)									
Reference Voltage Output	V	I _{BB} =	MAX9311	V _{CC} - 1.525	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.325	V
(Note 5)	V _{BB}	±0.5mA	MAX9313	V _{CC} - 1.38	V _{CC} - 1.26	V _{CC} - 1.38	V _{CC} - 1.26	V _{CC} - 1.38	V _C C - 1.26	v
POWER SUPPLY	1									
Supply Current (Note 6)	I _{EE}				75		82		95	mA

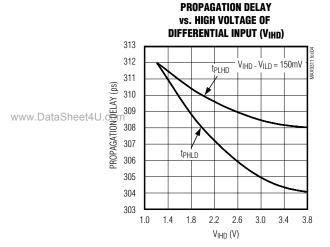
www.

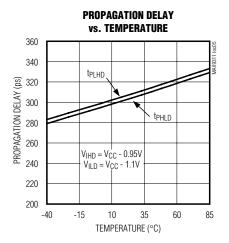
AC ELECTRICAL CHARACTERISTICS


 $(V_{CC} - V_{EE} = 2.25V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ input frequency} = 1.5GHz, \text{ input transition time} = 125ps (20% to 80%), CLKSEL = high or low, <math>V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to the smaller of } 3V \text{ or } V_{CC} - V_{EE}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.)$ (Note 7)


PARAMETER SYMBOL	CONDITIONS		-40°C			+25°C			UNITS			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MA	MIN	TYP	MAX	UNITS
Differential Input-to- Output Delay	tpLHD, tpHLD	Figure 2	220	321	380	220	312	410	260	322	400	ps
Output-to- Output Skew (Note 8)	tskoo			12	46		12	46		10	35	ps
Part-to-Part Skew (Note 9)	tskpp			30	160		30	190		30	140	ps
Added Random Jitter	+	f _{IN} = 1.5GHz, Clock pattern		1.2	2.5		1.2	2.5		1.2	2.5	ps
(Note 10)	tRJ	f _{IN} = 3.0GHz, Clock pattern		1.2	2.6		1.2	2.6		1.2	2.6	(RMS)
Added Deterministic Jitter (Note 10)	t _D J	3Gbps, 2 ²³ -1 PRBS pattern		80	95		80	95		80	95	ps (p-p)
Switching	£	V _{OH} - V _{OL} ≥ 350mV, Clock pattern, Figure 2	2.0			2.0	3.0		2.0			GHz
Frequency lataSheet4U.com	f _{MAX}	V _{OH} - V _{OL} ≥ 500mV, Clock pattern, Figure 2	1.5			1.5			1.5			GHZ
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 2	100	112	140	100	116	140	100	121	140	ps


- **Note 1:** Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- Note 3: Single-ended input operation using V_{BB} is limited to V_{CC} V_{EE} = 3.0V to 3.8V for the MAX9311 and V_{CC} V_{EE} = 2.7V to 3.8V for the MAX9313.
- Note 4: DC parameters production tested at $T_A = +25$ °C. Guaranteed by design and characterization over the full operating temperature range.
- Note 5: Use VBB only for inputs that are on the same device as the VBB reference.
- Note 6: All pins open except VCC and VEE.
- Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 8: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- **Note 9:** Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 10:Device jitter added to the input signal.


Typical Operating Characteristics


 $(V_{CC} = +3.3V, V_{EE} = 0, V_{IHD} = V_{CC} - 0.95V, V_{ILD} = V_{CC} - 1.25V, input transition time = 125ps (20% to 80%), flN = 1.5GHz, outputs loaded with 50<math>\Omega$ to $V_{CC} - 2V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 9, 16, 25, 32	Vcc	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	CLKSEL	Clock Select Input (Single-Ended). Drive low to select the CLK0, $\overline{\text{CLK0}}$ input. Drive high to select the CLK1, $\overline{\text{CLK1}}$ input. The CLKSEL threshold is V _{BB} . If CLKSEL is not driven by a logic signal, use a 1k Ω pulldown to V _{EE} to select CLK0, $\overline{\text{CLK0}}$, or a 1k Ω pullup to V _{CC} to select CLK1, $\overline{\text{CLK1}}$.
3	CLK0	Noninverting Differential Clock Input 0. Internal 75kΩ pulldown resistor.
4	CLK0	Inverting Differential Clock Input 0. Internal 75kΩ pullup and pulldown resistors.
5	V_{BB}	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise, leave open.
6	CLK1	Noninverting Differential Clock Input 1. Internal 75kΩ pulldown resistor.
7	CLK1	Inverting Differential Clock Input 1. Internal $75k\Omega$ pullup and pulldown resistors.
8	VEE	Negative Supply Voltage
10	Q9	Inverting Q9 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
11	Q9	Noninverting Q9 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
12	Q8	Inverting Q8 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
13	Q8	Noninverting Q8 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
14	Q7	Inverting Q7 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
15	Q7	Noninverting Q7 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
17	Q6	Inverting Q6 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
18	Q6	Noninverting Q6 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
19	Q5	Inverting Q5 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
20	Q5	Noninverting Q5 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
21	Q 4	Inverting Q4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
DataSheet4U.	com Q4	Noninverting Q4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
23	Q3	Inverting Q3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
24	Q3	Noninverting Q3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
26	Q2	Inverting Q2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
27	Q2	Noninverting Q2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
28	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
29	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
30	Q0	Inverting Q0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
31	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.

www.

Detailed Description

The MAX9311/MAX9313 are low skew, 1-to-10 differential drivers designed for clock and data distribution.

A 2:1 mux selects between the two differential inputs, CLK0, CLK0 and CLK1, CLK1. The 2:1 mux is switched by the single-ended CLKSEL input. A logic low selects the CLK0, CLK0 input. A logic high selects the CLK1, CLK1 input. The logic threshold for CLKSEL is set by an internal VBB voltage reference. The CLKSEL input can be driven to VCC and VEE or by a single-ended LVPECL/LVECL signal. The selected input is reproduced at 10 differential outputs.

For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

The differential inputs can be configured to accept single-ended inputs when operating at approximately V_{CC} - V_{EE} = +3.0V to +3.8V for the MAX9311 or V_{CC} - V_{EE} = +2.7V to +3.8V for the MAX9313. This is accomplished by connecting the on-chip reference voltage, V_{BB}, to an input as a reference. For example, the differential CLKO, CLKO input is converted to a noninverting, single-ended input by connecting V_{BB} to CLKO and connecting the single-ended input to CLKO. Similarly, an inverting input is obtained by connecting V_{BB} to CLKO and connecting the single-ended input to CLKO. With a differential input configured as single-ended (using V_{BB}), the single-www.Dendeddinputcan be driven to V_{CC} and V_{EE} or with a single-ended LVPECL/LVECL signal.

When a differential input is configured as a single-ended input (using V_{BB}), the approximate supply range is V_{CC} - V_{EE} = +3.0V to +3.8V for the MAX9311 and V_{CC} - V_{EE} = +2.7V to +3.8V for the MAX9313. This is because one of the inputs must be V_{EE} + 1.2V or higher for proper operation of the input stage. V_{BB} must be at least V_{EE} + 1.2V because it becomes the high-level input when the other (single-ended) input swings below it. Therefore, minimum V_{BB} = V_{EE} + 1.2V.

The minimum V_{BB} output for the MAX9311 is V_{CC} - 1.525V and the minimum V_{BB} output for the MAX9313 is V_{CC} - 1.38V. Substituting the minimum V_{BB} output for each device into V_{BB} = V_{EE} + 1.2V results in a minimum supply of 2.725V for the MAX9311 and 2.58V for the MAX9313. Rounding up to standard supplies gives the single-ended operating supply ranges of V_{CC} - V_{EE} = 3.0V to 3.8V for the MAX9311 and V_{CC} - V_{EE} = 2.7V to 3.8V for the MAX9313.

When using the VBB reference output, bypass it with a $0.01\mu F$ ceramic capacitor to VCC. If the VBB reference is not used, it can be left open. The VBB reference can source or sink 0.5mA, which is sufficient to drive two inputs. Use VBB only for inputs that are on the same device as the VBB reference.

The maximum magnitude of the differential input from CLK_ to CLK_ is 3.0V or VCC - VEE, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input.

The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting inputs (CLK0 and CLK1) are biased with a $75k\Omega$ pullup to V_{CC} and a $75k\Omega$ pulldown to V_{EE} . The noninverting inputs (CLK0 and CLK1) are biased with a $75k\Omega$ pulldown to V_{EE} . The single-ended CLKSEL input does not have a bias resistor. If not driven, pull CLKSEL up or down with a 1kHz resistor (see Pin Description).

Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously (V_{ILD} cannot be higher than V_{IHD}).

Output levels are referenced to V_{CC} and are considered LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

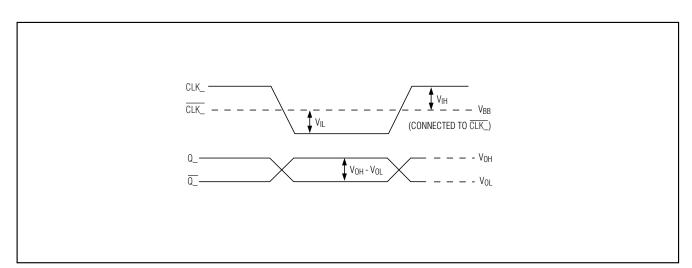
A single-ended input of at least V_{BB} ± 95 mV or a differential input of at least 95mV switches the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table.

Applications Information

Supply Bypassing

Bypass V_{CC} to V_{EE} with high-frequency surface-mount ceramic $0.1\mu\text{F}$ and $0.01\mu\text{F}$ capacitors in parallel as close to the device as possible, with the $0.01\mu\text{F}$ value capacitor closest to the device. Use multiple parallel vias for low inductance. When using the V_{BB} reference output, bypass it with a $0.01\mu\text{F}$ ceramic capacitor to V_{CC} (if the V_{BB} reference is not used, it can be left open).

Traces


Input and output trace characteristics affect the performance of the MAX9311/MAX9313. Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a

differential pair by matching the electrical length of the traces.

__Chip Information

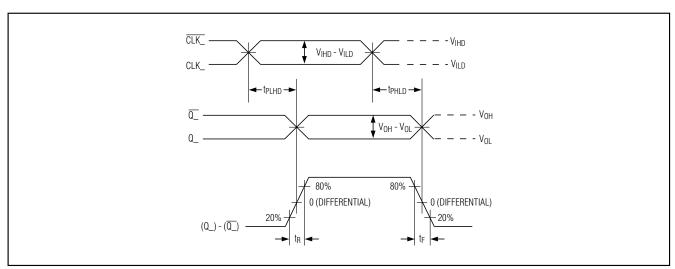
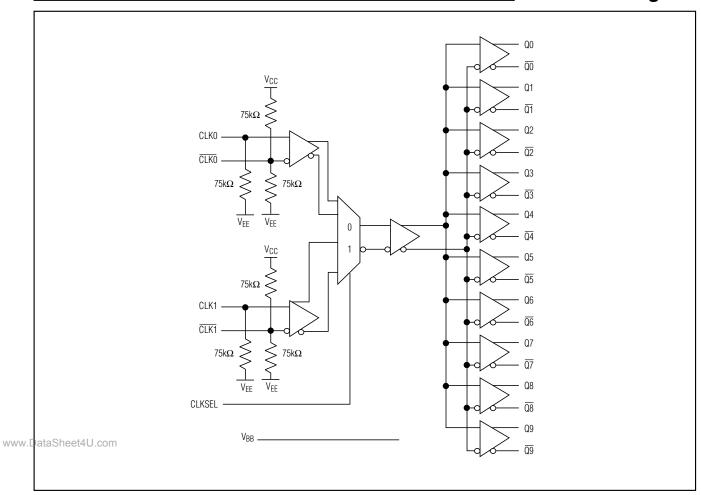
Output Termination

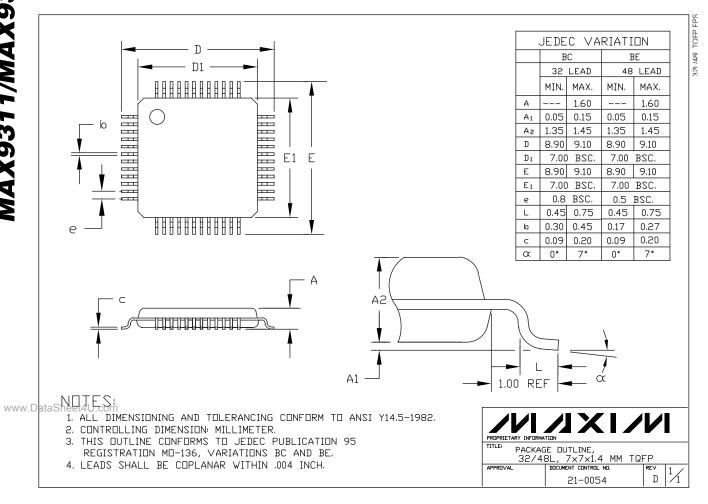
Terminate outputs through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and $\overline{Q0}$.

TRANSISTOR COUNT: 250

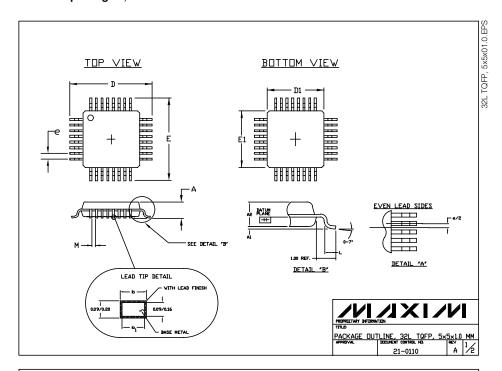
Figure 1. Switching with Single-Ended Input

www.DataSheet4U.com


Figure 2. Differential Transition Time and Propagation Delay Timing Diagram

Functional Diagram


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

www.DataSheet4U.com

- NOTES!

 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982.

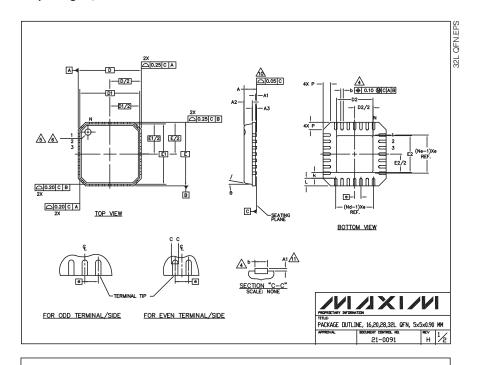
 2. DATUM PLANE EHD IS LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.

 3. DIMENSIONS DI AND EL DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON DI AND EL DIMENSIONS.

 4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MILLIMETERS.

 5. DIMENSION 5. DIES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. CONTROLLING DIMENSION HALLIMETER.


 7. THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95, REGISTRATION MO-136.
- MD-136. 8. LEADS SHALL BE COPLANAR WITHIN .004 INCH.

	JEDEC \	∕ARIATIONS	
	DIMENSIONS	IN MILLIMETERS	
	A	A	
	5×5×1	I.O MM	
	MIN.	MAX.	
Α	グレ	1.20	
A ₁	0.05	0.15	i I
Az	0.95	1.05	
D	7.00	BSC.	i I
Dı	5.00	BSC.	
E	7.00	BSC.	i I
E1	5.00	BSC.	i I
L	0.45	0.75	
м	0.15	N.	
N	3	5	
e	0.50	BSC.	i I
ь	0.17	0.27	
ы1	0.17	0.23	
TITLE	RIETARY INFORMATIO		
APPR	DVAL DUIL	INE, 32L TOFF	
			A 5/2

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

www.DataSheet4U.com

PKG					COMM	ON DIME	NSIONS												
		16L 5x5			20L 5x5			28L 5x5			32L 5x5								
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.							
Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00							
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05							
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00							
A3		0.20 REF			0.20 REF			0.20 REF			0.20 REF								
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30	EXPO	SED	PAD	VAF	ITAI	DNS	
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	PKG.		DS			E2	
D1		4.75 BS	2		4.75 BSC	;		4.75 BS	;		4.75 BSC		CODES	MIN.	NDM.	MAX.	MIN.	NOH.	MAX.
Ε	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	G1655-3	2.95	3.10	3.25	2.95	3.10	3.25
E1		4.75 BS	2		4.75 BSC	;		4.75 BS	;		4.75 BSC	;	G2055-1	2.55	2.70	2.85	2.55	2.70	2.85
е		0.80 BS	С		0.65 BSC			0.50 BS			0.50 BSC	;]	G2055-2	2.95	3.10	3.25	2.95	3.10	3.25
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	G2855-1 G2855-2	2.55	2.70	2.85	2.55	2.70	2.85
L	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.50	G3255-1	2.95	3.10	3.25	2.95	3.10	3.25
N		16			20			28			32		G3E33-1	2.93	3.10	3.23	2.93	3.10	3.23
ND		4			5			7			8								
NE		4			5			7			8								
P	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60							
9	0.		12°	0,		12*	0.		12°	٥.		12°							
ES:	IE THIC	KNESS .																	
2. D 3. N 4. D 5. T	IS THE IS	ON b AF	TOLER ER OF BER OF PLIES NTIFIER	TERMINA TERMIN TERMIN TO PLAT MUST	CONFORM LS. ALS IN : ED TERM BE EXIST	I TO ASI K-DIREC IINAL AN ED ON 1	ME Y14 TION & D IS M THE TO	Ne IS IEASUREI P SURF/	1994. THE NU BETW	JMBER O	O AND	0.25mm Fl	-DIRECTION. ROM TERMIN. NDENTATION			INK/L	aser i	MARKE	D.
2. D 3. N 4. D 5. T 6. E	IS TH ID IS T IMENSION HE PIN XACT S	E NUMBI HE NUMI ON 6 AF	TOLER ER OF BER OF PLIES NTIFIER ND SIZI	TERMINA TERMIN TO PLAT MUST I	CONFORM LS. ALS IN : ED TERM BE EXIST IS FEATO	I TO ASI K-DIREC IINAL AN ED ON 1	ME Y14 TION & D IS M THE TO	Ne IS IEASUREI P SURF/	1994. THE NU BETW	JMBER O	O AND	0.25mm Fl	ROM TERMIN			INK/LI	ASER I	MARKE	D.
2. D 3. N 4. D 5. T 6. E 7. A	IS THE IS THE IS THE PIN XACT S	IE NUMBI HE NUMI ON 6 AF I #1 IDE SHAPE AI	TOLER ER OF BER OF PLIES NTIFIER ND SIZI	TERMINA TERMIN TO PLAT MUST I	CONFORM LS. ALS IN : ED TERM BE EXIST IS FEATO IETERS.	I TO ASI K-DIREC IINAL AN ED ON 1	ME Y14 TION & D IS M THE TO	Ne IS IEASUREI P SURF/	1994. THE NU BETW	JMBER O	O AND	0.25mm Fl	ROM TERMINA NDENTATION	MARK	ORI				
2. D \$\frac{3}{1} N \$\frac{4}{6} D \$\frac{6}{6} E 7. A 8. P 9. A	IS THE IS THE IS THE PIN XACT S LL DIM ACKAGE	E NUMBI HE NUMI ON 6 AF I #1 IDE SHAPE AI	TOLER ER OF BER OF PLIES NTIFIER ND SIZI ARE II	TERMINA TERMINA TO PLAT MUST I OF TH MILLIA K 0.05m	CONFORM LS. ALS IN : ED TERM BE EXIST IS FEATO IETERS. ID TERM ID T	I TO ASI K-DIRECT IINAL AN ED ON 1 JRE IS C	ME Y14 TION & D IS M THE TO DPTIONA	Ne IS EASUREI P SURF/	1994. THE NU D BETW	JMBER O	O AND	0.25mm FI BY USING I	ROM TERMINA NDENTATION PROPRIETARY DIFF	MARK	ORI				
2. D 3. N 4. D 5. T 6. E 7. A 8. P	IS THE IS THE IS THE PIN XACT SACT SACT ACKAGE PPLIED XCLUDI	IE NUMBI HE NUMI ON 6 AF I #1 IDE SHAPE AI IENSIONS E WARPA FOR EX	TOLER ER OF BER OF PLIES NTIFIER ND SIZI ARE II GE MAX POSED DED PA	TERMINA TERMINA TO PLAT MUST I OF TH MILLIA K 0.05m	CONFORM LS. ALS IN : ED TERM BE EXIST IS FEATO IETERS. ID TERM ID TERM	I TO ASI K-DIRECT IINAL AN ED ON 1 JRE IS C	ME Y14 TION & D IS M THE TO DPTIONA	Ne IS EASUREI P SURF/	1994. THE NU D BETW	JMBER O	O AND	0.25mm FI BY USING I	NOENTATION	MARK	ORI	X	1,	/ L	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 12